Monetary Policy and the Uncovered Interest Rate Parity Puzzle

David K. Backus¹, Federico Gavazzoni¹, Chris Telmer² and Stanley E. Zin³

June 2010

Abstract
High interest rate currencies tend to appreciate. This is the uncovered interest rate parity (UIP) puzzle. It is primarily a statement about short-term interest rates and how they are related to exchange rates. Short-term interest rates are strongly affected by monetary policy. The UIP puzzle, therefore, can be restated in terms of monetary policy. Do foreign and domestic monetary policies imply exchange rates that violate UIP? We represent monetary policy as foreign and domestic Taylor rules. Foreign and domestic pricing kernels determine the relationship between these Taylor rules and exchange rates. We examine different specifications for the Taylor rule and ask which can resolve the UIP puzzle. We find evidence in favor of a particular asymmetry. If the foreign Taylor rule responds to exchange rate variation but the domestic Taylor rule does not, the model performs better. A calibrated version of our model is consistent with many empirical observations on real and nominal exchange rates, including Fama’s (1984) negative correlation between interest rate differentials and currency depreciation rates.

¹Thanks to Kristoffer Nimark, Jordi Galí, Jaume Ventura, Adrien Verdelhan and, in particular, Burton Hollifield for many helpful comments and discussions. Telmer is grateful to CREI, Universitat Pompeu Fabra, for generous hospitality while some of this work was completed.
²Stern School of Business, New York University; dbackus@stern.nyu.edu
³Tepper School of Business, Carnegie Mellon University; federicogavazzoni@cmu.edu
⁴Tepper School of Business, Carnegie Mellon University; chris.telmer@cmu.edu
⁵Stern School of Business, New York University; stan.zin@nyu.edu
1 Introduction

Uncovered interest rate parity (UIP) predicts that high interest rate currencies will depreciate relative to low interest rate currencies. Yet for many currency pairs and time periods we seem to see the opposite. The inability of asset-pricing models to reproduce this fact is what we refer to as the UIP puzzle.

The UIP evidence is primarily about short-term interest rates and currency depreciation rates. Monetary policy exerts substantial influence over short-term interest rates. Therefore, the UIP puzzle can be restated in terms of monetary policy: Why do countries with high interest rate policies have currencies that tend to appreciate relative to those with low interest rate policies?

The risk-premium interpretation of the UIP puzzle asserts that high interest rate currencies pay positive risk premiums. The question, therefore, can also be phrased in terms of currency risk: When a country pursues a high-interest rate monetary policy, why does this make its currency risky? For example, when the Fed sharply lowered rates in 2001 and the ECB did not, why did the euro become relatively risky? When the Fed sharply reversed course in 2005, why did the dollar become the relatively risky currency? This paper formulates a model of interest rate policy and exchange rates that can potentially answer these questions.

To understand what we do it’s useful to understand previous work on monetary policy and the UIP puzzle. Most models are built upon the basic Lucas (1982) model of international asset pricing. The key equation in Lucas’ model is

\[\frac{S_{t+1}}{S_t} = \frac{n_t^{*} e^{-\pi_t^{*}}}{n_{t+1} e^{-\pi_{t+1}}}, \]

where \(S_t \) denotes the nominal exchange rate (price of foreign currency in units of domestic), \(n_t \) denotes the intertemporal marginal rate of substitution of the domestic representative agent, \(\pi_t \) is the domestic inflation rate and asterisks denote foreign-country variables. Equation (1) holds by virtue of complete financial markets. It characterizes the basic relationship between interest rates, nominal exchange rates, real exchange rates, preferences and consumption.

Previous work has typically incorporated monetary policy into equation (1) via an explicit model of money. Lucas (1982), for example, uses cash-in-advance constraints to map Markov processes for money supplies into the inflation term, \(\exp(\pi_t - \pi_t^{*}) \), and thus into exchange rates. His model, and many that follow it, performs poorly in accounting for data. This is primarily a reflection of the weak empirical link between measures of money and exchange rates.

Our approach is also built upon equation (1). But — like much of the modern theory and practice of monetary policy — we abandon explicit models of money in favor of interest rate rules. Following the New Keynesian macroeconomics literature (e.g., Clarida, Galí, and Gertler (1999)), the policy of the monetary authority is represented by a Taylor (1993) rule. Basically, where Lucas (1982) uses money to restrict the inflation terms in equation (1), we use Taylor rules. Unlike his model, however, our allow for dependence between the inflation terms and the real terms, n_t and n_t^\ast. This is helpful for addressing the evidence on how real and nominal exchange rates co-move.

A sketch of what we do is as follows. The simplest Taylor rule we consider is

$$i_t = \tau + \tau_1 \pi_t + z_t ,$$

where i_t is the nominal short-term interest rate, π_t is the inflation rate, z_t is a “policy shock,” and τ and τ_1 are policy parameters. We also assume that the private sector can trade bonds. Therefore the nominal interest rate must also satisfy the standard (nominal) Euler equation,

$$i_t = -\log E_t n_{t+1} e^{-\pi_{t+1}} ,$$

where (as above) n_{t+1} is the real marginal rate of substitution. An equilibrium inflation rate process must satisfy both of these equations at each point in time, which requires inflation to solve the nonlinear stochastic difference equation:

$$\pi_t = -\frac{1}{\tau_1} (\tau + z_t + \log E_t n_{t+1} e^{-\pi_{t+1}}) .$$

A solution to equation (4) is an endogenous inflation process, π_t, that is jointly determined by the response of monetary authority and the private sector to the same underlying shocks. By substituting such a solution back into the Euler equation (3), we arrive at what Gallmeyer, Hollifield, Palomino, and Zin (2007) (GHPZ) refer to as a ‘monetary policy consistent pricing kernel;’ a (nominal) pricing kernel that depends on the Taylor-rule parameters τ and τ_1. Doing the same for the foreign country, and then using equation (1), we arrive at a nominal exchange rate process that also depends on the policy parameters τ and τ_1. Equations (1)–(4) (along with specifications for the shocks) fully characterize the joint distribution of interest rates and exchange rates and, therefore, any departures from UIP.

Given a Taylor rule such as (2), and its foreign counterpart, we can ask whether the implied exchange rate process in (1) tends to appreciate when the implied interest rate in (3) is relatively low. If so, then the source of UIP deviations can be associated with this Taylor rule. Moreover, we can generalize the specification of the Taylor rule in equation (2) and analyze the consequences of alternative monetary policies for currency exchange rates. In addition, we can ask whether the Taylor rule parameters are identified by the UIP facts. Cochrane (2007) provides
examples in which policy parameters and the dynamics of the shocks are not separately identified by the relationship between interest rates and inflation. Our framework has the potential for identifying monetary policy parameters from the properties of currency exchange rates.

Our paper proceeds as follows. We begin by ignoring real exchange rate variation. This means that $n_t = n_t^*$ and, according to equation (1), relative PPP holds:
$$\log(S_t/S_{t-1}) = \pi_t - \pi_t^*.$$ This is a useful starting point because it provides focus for the essence of our question: “how do Taylor-rule-implied inflation dynamics affect exchange rates?” We also go one step further and set $n_t = n_t^* = e^\tau$, thus abstracting from real interest rate variation (this doesn’t really matter for nominal exchange rates and it makes the analysis easier). The resulting Euler equation for the nominal interest rate (with lognormality) is as follows.\(^2\)

$$i_t = r + E_t \pi_{t+1} - \frac{1}{2} \text{Var}_t(\pi_{t+1}).$$ (5)

The model therefore boils down to two equations for each country — equations (2) and (5) — along with a specification for the policy shocks, z_t in equation (2). As is shown below, the latter must necessarily feature stochastic volatility. Otherwise the conditional variance in equation (5) would be a constant and UIP would hold (up to a constant). The solution for inflation is of the form $\pi(z_t, v_t)$, where v_t is the volatility of z_t. Most of our analysis focuses on variation arising from v_t because only it affects currency risk.

Our first results are negative in nature. We find that simple Taylor rules of the form (2) can generate deviations from UIP, but not as large as those typically focused upon in the literature.\(^3\) The basic reason is straightforward. The Euler equation (5) imposes restrictions between the current interest rate and moments of future inflation. The Taylor rule imposes an additional, contemporaneous restriction between the current interest rate and current inflation. It says that a volatility shock that increases inflation by 1% must increase the interest rate by more than 1%. This is because $\tau_1 > 1$, the so-called “Taylor principle” required

\(^2\)Equation (5) also shows how our paper — at least the initial part — relates to the benchmark New-Keynesian setup. All that really distinguishes the two is the conditional variance term. But, for us, this is where all the action is. That is, if inflation were homoskedastic then the nominal interest rate would satisfy the Fisher equation (up to a constant), the difference equation (4) would be linear, and the solution for inflation would be of the same class as, say, Clarida, Galí, and Gertler (1999). What would also be true, however, is that UIP would be satisfied (up to a constant) and Fama’s (1984) well-known regression of the depreciation rate on the interest rate differential would yield a (population) slope coefficient of 1.0. Our paper would be finished before it even began. Stochastic volatility, therefore, is not a choice, it is a requirement. The only issue is where it comes from.

\(^3\)Specifically, our model (without real rate variation) can generate slope coefficients from Fama’s (1984) regression of depreciation rates on interest rate differentials that are less than unity, but not less than zero.
for the inflation solution to be non-explosive. However, if inflation is a stationary, positively autocorrelated process, then its conditional mean in equation (5) must increase by less than 1%. The only way that both can be satisfied is if the conditional variance in equation (5) decreases. But this means that the mean and variance of the (log) pricing kernel are positively correlated, something which contradicts Fama’s (1984) necessary conditions for resolving the anomaly. There are two ways around this. The first is that volatility is negatively autocorrelated. This is empirically implausible. The second is that the volatility shock that affects inflation also affects the real interest rate (and the real exchange rate). This is the subject of Section 3.2.

This reasoning — spelled out in detail in Section 3.1.4 — is admittedly complex. But the basic point is not. Taylor rules of the form (2) imply restrictions on the co-movement of the mean and variance of the pricing kernel. Getting this co-movement right is critical for resolving the UIP puzzle, so these restrictions can be binding. Models of the inflation term in equation (1) that are driven by exogenous money supplies do not impose such restrictions. Neither do models in which an exogenous inflation process is used to transform real exchange rates into nominal exchange rates. The sense in which we’re learning something about how the conduct of modern monetary policy relates to exchange rates is the sense in which these restrictions identify the policy parameters, \(\tau \) and \(\tau_1 \), and the parameters of the shock process \(z_t \).

Our next results are more positive. While continuing to abstract from real exchange rate and interest rate variability, we examine two alternative Taylor rules relative to that in equation (2). In both cases there are parameterizations of the model that admit UIP deviations similar to those observed in data. The first alternative introduces an additional variable and an asymmetry to the Taylor rule (2). The variable is the contemporaneous currency depreciation rate, \(\log(S_t/S_{t-1}) \). The asymmetry is that the foreign central bank reacts more to the exchange rate than does the domestic central bank. Or, in concrete terms, the Bank of England reacts to variation in the pound/dollar exchange rate, but the Fed does not. Such an asymmetry seems plausible. The international role of the U.S. dollar versus the pound is certainly not symmetric. A small country like New Zealand might pay closer attention to the kiwi/yen exchange rate than a large country like Japan. There is also some empirical and theoretical support for such an asymmetry (c.f. Benigno (2004), Benigno and Benigno (2008), Clarida, Gal, and Gertler (1998), Eichenbaum and Evans (1995), Engel and West (2006)).

The second alternative Taylor rule we consider is based on McCallum (1994) and is emphasized in Woodford (2003). We include the lagged interest rate into equation (2). Like McCallum, we find parameterizations of the model that work. Our approach extends his work by endogenizing the currency risk premium which,
in his paper, is exogenous. This is an important step since it constrains the sense in which the UIP anomaly is driven by endogenous equilibrium inflation risk. That is, in our model, a shock is realized, the Taylor rule responds to that shock, and as a result so does inflation. Whether or not this shock commands a risk premium depends on the parameters of the model. We can then ask if the way in which monetary policy reacts to shocks is consistent with risk premiums that are capable of creating sizable deviations from UIP.

The final sections of our paper move beyond expository examples and develop a model that can be taken to the data. We use a model of \(n_t \) and \(n^*_t \) to incorporate real exchange rate and interest rate variation. We use Epstein and Zin (1989) preferences and we model foreign and domestic consumption as following long-run risk processes as in Bansal and Yaron (2004) and the exchange rate applications in Bansal and Shaliastovich (2008) and Colacito and Croce (2008). Our model does not feature nominal frictions, so inflation reacts to consumption shocks (since they appear in the Taylor rule) but not the other way around. We solve for endogenous inflation in the same manner as described above, but inclusive of the \(n_t \) term in the difference equation (4).

Our last set of results are both qualitative, as above, and quantitative. We characterize conditions under which real and nominal exchange rates will resolve the UIP puzzle and show that the latter depend on the Taylor rule parameters. We show that, as above, Taylor rule-implied inflation tends to hinder the model’s performance, reducing the deviations from UIP. The logic is basically the same as our simplest, nominal-variability-only model described above. Nevertheless, we are able to find a calibration that satisfies the following criteria: (i) Fama’s (1984) UIP coefficient is negative, (ii) UIP holds unconditionally, so that the mean of the risk premium is is zero, (iii) changes in real and nominal exchange rates are highly correlated (Mussa (1986)), (iv) exchange rate volatility is high relative to inflation differentials, (v) exchange rates exhibit near random-walk behavior but interest rate differentials are highly autocorrelated, (vi) international pricing kernels are highly correlated but international aggregate consumption growth rates are not.

\(^4\)Engel and West (2006) also study a model of how Taylor rules affect exchange rates. Their analysis, while focusing on a different set of questions, is related to McCallum’s in that they interpret their ‘policy shock’ as an amalgamation of an actual policy shock and an exogenous risk premium. Our paper relates to theirs in that both derive an exchange rate process as the solution to a forward-looking difference equation. The main difference is that our deviations from UIP are exogenous.

\(^5\)Similar to Bansal and Shaliastovich (2008), Colacito and Croce (2008), and Verdelhan (2010) we treat foreign and domestic consumption *exogenously*, remaining silent on the goods-market equilibrium that gives rise to the consumption allocations. We simply exploit the fact that, with complete financial markets, equation (1) will hold in any such equilibrium. We then calibrate the joint distribution of foreign and domestic consumption to match the data and ask if the implied real and nominal exchange rates and interest rates fit the facts. A more formal treatment and justification is provided in Section 3.
(Brandt, Cochrane, and Santa-Clara (2006)), (vii) domestic real and nominal interest rates are highly autocorrelated with means and volatilities that match data. Our calibrated values for the Taylor rule parameters satisfy conditions required for a solution to exist and, interestingly, are also in the ballpark of typical reduced-form estimates. We find $\tau_1 = 1.1$ and $\tau_2 = 0.74$, where the latter is the coefficient on consumption growth, the analog of the output gap in our setting.

The remainder of the paper is organized as follows. In Section 2 we provide a terse overview of existing results on currency risk and pricing kernels that are necessary for our analysis. Section 3 develops our main model of nominal and real exchange rates and Section 3.1 examines the special case of zero real variability. Section 3.2 provides qualitative results on the main model from Section 3, Section 4 conducts the quantitative exercise and Section 5 concludes.

2 Pricing Kernels and Currency Risk Premiums

We begin with a terse treatment of existing results in order to fix notation. The level of the spot and one-period forward exchange rates, in units of U.S. dollars (USD) per unit of foreign currency (say, British pounds, GBP), are denoted S_t and F_t. Logarithms are s_t and f_t. USD and GBP one-period interest rates (continuously compounded) are denoted i_t and i^*_t. Covered interest parity implies that $f_t - s_t = i_t - i^*_t$. Fama’s (1984) decomposition of the interest rate differential (forward premium) is

$$i_t - i^*_t = f_t - s_t = (f_t - E_t s_{t+1}) + (E_t s_{t+1} - s_t)$$

$$\equiv p_t + q_t$$

This decomposition expresses the forward premium as the sum of q_t, the expected USD depreciation rate, and p_t, the expected payoff on a forward contract to receive USD and deliver GBP. We define the latter as the foreign currency risk premium. We define uncovered interest parity (UIP) as $p_t = 0$. The well-known rejections of UIP are manifest in negative estimates of the parameter b from the regression

$$s_{t+1} - s_t = c + b(i_t - i^*_t) + \text{residuals} \quad . \quad (6)$$

The population regression coefficient can be written

$$b = \frac{\text{Cov}(q_t, p_t + q_t)}{\text{Var}(p_t + q_t)} \quad . \quad (7)$$

Fama (1984) noted that necessary conditions for $b < 0$ are

$$\text{Cov}(p_t, q_t) < 0 \quad \text{and} \quad \text{Var}(p_t) > \text{Var}(q_t) \quad . \quad (8, 9)$$
Our approach revolves around the standard (nominal) pricing-kernel equation,

\[b_{t+1}^{n+1} = E_t m_{t+1} b_{t+1}^n, \]

(10)

where \(b^n_t \) is the USD price of a nominal \(n \)-period zero-coupon bond at date \(t \) and \(m_t \) is the pricing kernel for USD-denominated assets. The one-period interest rate is \(i_t \equiv -\log b^1_t \). An equation analogous to (10) defines the GBP-denominated pricing kernel, \(m^*_t \), in terms of GBP-denominated bond prices, \(b^*_t \).

Backus, Foresi, and Telmer (2001) translate Fama’s (1984) decomposition into pricing kernel language. First, assume complete markets so that the currency depreciation rate is

\[s_{t+1} - s_t = \log \left(\frac{m^*_{t+1}}{m_{t+1}} \right) \]

Fama’s (1984) decomposition becomes

\[i_t - i^*_t = \log E_t m^*_{t+1} - \log E_t m_{t+1} \]

(11)

\[q_t = E_t \log m^*_{t+1} - E_t \log m_{t+1} \]

(12)

\[p_t = (\log E_t m^*_{t+1} - E_t \log m^*_{t+1}) - (\log E_t m_{t+1} - E_t \log m_{t+1}) \]

(13)

\[= \frac{\text{Var}_t(\log m^*_{t+1})}{2} - \frac{\text{Var}_t(\log m_{t+1})}{2}, \]

(14)

where equation (14) is only valid for the case of conditional lognormality. Basically, Fama’s (1984) conditions state that the means and the variances must move in opposite directions and that the variation in the variances must exceed that of the means.

Our objective is to write down a model in which \(b < 0 \). Inspection of equations (8) and (14) indicate that a necessary condition is that \(p_t \) vary over time and that, for the lognormal case, the log kernels must exhibit stochastic volatility.

3 Model

Consider two countries, home and foreign. The home-country representative agent’s consumption is denoted \(c_t \) and preferences are of the Epstein and Zin (1989) (EZ) class:

\[U_t = \left[(1 - \beta) c_t^\rho + \beta \mu_t (U_{t+1})^\rho \right]^{1/\rho} \]

where \(\beta \) and \(\rho \) characterize patience and intertemporal substitution, respectively, and the certainty equivalent of random future utility is

\[\mu_t(U_{t+1}) \equiv E_t[U_{t+1}^\alpha]^{1/\alpha}, \]

so that \(\alpha \) characterizes (static) relative risk aversion (RRA). The relative magnitude of \(\alpha \) and \(\rho \) determines whether agents prefer early or late resolution of
uncertainty ($\alpha < \rho$, and $\alpha > \rho$, respectively). Standard CRRA preferences correspond to $\alpha = \rho$. The marginal rate of intertemporal substitution, defined as n_{t+1}, is

$$n_{t+1} = \beta \left(\frac{c_{t+1}}{c_t} \right)^{\rho-1} \left(\frac{U_{t+1}}{\mu_t(U_{t+1})} \right)^{\alpha-\rho}. \quad (15)$$

The *nominal* marginal rate of substitution — the pricing kernel for claims denominated in USD units — is then

$$m_{t+1} = n_{t+1} e^{-\pi_{t+1}},$$

where π_{t+1} is the (continuously-compounded) rate of inflation between dates t and $t + 1$. The foreign-country representative agent’s consumption, c_t^*, and preferences are defined analogously. Asterisks’ are used to denote foreign variables. Foreign inflation is π_{t+1}^*. The domestic pricing kernel satisfies $E_t(m_{t+1} R_{t+1}) = 1$ for all USD-denominated asset returns, R_{t+1}. Similarly, $E_t(m_{t+1}^* R_{t+1}^*) = 1$ for all GBP-denominated returns. The domestic pricing kernel must also price USD-denominated returns on GBP-denominated assets:

$$E_t \left(\frac{m_{t+1} S_{t+1}}{S_t} R_{t+1}^* \right) = 1. \quad (16)$$

We assume that international financial markets are complete for securities denominated in goods units, USD units and GBP units. This implies the uniqueness of the nominal and real pricing kernels and therefore, according to equation Equation (16),

$$\frac{S_{t+1}}{S_t} = \frac{m_{t+1}^* S_{t+1}}{m_{t+1} S_t} = \frac{n_{t+1}^* e^{-\pi_{t+1}^*}}{n_{t+1} e^{-\pi_{t+1}}}. \quad (17)$$

Equation (17) must hold in any equilibrium with complete financial markets. This is true irrespective of the particular goods-market equilibrium that gives rise to the consumption allocations c_t and c_t^* that are inherent in n_t and n_t^*. Our approach is to specify c_t and c_t^* exogenously and calibrate them to match the joint behavior of data on domestic and foreign consumption. We are silent on the model of international trade that gives rise to such consumption allocations. Bansal and Shaliastovich (2008), Colacito and Croce (2008), Gavazzoni (2008), Verdelhan (2010) and others follow a similar approach. Hollifield and Uppal (1997), Sercu, Uppal, and Hulle (1995) and the appendix in Verdelhan (2010) — all building upon Dumas (1992) — are examples of more fully-articulated complete markets models in which imperfectly-correlated cross-country consumption is generated by transport costs. Basically, our approach is to these models what Hansen and Singleton’s (1983) first-order-condition-based approach was to Mehra and Prescott’s (1985) general equilibrium model.
Following Bansal and Yaron (2004) and the application to real exchange rates of Bansal and Shaliastovich (2008), domestic consumption growth, \(x_{t+1} \), contains a small and persistent component (its ‘long-run risk’) with stochastic volatility:

\[
\log\left(\frac{c_{t+1}}{c_t}\right) \equiv x_{t+1} = \mu + l_t + \sqrt{u_t} \epsilon_{t+1}^u \quad (18)
\]

\[
l_{t+1} = \phi l_t + \sqrt{w_t} \epsilon_{t+1}^l \quad (19)
\]

where

\[
u_{t+1} = (1 - \phi_u)\theta_u + \phi_u \epsilon_{t+1}^u \quad (20)
\]

\[
w_{t+1} = (1 - \phi_w)\theta_w + \phi_w \epsilon_{t+1}^w \quad (21)
\]

Foreign consumption growth, \(x_{t+1}^* \), is defined analogously. The innovations are assumed to be multivariate normal and independent \textit{within}-country: \((\epsilon^x, \epsilon^l, \epsilon^u, \epsilon^w)^\prime \sim \text{NID}(0, I)\), but we allow for correlation \textit{across} countries: \(\eta_{ij} \equiv \text{Corr}(\epsilon_j, \epsilon_j^*)\), for \(j = (x, l, u, w)\).

The process (18)–(21) looks complicated, but each of the ingredients are necessary. Stochastic volatility is necessary because without it the currency risk premium would be constant and the UIP regression parameter, \(b \), would be 1.0. Long-run risk — by which we mean time variation in the conditional mean of consumption growth, \(l_t \) — isn’t critical for exchange rates, but it is for achieving a realistic calibration of interest rates. It decouples the conditional mean of consumption growth from other moments of consumption growth, thereby permitting persistent and volatile interest rates to co-exist with relatively smooth and close-to-i.i.d. consumption growth. Finally, cross-country correlation in the innovations is critical for achieving realistic cross-country consumption correlations. The latter imposes substantial discipline on our calibration (c.f., Brandt, Cochrane, and Santa-Clara (2006)).

The final ingredients are domestic and foreign Taylor rules. We assume that there are no nominal frictions, so that monetary policy has no impact on consumption. We’ll consider several different specifications, but the most general ones are of the form

\[
i_t = \tau + \tau_1 \pi_t + \tau_2 l_t + \tau_3 \log\left(\frac{S_t}{S_{t-1}}\right) + \tau_4 i_{t-1} + z_t \quad (22)
\]

where \(z_t \) is a policy shock governed by

\[
z_{t+1} = (1 - \phi_z)\theta_z + \phi_z z_t + \sqrt{v_t} \epsilon_{t+1}^z \quad (23)
\]

\[
v_{t+1} = (1 - \phi_v)\theta_v + \phi_v v_t + \sigma_v \epsilon_{t+1}^v \quad (24)
\]

Analogous equations, denoted with asterisks, characterize the foreign-country Taylor rules. The first four variables in the Taylor rule are defined above and have
each played a prominent role in the literature. We include the exogenous policy shocks, \(z_t \), in order to allow for some flexibility in the distinction between real and nominal variables. Without policy shocks endogenous inflation will depend only on consumption shocks. The same will therefore be true of nominal exchange rates. We find it implausible that monthly variation in nominal exchange rates is 100% attributable to real shocks. This being said, the identification of the parameters of the \(z_t \) process is an important issue. We deal with it explicitly in the next section. Note that stochastic volatility in the policy shocks is a necessary condition for them to have any affect on currency risk premiums.

3.1 Nominal Variability Only

The crux of our question asks “how does Taylor-rule-implied inflation affect exchange rates?” In order to focus on this we begin by abstracting from real exchange rate variation. We set \(n_t = n_t^* \), implying that \(\log(S_t/S_{t-1}) = \pi_t - \pi_t^* \), so that relative PPP holds exactly. We don’t take this specification seriously for empirical analysis. We use it to try to understand exactly how the Taylor rule restricts inflation dynamics and, therefore, nominal exchange rate dynamics. As we’ll see in Section 3.2, the lessons we learn carry over to more empirically-relevant models with both nominal and real variability.

We start with the simplest possible variant of the Taylor rule (22):

\[
i_t = \tau + \tau_1 \pi_t + z_t ,
\]

(25)

where the process for \(z_t \) is described above, in equations (23-24). There are, of course, many alternative specifications. A good discussion related to asset pricing is Ang, Dong, and Piazzesi (2007). Cochrane (2007) uses a similar specification to address issues related to price-level determinacy and the identification of the parameters in equation (25). We begin with it for reasons of tractability and clarity. We then go on to include the nominal depreciation rate and the lagged interest rate, as appear in the general expression (22).

In addition to \(n_t = n_t^* \), we abstract from real interest rate variation by setting \(n_t = n_t^* = 1 \). For exchange rates, conditional on \(n_t = n_t^* \), this is without loss of generality. The (nominal) short interest rate, \(i_t = -\log E_t m_{t+1} \), is therefore

\[
i_t = -\log E_t e^{-\pi_{t+1}}
\]

\[
= E_t \pi_{t+1} - \frac{1}{2} \text{Var}_t(\pi_{t+1})
\]

(26)

The Taylor rule (25) and the Euler equation (26) imply that inflation must satisfy the following difference equation:

\[
\pi_t = -\frac{1}{\tau_1}(\tau + z_t + E_t \pi_{t+1} - \frac{1}{2} \text{Var}_t(\pi_{t+1}))
\]

(27)
Given the log-linear structure of the model, guess that the solution has the form,

\[\pi_t = a + a_1 z_t + a_2 v_t . \]

(28)

Instead of solving equation (27) forward, just substitute equation (28) into the Euler equation (26), compute the moments, and then solve for the \(a_i \) coefficients by matching up the result with the Taylor rule (25). This gives,

\[a = \frac{C - \tau}{\tau_1} \]

\[a_1 = \frac{1}{\varphi_z - \tau_1} \]

\[a_2 = \frac{1}{2(\varphi_z - \tau_1)^2(\varphi_v - \tau_1)} \]

where

\[C \equiv a + a_1 \theta_z (1 - \varphi_z) + a_2 \theta_v (1 - \varphi_v) - (a_2 \sigma_v)^2 / 2 . \]

More explicit derivations are given in Appendix A. Inflation and the short rate can now be written as:

\[\pi_t = \frac{C - \tau}{\tau_1} + \frac{1}{\varphi_z - \tau_1} z_t + \frac{1}{2(\varphi_z - \tau_1)^2(\varphi_v - \tau_1)} v_t \]

\[i_t = C + \frac{\varphi_z}{\varphi_z - \tau_1} z_t + \frac{\tau_1}{2(\varphi_z - \tau_1)^2(\varphi_v - \tau_1)} v_t \]

\[= C + \varphi_z a_1 z_t + \tau_1 a_2 v_t , \]

and the pricing kernel as

\[-\log m_{t+1} = C + (\sigma_v a_2)^2 / 2 + a_1 \varphi_z z_t + a_2 \varphi_v v_t + a_1 v_t^{1/2} \epsilon_{t+1}^z + \sigma_v a_2 \epsilon_{t+1}^v \]

\[= D + \frac{1}{\varphi_z - \tau_1} \varphi_z z_t + \frac{\varphi_v}{2(\varphi_z - \tau_1)^2(\varphi_v - \tau_1)} v_t \]

\[+ \frac{1}{\varphi_z - \tau_1} v_t^{1/2} \epsilon_{t+1}^z + \frac{\sigma_v}{2(\varphi_z - \tau_1)^2(\varphi_v - \tau_1)} \epsilon_{t+1}^v \]

(29)

where

\[D \equiv C + (\sigma_v a_2)^2 / 2 . \]

Now consider a foreign country, say the UK. Denote all foreign variables with an asterisk. The foreign Taylor rule is

\[i_t^* = \tau^* + \tau_1^* \pi_t^* + z_t^* . \]
with z^*_t and its volatility following processes analogous to equations (23–24). For now, z_t and z^*_t can have any correlation structure. Repeating the above calculations for the UK and then substituting the results into equations (11–14) we get

$$i_t - i^*_t = \varphi z_{1} z_t - \varphi^*_z a^*_1 z_t^* + \tau_1 a_2 v_t - \tau_1^* a^*_2 v_t^*$$
$$q_t = D - D^* + a_1 \varphi z_t - a^*_1 \varphi^*_z z_t^* + a_2 \varphi v_t - a^*_2 \varphi^*_v v_t^*$$
$$p_t = -\frac{1}{2} (a_1^2 v_t - a^*_1 v_t^* + \sigma_v^2 a_2^2 - \sigma^*_v^2 a^*_2^2)$$

where $D \equiv C + (\sigma v a_2)^2/2$. It is easily verified that $p_t + q_t = i_t - i^*_t$.

Result 1: Symmetry and $\varphi_z = 0$

If all foreign and domestic parameter values are the same and $\varphi_z = \varphi_z^* = 0$, then the UIP regression parameter (7) is:

$$b = \frac{\text{Cov}(i_t - i^*_t, q_t)}{\text{Var}(i_t - i^*_t)} = \frac{\text{Cov}(p_t + q_t, q_t)}{\text{Var}(p_t + q_t)} = \frac{\varphi_v}{\tau_1}$$

Calculations are provided in Appendix A.

3.1.1 Discussion

The sign of $\text{Cov}(p_t, q_t)$ does not depend on φ_z. That is, $\text{Cov}(p_t, q_t)$ is essentially the covariance between the kernel’s mean and its variance and, while v_t appears in both, z_t appears only in the mean. The assumption $\varphi_z = 0$ is therefore relatively innocuous in the sense that it has no effect on one of the two necessary conditions (8) and (9).

We require $\tau_1 > 1$ for the solution to make sense. Therefore, according to equation (31), $0 < b < 1$ unless $\varphi_v < 0$. The latter is implausible. Nevertheless, the UIP regression coefficient can be significantly less than unity and the joint distribution of exchange rates and interest rates will admit positive expected excess returns on a suitably-defined trading strategy.

We cannot, at this point, account for $b < 0$. But the model does deliver some insights into our basic question of how Taylor rules restrict inflation dynamics and, consequently, exchange rate dynamics. We summarize with several remarks.
Remark 1: This is not just a relabeled affine model

Inspection of the pricing kernel, equation (29), indicates that it is basically a log-linear function of two unobservable factors. Is what we are doing just a relabeling of the class of latent-factor affine models described in Backus, Foresi, and Telmer (2001)? The answer is no and the reason is that the Taylor rule imposes economically-meaningful restrictions on the model’s coefficients.

To see this consider a pricing kernel of the form

\[- \log m_{t+1} = \alpha + \beta v_t + \gamma v_t^{1/2} \xi_{t+1} \] (32)

where \(v_t \) is an arbitrary, positive stochastic process, and an analogous expression describes \(m^*_t \). Backus, Foresi, and Telmer (2001) show that such a structure generates a UIP coefficient \(b < 0 \) if \(\beta > 0 \) and \(\beta < \gamma^2/2 \). The former condition implies that the mean and variance of negative the log kernel move in the same direction — this gives \(\text{Cov}(p_t, q_t) < 0 \) — and the latter implies that the variance is more volatile so that \(\text{Var}(p_t) > \text{Var}(q_t) \).

Now compare equations (32) and (29). The Taylor rule imposes the restrictions that \(\beta \) can only be positive if \(\varphi_v \) is negative (because \(a_2 < 0 \) since \(\tau_1 > 1 \)) and that \(\beta = \sigma_v \varphi_v \gamma \). Moreover, both \(\beta \) and \(\gamma \) are restricted by value of the policy parameter \(\tau_1 \). In words, the UIP evidence requires the mean and the variance of the pricing kernel to move in particular ways relative to each other. The Taylor rule and its implied inflation dynamics place binding restrictions on how this can happen. The unrestricted pricing kernel in equation (32) can account for \(b < 0 \) irrespective of the dynamics of \(v_t \). Imposing the Taylor rule says that \(v_t \) must be negatively autocorrelated.

Remark 2: Reason that negatively-correlated volatility is necessary for \(b < 0 \)?

First, note that \(a_2 < 0 \), so that an increase in volatility \(v_t \) decreases inflation \(\pi_t \). Why? Suppose not. Suppose that \(v_t \) increases. Then, since \(\tau_1 > 1 \), the Taylor rule implies that the interest rate \(i_t \) must increase by more than inflation \(\pi_t \). However this contradicts the stationarity of inflation which implies that the conditional mean must increase by less than the contemporaneous value. Hence \(a_2 < 0 \). A similar argument implies that \(a_1 < 0 \) from equation (28). The point is that the dynamics of Taylor-rule implied inflation, at least until we get the real interest rate involved in Section 3.2, are driven by the muted response of the interest rate to a shock, relative to that of the inflation rate.

Next, to understand why \(\varphi_v < 0 \) is necessary for \(b < 0 \), consider again an increase in volatility \(v_t \). Since \(a_2 < 0 \), the U.S. interest rate \(i_t \) and the contemporaneous inflation rate \(\pi_t \) must decline. But for \(b < 0 \) USD must be expected to
depreciate. This means that, although π_t decreases, $E_t\pi_{t+1}$ must increase. This means that volatility must be negatively autocorrelated.

Finally, consider the more plausible case of positively autocorrelated volatility, $0 < \varphi_v < 1$. Then $b < 1$ which is, at least, going in the right direction (e.g., Backus, Foresi, and Telmer (2001) show that the vanilla Cox-Ingersoll-Ross model generates $b > 1$). The reasoning, again, derives from the ‘muted response of the interest rate’ behavior required by the Taylor rule. This implies that $Cov(p_t, q_t) > 0$ — thus violating Fama’s condition (8) — which says that if inflation and expected inflation move in the same direction as the interest rate (because $\varphi_v > 0$), then so must the USD currency risk premium. The regression (6) can be written

\[q_t = c + b(p_t + q_t) - \text{forecast error}, \]

where ‘forecast error’ is defined as $s_{t+1} - s_t - q_t$. Since $Cov(p_t, q_t) > 0$, then $Var(p_t + q_t) > Var(q_t)$ and, therefore, $0 < b < 1$.

Even more starkly, consider the case of $\varphi_v = 0$ so that $b = 0$. Then the exchange rate is a random walk — i.e., $q_t = 0$ so that $s_t = E_t s_{t+1}$ — and all variation in the interest rate differential is variation in the risk premium, p_t. Taylor rule inflation dynamics, therefore, say that for UIP to be a good approximation, changes in volatility must show up strongly in the conditional mean of inflation and that this can only happen if volatility is highly autocorrelated.

Remark 3: Identification of policy parameters

Cochrane (2007) provides examples where policy parameters like τ_1 are impossible to distinguish from the parameters of the unobservable shocks. Result 1 bears similarity to Cochrane’s simplest example. We can estimate b from data but, if we can’t estimate φ_v directly then there are many combinations of φ_v and τ_1 that are consistent with any estimate of b.

Identification in our special case, however, is possible because of the conditional variance term in the interest rate equation: $i_t = E_t \pi_{t+1} - Var_t \pi_{t+1}$. To see this note that, with $\varphi_z = 0$, the autocorrelation of the interest rate is φ_v and, therefore, φ_v is identified by observables. Moreover,

\[\frac{i_t}{E_t \pi_{t+1}} = \frac{\tau_1}{\varphi_v}, \]

which identifies τ_1 because the variables on the left side are observable.

The more general case of $\varphi_z \neq 0$ doesn’t work out as cleanly, but it appears that the autocorrelation of inflation and the interest rate jointly identify φ_z and φ_v and the above ratio again identifies the policy parameter τ_1. These results are all special cases of those described in Backus and Zin (2008).
3.1.2 Asymmetric Taylor Rules

The series of affine models outlined in Backus, Foresi, and Telmer (2001) suggest that asymmetries between the foreign and domestic pricing kernels are likely to play a critical role in achieving \(b < 0 \). Their approach is purely statistical in nature. There are many parameters and few sources of guidance for which asymmetries are plausible and which are not. This section asks if foreign and domestic Taylor rule asymmetries are plausible candidates.

Suppose that foreign and domestic Taylor rules depend on the exchange rate in addition to domestic inflation and a policy shock:

\[
\begin{align*}
i_t &= \tau + \tau_1 \pi_t + z_t + \tau_3 \log(S_t/S_{t-1}) \tag{33} \\
i_t^* &= \tau^* + \tau_1^* \pi_t^* + z_t^* + \tau_3^* \log(S_t/S_{t-1}) \tag{34}
\end{align*}
\]

The asymmetry that we’ll impose is that \(\tau_3 = 0 \) so that the Fed does not react to the depreciation rate whereas the Bank of England does. Foreign central banks reacting more to USD exchange rates seems plausible. It’s also consistent with some empirical evidence in, for example, Clarida, Galí, and Gertler (1999), Engel and West (2006), and Eichenbaum and Evans (1995).

Assuming the same processes for the state variables as equations (23) and (24) (and their foreign counterparts), guess that the inflation solutions look like:

\[
\begin{align*}
\pi_t &= a + a_1 z_t + a_2 z_t^* + a_3 v_t + a_4 v_t^* \equiv a + A^\top X_t \\
\pi_t^* &= a^* + a_1^* z_t + a_2^* z_t^* + a_3^* v_t + a_4^* v_t^* \equiv a^* + A^{*\top} X_t
\end{align*}
\]

and collect the state variables into the vector

\[
X_t^\top \equiv [z_t \ z_t^* \ v_t \ v_t^*]^\top.
\]

Interest rates, from Euler equations with real interest rate = 0, must satisfy:

\[
\begin{align*}
i_t &= C + B^\top X_t \\
i_t^* &= C^* + B^{*\top} X_t
\end{align*}
\]

where,

\[
\begin{align*}
B^\top &\equiv \begin{bmatrix} a_1 \varphi_z & a_2 \varphi_z^* & (a_3 \varphi_v - \frac{a_1^2}{2}) & (a_4 \varphi_v^* - \frac{a_2^2}{2}) \end{bmatrix} \\
C &\equiv a + a_1 \theta_z (1 - \varphi_z) + a_2 \theta_z^* (1 - \varphi_z^*) + a_3 \theta_v (1 - \varphi_v) + a_4 \theta_v^* (1 - \varphi_v^*) - \frac{1}{2} (a_3^2 \sigma_v^2 + a_4^2 \sigma_v^2) \\
B^{*\top} &\equiv \begin{bmatrix} a_1^* \varphi_z & a_2^* \varphi_z^* & (a_3^* \varphi_v - \frac{a_1^2}{2}) & (a_4^* \varphi_v^* - \frac{a_2^2}{2}) \end{bmatrix} \\
C^* &\equiv a^* + a_1^* \theta_z (1 - \varphi_z) + a_2^* \theta_z^* (1 - \varphi_z^*) + a_3^* \theta_v (1 - \varphi_v) + a_4^* \theta_v^* (1 - \varphi_v^*) - \frac{1}{2} (a_3^2 \sigma_v^2 + a_4^2 \sigma_v^2)
\end{align*}
\]
The solution for the \(a \) coefficients and the following result are provided in Appendix B.

Result 2: *Asymmetric reaction to exchange rates*

If foreign and domestic Taylor rules are equations (33) and (34), with \(\tau_3 = 0 \) and all remaining foreign and domestic parameter values the same, then \(b < 0 \) if \(\tau_3^* > \tau_1 \).

Remark 4: *Pathological policy behavior?*

Interpreted literally, \(\tau_3^* > 0 \) means that the Bank of England reacts to an appreciation in GBP by increasing the British interest rate. However, at the same time, there exist sensible calibrations of the model in which \(\text{Cov}(i_t^*, \log(S_t/S_{t-1})) > 0 \). This makes the obvious point that the Taylor rule coefficients must be interpreted with caution since all the endogenous variables in the rule are responding to the same shocks.

3.1.3 McCallum’s Model

McCallum (1994), equation (17), posits a policy rule of the form

\[
i_t - i_t^* = \lambda (s_t - s_{t-1}) + \sigma (i_{t-1} - i_{t-1}^*) + \zeta_t,
\]

where \(\zeta_t \) is a policy shock. He also defines UIP to include an exogenous shock, \(\xi_t \), so that

\[
i_t - i_t^* = E_t(s_{t+1} - s_t) + \xi_t.
\]

McCallum solves the implicit difference equation for \(s_t - s_{t-1} \) and finds that it takes the form

\[
s_t - s_{t-1} = -\sigma/\lambda(i_t - i_{t-1}) - \lambda^{-1}\zeta_t + \left(\lambda + \sigma\right)^{-1}\xi_t
\]

He specifies values \(\sigma = 0.8 \) and \(\lambda = 0.2 \) — justified by the policy-makers desire to smooth interest rates and ‘lean-into-the-wind’ regarding exchange rates — which resolve the UIP puzzle by implying a regression coefficient from our equation (6) of \(b = -4 \). McCallum’s insight was, recognizing the empirical evidence of a risk premium in the interest rate differential, to understand that the policy rule and the equilibrium exchange rate must respond to the same shock that drives the risk premium.
In this section we show that McCallum’s result can be recast in terms of our pricing kernel model and a policy rule that targets the interest rate itself, not the interest rate differential. The key ingredient is a lagged interest rate in the policy rule:

\[i_t = \tau + \tau_1 \pi_t + \tau_4 i_{t-1} + z_t , \]

(35)

where the processes for \(z_t \) and its volatility \(v_t \) are the same as above. Guess that the solution for endogenous inflation is:

\[\pi_t = a + a_1 z_t + a_2 v_t + a_3 i_{t-1} , \]

(36)

Substitute equation (36) into the pricing kernel and compute the expectation:

\[i_t = \frac{1}{1-a_3} \left(C + a_1 \varphi z_t + (a_2 \varphi v - a_1^2/2) v_t \right) , \]

where

\[C \equiv a + a_1 \theta_z (1 - \varphi_z) + a_2 \theta_v (1 - \varphi_v) - (a_2 \sigma_v)^2/2 \]

Match-up the coefficients with the Taylor rule and solve for the \(a_j \) parameters:

\[
\begin{align*}
a &= \frac{C}{\tau_1 + \tau_4} - \frac{\tau}{\tau_1} \\
a_1 &= \frac{\tau_1 (\varphi_z - \tau_1 - \tau_4)}{\tau_1 + \tau_4} \\
a_2 &= \frac{(\tau_1 + \tau_4)^2}{2 \tau_1^2 (\varphi_z - \tau_1 - \tau_4)^2 (\varphi_v - \tau_1 - \tau_4)} \\
a_3 &= -\frac{\tau_4}{\tau_1}
\end{align*}
\]

It’s useful to note that

\[a_2 = \frac{a_1^2}{2(\varphi_v - \tau_1 - \tau_4)} \]

and that matching coefficients imply

\[\frac{a_1 \varphi_z}{1-a_3} = 1 + \tau_1 a_1 \quad ; \quad \frac{a_2 \varphi_v - a_1^2/2}{1-a_3} = \tau_1 a_2. \]

Inflation and the short rate are:

\[
\begin{align*}
\pi_t &= \frac{C}{\tau_1 + \tau_4} - \frac{\tau}{\tau_1} + \frac{\tau_1 + \tau_4}{\tau_1 (\varphi_z - \tau_1 - \tau_4)} z_t + \\
&+ \frac{(\tau_1 + \tau_4)^2}{2 \tau_1^2 (\varphi_z - \tau_1 - \tau_4)^2 (\varphi_v - \tau_1 - \tau_4)} v_t - \frac{\tau_4}{\tau_1} i_{t-1} \\
i_t &= \frac{\tau_1}{\tau_1 + \tau_4} C + \frac{\varphi_z}{\varphi_v - \tau_1 - \tau_4} z_t + \frac{(\tau_1 + \tau_4)^2}{2 \tau_1 (\varphi_z - \tau_1 - \tau_4)^2 (\varphi_v - \tau_1 - \tau_4)} v_t \\
&= \frac{1}{1-a_3} \left(C + \varphi_z a_1 z_t + (\tau_1 + \tau_4) a_2 v_t \right)
\end{align*}
\]
The pricing kernel is

\[- \log m_{t+1} = D + \frac{a_1 \varphi_z}{1 - a_3} z_t + \frac{a_2 \varphi_v - a_3 a_1^2/2}{1 - a_3} v_t + a_1 v_t^{1/2} \epsilon_{t+1}^z + \sigma_v a_2 \epsilon_{t+1}^v\]

where

\[D \equiv \frac{C}{1 - a_3} + (\sigma_v a_2)^2/2\]

The GBP-denominated kernel and variables are denoted with asterisks. If we assume that all foreign and domestic parameter values are the same (i.e., \(\tau = \tau^*\)), the interest-rate differential, the expected depreciation rate, \(q_t\), and the risk premium, \(p_t\), are:

\[i_t - i_t^* = \frac{a_1 \varphi_z}{1 - a_3} (z_t - z_t^*) + \frac{a_2 \varphi_v - a_3 a_1^2/2}{1 - a_3} (v_t - v_t^*)\]

\[q_t = \frac{a_1 \varphi_z}{1 - a_3} (z_t - z_t^*) + \frac{a_2 \varphi_v - a_3 a_1^2/2}{1 - a_3} (v_t - v_t^*)\]

\[p_t = -\frac{1}{2} a_1^2 (v_t - v_t^*)\]

It is easily verified that \(p_t + q_t = i_t - i_t^*\).

The nominal interest rate and the interest rate differential have the same autocorrelation:

\[\text{Corr}(i_{t+1}, i_t) = \text{Corr}(i_{t+1} - i_{t+1}^*, i_t - i_t^*)\]

\[= 1 - (1 - \varphi_z)(1 + \tau_1 a_1)^2 \frac{\text{Var}(z_t)}{\text{Var}(i_t)} - (1 - \varphi_v)(\tau_1 a_2)^2 \frac{\text{Var}(v_t)}{\text{Var}(i_t)}\]

If we set \(\varphi_z = 0\), then the regression parameter is:

\[b = \frac{\text{Cov}(i_t - i_t^*, q_t)}{\text{Var}(i_t - i_t^*)} = \frac{\varphi_v - \tau_4}{\tau_1}\]

To see the similarity to McCallum’s model define \(\zeta \equiv z_t - z_t^*\), and subtract the UK Taylor rule from its U.S. counterpart in (35). Assuming symmetry, we get

\[i_t - i_t^* = \tau_1 (\pi_t - \pi_t^*) + \tau_4 (i_t - i_t^*) + \zeta_t\]

\[= \tau_1 (s_t - s_{t-1}) + \tau_4 (i_t - i_t^*) + \zeta_t\]

where the second equality follows from market completeness and our simple pricing kernel model. This is the same as McCallum’s policy rule with \(\tau_1 = \lambda\) and \(\tau_4 = \sigma\)
His UIP “shock” is the same as our $p_t = -a_1^2(v_t - v_t^*)/2$, with $\phi_z = \phi_v = 0$. With $\phi_v = 0$ we get the same UIP regression coefficient, $-\tau_4/\tau_1$. McCallum’s model is basically a two-country Taylor rule model with a lagged interest rate in the policy rule and no dynamics in the shocks. Allowing for autocorrelated volatility diminishes the model’s ability to account for a substantially negative UIP coefficient, a feature that McCallum’s approach does not recognize. A value of $b < 0$ can only be achieved if volatility is less autocorrelated than the value of the interest rate smoothing policy parameter.

3.1.4 Summary

The goal of this section has been to ascertain how the imposition of a Taylor rule restricts inflation dynamics and how these restrictions are manifest in the exchange rate. What have we learned?

A good context for understanding the answer is the Alvarez, Atkeson, and Kehoe (2008) (AAK) paper. The nuts and bolts of their argument goes as follows. With lognormality, the nominal interest is

$$i_t = -E_t \left(\log m_{t+1} \right) - \text{Var}_t \left(\log m_{t+1} \right)/2$$

AAK argue that if exchange rates follow a random walk then variation in the conditional mean term must be small.\(^6\) Therefore (according to them), “almost everything we say about monetary policy is wrong.”\(^7\) The idea is that, in many existing models, the monetary policy transmission mechanism works through its affect on the conditional mean of the nominal marginal rate of substitution, m_t. But if exchange rates imply that the conditional mean is essentially a constant — so that ‘everything we say is wrong’ — then the mechanism must instead be working through the conditional variance.

If one takes the UIP evidence seriously, this isn’t quite right. The UIP puzzle requires variation in the conditional means (i.e., it says that exchange rates are not a random walk).\(^7\) Moreover, it also requires that this variation be negatively correlated with variation in the conditional variances, and that the latter be larger than the former. In terms of monetary policy the message is that the standard

\(^6\)i.e., random walk exchange rates mean that $E_t \log(S_{t+1}/S_t) = 0$, and, from equation (12), $E_t \log(S_{t+1}/S_t) = -E_t(\log m_{t+1} - \log m_t^*)$. Random walk exchange rates, therefore, imply that the difference between the mean of the log kernels does not vary, not the mean of the log kernels themselves. More on this below.

\(^7\)Of course, the variation in the forecast error for exchange rates dwarfs the variation in the conditional mean (i.e., the R\(^2\) from the Fama-regressions is very small). Monthly changes in exchange rates certainly exhibit ‘near random walk’ behavior, and for policy questions the distinction may be a second-order effect. This argument, however, does not affect our main point regarding the AAK paper: that exchange rates are all about differences between pricing kernels and its hard to draw definitive conclusions about their levels.
story — that a shock that increases the mean (of the marginal rate of substitution) decreases the interest rate — is wrong. The UIP evidence says that we need to get used to thinking about a shock that increases the mean as increasing the interest rate, the reason being that the same shock must decrease the variance, and by more than it increases the mean.

Now, to what we’ve learned. We’ve learned that symmetric monetary policies as represented by Taylor rules of the form (25) can’t deliver inflation dynamics that, by themselves, satisfy these requirements. The reason is basically what we label the ‘muted response of the short rate’. The evidence requires that the conditional mean of inflation move by more than its contemporaneous value. But the one clear restriction imposed by the Taylor rule — that the interest rate must move less than contemporaneous inflation because the interest rate must also be equal to the conditional mean future inflation — says that this can’t happen (unless volatility is negatively autocorrelated).

This all depends heavily on the real interest rate being a constant, something we relax in the next section. What’s going on is as follows. In general, the Euler equation and the simplest Taylor rule can be written as

\[
i_t = r_t + E_t \pi_{t+1} - \frac{\text{Var}_t(\pi_{t+1})}{2} + \text{Cov}_t(n_{t+1}, \pi_{t+1})
\]

(37)

\[
i_t = \tau + \tau_1 \pi_t + z_t.
\]

(38)

The Euler equation (37) imposes restrictions between the current short rate and moments of future inflation. The Taylor rule (38) imposes an additional contemporaneous restriction between the current interest rate and current inflation. To see what this does, first ignore the real parts of equation (37), \(r_t\) and the covariance term. Recalling that endogenous inflation will be a function \(\pi(z_t, v_t)\), consider a shock to volatility that increases inflation by 1%. The Taylor rule says that \(i_t\) must increase by more than 1%, say 1.2%. But, if inflation is a positively autocorrelated stationary process, then its conditional mean, \(E_t \pi_{t+1}\), must increase by less than 1%, say 0.9%. Equation (37) says that the only way this can happen is if the conditional variance decreases by 0.2%; a volatility shock that increases \(\pi_t\) must decrease \(\text{Var}_t(\pi_{t+1})\). Therefore the mean and variance of the pricing kernel must move in the same direction, thus contradicting what Fama (1984) taught us is necessary for \(b < 0\).

Phrased in terms of the exchange rate, the logic is equally intuitive. The increase in the conditional mean of inflation implies an expected devaluation in USD — recall that relative PPP holds if we ignore real rates — which, given the increasing interest rate implied by the Taylor rule, moves us in the UIP direction: high interest rates associated with a devaluing currency. Note that, if volatility

8A shock to \(z_t\) isn’t particularly interesting in this context because it doesn’t affect both the mean and variance of the pricing kernel.
were negatively autocorrelated, \(E_t \pi_{t+1} \) would fall and the reverse would be true; we’d have \(b < 0 \). \(^9\)

So, the contemporaneous restriction implied by the Taylor rule is very much a binding one for our question. This points us in two directions. First, it suggests that an interaction with the real interest rate is likely to be important. None of the above logic follows if \(r_t \) and \(\text{Cov}(n_{t+1}, \pi_{t+1}) \) also respond to a volatility shock. We follow this path in the next section. Second it points to something else that the AAK story doesn’t get quite right. Exchange rate behavior tells us something about the difference between the domestic and foreign pricing kernels, not necessarily something about their levels. The above logic, and AAK’s logic, is about levels, not differences. Symmetry makes the distinction irrelevant, but with asymmetry it’s important. What our asymmetric example delivers is (i) inflation dynamics that, in each currency, satisfies ‘muted response of the short rate’ behavior, and (ii) a difference in inflation dynamics that gets the difference in the mean and the variance of the kernels moving in the right direction.

To see this, recall that \(X_t^\top = [z_t \ z^*_t \ v_t \ v^*_t]^\top \) and consider the foreign and domestic pricing kernels in the asymmetric model:

\[
\begin{align*}
- \log m_{t+1} &= \text{constants} + a_1 \varphi z_t + a_3 \varphi v_t + a_1 v_{1/2} \epsilon_{t+1}^z + a_3 \sigma_{\epsilon} \epsilon_{t+1}^v \\
- \log m^*_{t+1} &= \text{constants} + A^\top \Lambda X_t + V(X_t)^{1/2} [\epsilon_{t+1}^z \ \epsilon_{t+1}^v \ \epsilon_{t+1}^v \ \epsilon_{t+1}^w]^\top
\end{align*}
\]

where \(\Lambda \) is a diagonal matrix of autoregressive coefficients, and \(V(X_t) \) is a diagonal matrix of conditional standard deviations. The asymmetric restriction that \(\tau_3 = 0 \) and \(\tau_3^* \neq 0 \) effectively makes this a ‘common factor model’ with asymmetric loadings on the common factors. A number of recent papers, Lustig, Roussanov, and Verdelhan (2009) for example, have argued persuasively for such a specification. What we’ve developed is one economic interpretation of their statistical exercise. \(^{10}\)

More explicitly, consider the difference in the mean and variance of the log kernels from the symmetric and asymmetric examples of Sections 3.1 and 3.1.2. For the symmetric case we have

\[
\begin{align*}
p_t &= -\frac{1}{2} a_2^p (v_t - v^*_t) \\
q_t &= a_2 \varphi_t (v_t - v^*_t)
\end{align*}
\]

\(^9\)This intuition is also useful for understanding why we get \(0 < b < 1 \) with positively autocorrelated volatility. The RHS of the regression, the interest rate spread, contains both the mean and the variance of inflation. The LHS contains only the mean. If (negative) the mean and the variance move in the same direction, then the RHS is moving more than the LHS and the population value of \(b \) is less than unity.

\(^{10}\)Note that if the conditional mean coefficients on \(z_t \) and \(v_t \) were the same across \(m \) and \(m^* \) then, contrary to AAK’s assertion, monetary policy could affect the mean of the pricing kernel while still allowing for a random walk exchange rate. This is simply because \(z_t \) and \(v_t \) would not appear in the difference between the means of the two log kernels.
whereas for the asymmetric case we have

\[p_t = -\frac{1}{2}(a_1^2 - a_4^2) v_t + \frac{1}{2}a_4^* v^*_t \]
\[q_t = \varphi v_t (a_3 - a_3^*) v_t - a_4^* v^*_t \]

where the \(a \) coefficients are functions of the model’s parameters, outlined above and in more detail in the appendix. What’s going on in the symmetric case is transparent. \(p_t \) and \(q_t \) can only be negatively correlated if \(\varphi < 0 \) (since \(a_2 < 0 \)). The asymmetric case is more complex, but it turns out that what’s critical is that \((a_3 - a_3^*) < 0 \). This in turn depends on the difference \((\tau_1 - \tau_3^*) \) being negative. Overall, what the asymmetric Taylor rule does is that it introduces an asymmetry in how a common factor between \(m \) and \(m^* \) affect their conditional means. This asymmetry causes the common factor to show up in exchange rates, and it can also flip the sign and deliver \(b < 0 \) with the right combination of parameter values.

3.2 Nominal and Real Variability

We now incorporate real exchange rate variability and an interaction between real exchange rates and endogenous inflation. There are no nominal frictions in the model and thus monetary policy has no impact on real variables. The model features both real and nominal shocks. The former have a direct effect on consumption and, through the Taylor rules, an indirect effect on inflation and the exchange rate. The latter affect inflation and exchange rates, but have no effect on consumption.

Following Hansen, Heaton, and Li (2005), we linearize the logarithm of the real pricing kernel, equation (15), around zero. The result is

\[-\log(n_{t+1}) = \delta^r + \gamma^r_l l_t + \gamma^r_u u_t + \gamma^r_w w_t \]
\[+ \lambda^r_x \sqrt{u_t} \epsilon^r_{l+1} + \lambda^r_l \sqrt{w_t} \epsilon^r_{l+1} + \lambda^r_u \sigma_u \epsilon^r_{u+1} + \lambda^r_w \sigma_w \epsilon^r_{w+1} \]

(39)

(40)

where

\[\gamma^r_l = (1 - \rho); \quad \gamma^r_u = \frac{\alpha}{2}(\alpha - \rho); \quad \gamma^r_w = \frac{\alpha}{2}(\alpha - \rho) \omega^2_l \]

\[\lambda^r_x = (1 - \alpha); \quad \lambda^r_l = -(\alpha - \rho) \omega_l; \quad \lambda^r_u = -(\alpha - \rho) \omega_u; \quad \lambda^r_w = -(\alpha - \rho) \omega_w \]

Details for the derivation, together with the expressions for the constant \(\delta^r \) and the linearization coefficients \(\omega_l, \omega_u, \) and \(\omega_w \), can be found in Appendix D. Following the affine term structure literature, we refer to \(\gamma^r = [\gamma^r_l \gamma^r_u \gamma^r_w]^T \) as real factor loadings and to \(\lambda^r = [\lambda^r_x \lambda^r_l \lambda^r_u \lambda^r_w]^T \) as real prices of risk.
The conditional mean of the real pricing kernel is equal to
\[E_t \log n_{t+1} = -(\delta^r + \gamma_l^r l_t + \gamma_u^r u_t + \gamma_w^r w_t) \]
and its conditional variance is
\[\text{Var}_t \log n_{t+1} = (\lambda_x^r)^2 u_t + (\lambda_l^r)^2 w_t + (\lambda_u^r \sigma_u)^2 + (\lambda_w^r \sigma_w)^2 \]
The conditional mean depends both on expected consumption growth and stochastic volatility, whereas the conditional variance is a linear function of current stochastic volatility processes only. Notice that, in the standard time and state separable utility case, volatility is not priced as a separate source of risk and the real pricing kernel collapses to the familiar:
\[-\log n_{t+1} = \delta^r + (1 - \alpha) l_t + (1 - \alpha) \sqrt{u_t} \epsilon_{t+1}^\pi \]

Next, the real short rate is
\[r_t \equiv -\log E_t(n_{t+1}) = \bar{r} + \gamma_l^r l_t + \gamma_u^r u_t + \gamma_w^r w_t \]
where
\[\bar{r} = \delta^r - \frac{1}{2} (\lambda_x^r)^2 + (\lambda_u^r \sigma_u)^2 \]
and
\[r_u^r = \gamma_u^r - \frac{1}{2} (\lambda_x^r)^2; \quad r_w^r = \gamma_w^r - \frac{1}{2} (\lambda_l^r)^2. \]

Assuming symmetry, the expression for the expected real depreciation, \(q_t^r \), the real forward premium, \(f_t^r - s_t^r \), and the real risk premium, \(p_t^r \), are:\(^\dagger\)
\[q_t^r = \gamma_l^r (l_t - l_t^*) + \gamma_u^r (u_t - u_t^*) + \gamma_w^r (w_t - w_t^*) \]
\[f_t^r - s_t^r = \gamma_l^r (l_t - l_t^*) + \gamma_u^r (u_t - u_t^*) + \gamma_w^r (w_t - w_t^*) \]
\[p_t^r = -\frac{1}{2} ((\lambda_x^r)^2 (u_t - u_t^*) + (\lambda_l^r)^2 (w_t - w_t^*)) \]

Result 3: The real UIP slope coefficient

\(^\dagger\)Symmetry means that both the parameters governing the motion of the state variables and the preference parameters are the same across countries. Similarly to the previous section, the model can be extended to allow for asymmetric loadings and asymmetric state variables.
If all foreign and domestic parameter values are the same, then the real UIP regression parameter, obtained by the regressing the real interest rate differential on the real depreciation rate is:

\[
b^r = \frac{\text{Cov}(f^r_t - s^r_t, q^r_t)}{\text{Var}(f^r_t - s^r_t)} = (\gamma^r_t)^2 \text{Var}(l_t - l^*_t) + \gamma^r_u r^r_u \text{Var}(u_t - u^*_t) + \gamma^r_w r^r_w \text{Var}(w_t - w^*_t)
\]

Without the presence of both stochastic volatility and EZ preferences, \(b^r\) is equal to one and, in real terms, UIP holds identically. Also, when the long-run state variables, \(l_t\) and \(w_t\), are perfectly correlated across countries, the slope coefficient reduces to \(b^r = \gamma^r_u/r^r_u\). This is the case considered by Bansal and Shaliastovich (2008).

For \(b^r\) to be negative, we require \(\text{Cov}(f^r_t - s^r_t, q^r_t) < 0\). The expression above makes it evident that only stochastic volatility terms can contribute negatively to this covariance. In particular, a necessary condition for a negative real slope coefficient is that the \(\gamma^r\) and \(r^r = (r^r_u, r^r_w)'\) coefficients have opposite sign, for at least one of the stochastic volatility processes. A preference for the early resolution of risk (\(\alpha < \rho\)) and an EIS larger than one (\(\rho < 0\)) deliver the required covariations.

3.2.1 Taylor Rule and Endogenous Inflation

Domestic monetary policy is described by a Taylor rule in which the short interest rate reacts to contemporaneous inflation and expected consumption growth:

\[
i_t = \tau + \tau_1 \pi_t + \tau_2 l_t + z_t ,
\]

where the policy shock \(z_t\) evolves according to equations (23-24), with the restriction that \(\theta_z = 0\). For currency risk, the latter is innocuous since it has no effect on the conditional variance of the nominal pricing kernels.

Following the technique developed above, we guess that the solution for endogenous inflation has the form

\[
\pi_t = a + a_1 l_t + a_2 u_t + a_3 w_t + a_4 z_t + a_5 v_t ,
\]

substitute it into the Euler equation (3), compute the moments, and then solve for the \(a_j\) coefficients by matching up the result with the Taylor rule (41). This gives,

\[
a_1 = \frac{\gamma_l - \tau_2}{\tau_1 - \varphi_l}; \quad a_2 = \frac{\gamma_u - \frac{1}{2} \lambda^2_u}{\tau_1 - \varphi_u}; \quad a_3 = \frac{\gamma_w - \frac{1}{2} \lambda^2_w}{\tau_1 - \varphi_w};
\]

\(^{12}\)For parsimony, we use expected consumption growth, \(l_t\), and not its current level, \(x_t\), as is instead standard in the literature. Doing so reduces our state space by one variable. The model can readily be extended to allow for a specification that includes \(x_t\) instead of \(l_t\).
\begin{align*}
a_4 &= \frac{-1}{\tau_1 - \varphi_z} ; & a_5 &= \frac{-\frac{1}{2}a_4^2}{\tau_1 - \varphi_v} \\
\frac{a}{\tau_1 - 1} &= \left[\delta - \tau + a_2(1 - \varphi_u)\theta_u + a_3(1 - \varphi_w)\theta_w + a_5(1 - \varphi_v)\theta_v \right] \\
&\quad - \frac{1}{2}(\lambda_u \sigma_u)^2 + (\lambda_w \sigma_w)^2 + (\lambda_v \sigma_v)^2 \\
\end{align*}

where the constant term, the factor loadings and the pricing of risk of the nominal pricing kernel are

\begin{align*}
\delta &= \delta^r + a + a_2(1 - \varphi_u)\theta_u + a_3(1 - \varphi_w)\theta_w + a_5(1 - \varphi_v)\theta_v \\
\gamma_l &= \gamma_l^r + a_1 \varphi_l ; & \gamma_u &= \gamma_u^r + a_2 \varphi_u ; & \gamma_w &= \gamma_w^r + a_3 \varphi_w ; & \gamma_z &= a_4 \varphi_z ; & \gamma_v &= a_5 \varphi_v \\
\lambda_x &= \lambda_x^r; & \lambda_l &= \lambda_l^r + a_1; & \lambda_u &= \lambda_u^r + a_2; & \lambda_w &= \lambda_w^r + a_3; & \lambda_z &= a_4; & \lambda_v &= a_5
\end{align*}

The linearized nominal pricing kernel is

\begin{align*}
- \log m_{t+1} &= - \log n_{t+1} + \pi_{t+1} \\
&= \delta + \gamma_l u_t + \gamma_u u_t + \gamma_w w_t + \gamma_z z_t + \gamma_v v_t \\
&\quad + \lambda_x \sqrt{u_t} \epsilon_{t+1}^x + \lambda_l \sqrt{u_t} \epsilon_{t+1}^l + \lambda_u \sigma_u \epsilon_{t+1}^u \\
&\quad + \lambda_w \sigma_w \epsilon_{t+1}^w + \lambda_z \sqrt{v_t} \epsilon_{t+1}^z + \lambda_v \sigma_v \epsilon_{t+1}^v .
\end{align*}

The Taylor rule parameters, through their determination of the equilibrium inflation process, affect both the factor loadings on the real factors as well as their prices of risk. This would not be the case if the inflation process was exogenously specified. On the other hand, the factor loadings and the prices of risk of the nominal state variables, \(z_t \) and \(v_t \), depend exclusively on the choice of the Taylor rule parameters.

The nominal short rate is

\begin{align*}
i_t &\equiv - \log E_t(m_{t+1}) \\
&= \bar{i} + \gamma_l u_t + \gamma_z z_t + r_w w_t + r_v v_t ;
\end{align*}

where

\[\bar{i} = \delta - \frac{1}{2}(\lambda_u \sigma_u)^2 + (\lambda_w \sigma_w)^2 + (\lambda_v \sigma_v)^2 ; \]

\[r_u = \gamma_u - \frac{1}{2}\lambda_x^2; \quad r_w = \gamma_w - \frac{1}{2}\lambda_l^2; \quad r_v = \gamma_v - \frac{1}{2}\lambda_z^2 . \]
The nominal interest rate differential, the expected depreciation rate and the risk premium can be derived from equations (11–14). Assuming symmetry across countries, we have

\[q_t = \gamma_l(l_t - l_t^*) + \gamma_u(u_t - u_t^*) + \gamma_w(w_t - w_t^*) + \gamma_v(v_t - v_t^*), \]
\[f_t - s_t = \gamma_l(l_t - l_t^*) + \gamma_z(z_t - z_t^*) + r_u(u_t - u_t^*) + r_w(w_t - w_t^*) + r_v(v_t - v_t^*), \]
\[p_t = -\frac{1}{2} \left(\lambda_r^2(u_t - u_t^*) + \lambda_r^2(w_t - w_t^*) + \lambda_r^2(v_t - v_t^*) \right). \]

Result 4: The nominal UIP slope coefficient

If all foreign and domestic parameter values are the same, the nominal UIP slope coefficient is

\[b = \frac{\text{Cov}(f_t - s_t, q_t)}{\text{Var}(f_t - s_t)} = \frac{\gamma_l^2 \text{Var}(l_t - l_t^*) + \gamma_z^2 \text{Var}(z_t - z_t^*) + \gamma_w r_u \text{Var}(u_t - u_t^*) + \gamma_v r_u \text{Var}(v_t - v_t^*)}{\gamma_l^2 \text{Var}(l_t - l_t^*) + \gamma_z^2 \text{Var}(z_t - z_t^*) + r_u^2 \text{Var}(u_t - u_t^*) + r_v^2 \text{Var}(v_t - v_t^*)}. \]

As was the case for the real UIP slope coefficient, without EZ preferences and stochastic volatility in consumption growth, long run risk and policy shock, \(b = 1. \)

3.2.2 Discussion

The results obtained in this section rely crucially on three ingredients: EZ preferences, stochastic volatility and the choice of the Taylor rule parameters. We now analyze their impact on the UIP slope coefficient and risk premium.

Remark 5: With EZ preferences, volatility is priced as a separate source of risk.

From the previous section, we learned that if we want to explain the UIP puzzle we need stochastic volatility. In the model with real exchange rate variability, the necessary variation for the real UIP slope, \(b^r \), comes from consumption growth, in the form of short-run volatility, \(u_t \), and long-run volatility, \(w_t \).

With standard expected utility (\(\alpha = \rho \)), both the volatility real factor loadings \(\gamma_u^r \) and \(\gamma_w^r \), and the real prices of risk, \(\lambda_u^r \) and \(\lambda_w^r \), collapse to zero. Consequently, the real UIP slope coefficient is identically equal to one. EZ preferences allow agents to receive a compensation for taking volatility risk, to which they would not be entitled with standard time-additive expected utility preferences. The contemporaneous presence of both stochastic volatility and EZ preferences is needed to explain the anomaly in real terms. Without stochastic volatility in the real pricing kernel, the real currency risk premium is constant and both of Fama’s condition are violated. Without EZ preferences, stochastic volatility in consumption growth is not priced at all.

26
Remark 6: The role of the Taylor parameters in the UIP slope coefficient

Work in progress.

Remark 7: The role of persistence in stochastic volatility

Similarly to the purely nominal symmetric example of section 3.1, the persistence of country specific volatility φ_u plays a crucial role in the determination of the sign of the UIP slope. To see this, consider again for simplicity the case in which the long-run factor l_t and its volatility w_t are perfectly correlated across countries. Also, assume the policy shock z_t is not autocorrelated ($\varphi_z = 0$). The nominal slope coefficient simplifies to

$$b = \frac{\text{Cov}(f_t - s_t, q_t)}{\text{Var}(f_t - s_t)} = \gamma_u r_u \text{Var}(u_t - u_t^*) + \gamma_v r_v \text{Var}(v_t - v_t^*) \left(\frac{u_t}{w_t} \text{Var}(u_t - u_t^*) + (r_u)^2 \text{Var}(v_t - v_t^*) \right).$$

For the necessary condition of $\text{Cov}(f_t - s_t, p_t) < 0$ to be satisfied, we investigate the coefficients on short-run consumption volatility and policy shock volatility. First, γ_v and r_v cannot have opposite sign. The reason is the same as in the symmetric purely nominal example of the previous section: a shock to a nominal state variable of inflation, z_t or v_t, together with $\tau_1 > 1$, imply the muted response of interest rate to a nominal shock, relative to that of the inflation rate. Therefore, unless the policy shock volatility is negatively autocorrelated, the contribution of the nominal state variables to $\text{Cov}(f_t - s_t, p_t)$ is necessarily of the wrong sign. As was the case for the purely nominal example, introducing asymmetries across countries, or allowing for interest rate smoothing in the Taylor rules can overcome this problem.

A different mechanism is at work for short-run consumption volatility. In this case, similarly to what we have seen above for the real slope coefficient, γ_u and r_u can have different signs, provided that the agents in the economy have preference for the early resolution of risk. However, a positive autocorrelation in stochastic volatility necessarily works against it. This is a direct consequence of endogenizing inflation and deriving the GHPZ monetary policy consistent pricing kernel. To see this, recall that

$$\gamma_u = \gamma_u^r + a_2 \varphi_u, \quad a_2 = \frac{\gamma_u - \frac{1}{2} \lambda_2^2}{\tau_1 - \varphi_u} = \frac{r_u}{\tau_1 - \varphi_u}.$$

Since we require γ_u and r_u to have opposite signs for the resolution of the puzzle, we must have $a_2 < 0$. Therefore, $\gamma_u < \gamma_u^r$, and, all other things being equal, we require a stronger preference for the early resolution ($\alpha << \rho$) of risk, relative to the one we needed for the real case.
Consequently, it is in general harder to get a negative nominal UIP slope rather than a negative real UIP slope. As we have seen, the first reason is that the contribution of the nominal state variables necessarily goes in the wrong direction, at least in our simple symmetric case with Taylor rules reacting to (expected) consumption growth and current inflation. The second reason is that, with endogenous inflation, positive autocorrelated consumption volatility makes it harder to get the required magnitudes of the factor loadings and prices of risk of short- and long-run volatility. Nonetheless, a careful choice of Taylor parameters can deliver the required Fama conditions.

4 Quantitative Results

We’d like our model to be able to account for the following exchange rate facts. Foremost, of course, is the negative nominal UIP slope coefficient. But other important features are (i) UIP should hold unconditionally, so that the mean of the risk premium, p_t is zero, (ii) changes in real and nominal exchange rates are highly correlated (Mussa (1986)), (iii) exchange rate volatility is high relative to inflation differentials, (iv) exchange rates exhibit near random-walk behavior but interest rate differentials are highly autocorrelated, (v) international pricing kernels are highly correlated but international aggregate consumption growth rates are not (Brandt, Cochrane, and Santa-Clara (2006)). In addition, domestic real and nominal interest rates should be highly autocorrelated with means and volatilities that match data.

We calibrate our model using a monthly frequency. We begin by tying-down as much as we can using consumption data. The parameters for domestic and foreign aggregate consumption growth are chosen symmetrically so that (i) the mean and standard deviation match U.S. data, (ii) the autocorrelation is close to zero, (iii) the cross-country correlation is 0.30, and (iv) the autocorrelation of the conditional mean, l_t, is 0.993 and its cross-country correlation is 0.90 (following, roughly, Bansal and Shaliastovich (2008), Bansal and Yaron (2004) and Colacito and Croce (2008)). The autocorrelations of the short and long-run volatilities are chosen, primarily, to match the autocorrelation in interest rates and inflation rates. The parameters of the policy shock processes, z_t and z_t^*, are set so that the shocks are independent across countries and uncorrelated across time (i.e., $\varphi_z = \varphi_x = 0$). Finally, the level and persistence of the volatility of the policy shocks are chosen — alongside risk aversion, intertemporal substitution, and the Taylor rule parameters — to match (i) the variance of the nominal exchange rate, (ii) the mean and variance of inflation and the nominal interest rate, (iii) the autocorrelation of the interest rate differential (forward premium), and (iv) the UIP regression parameter, b. The resulting parameter values are reported in Table 1.
Table 1
Calibrated Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective discount factor β</td>
<td>0.999</td>
</tr>
<tr>
<td>Mean of consumption growth θ_x</td>
<td>0.0016</td>
</tr>
<tr>
<td>Long run risk persistence φ_l</td>
<td>0.993</td>
</tr>
<tr>
<td>Short run volatility level θ_u</td>
<td>1.50e-5</td>
</tr>
<tr>
<td>Short run volatility persistence φ_u</td>
<td>0.920</td>
</tr>
<tr>
<td>Short run volatility of volatility σ_u</td>
<td>1.40e-6</td>
</tr>
<tr>
<td>Long run volatility mean θ_w</td>
<td>2.80e-8</td>
</tr>
<tr>
<td>Long run volatility persistence φ_w</td>
<td>0.950</td>
</tr>
<tr>
<td>Long run volatility of volatility σ_w</td>
<td>5.66e-9</td>
</tr>
<tr>
<td>Policy shock persistence φ_z</td>
<td>0</td>
</tr>
<tr>
<td>Policy shock volatility level θ_v</td>
<td>1.00e-5</td>
</tr>
<tr>
<td>Policy shock volatility persistence φ_v</td>
<td>0.94</td>
</tr>
<tr>
<td>Volatility of policy shock volatility σ_v</td>
<td>1.73e-6</td>
</tr>
<tr>
<td>Risk aversion $1 - \alpha$</td>
<td>5.0</td>
</tr>
<tr>
<td>Elasticity of intertemporal substitution $1/(1 - \rho)$</td>
<td>2.0</td>
</tr>
<tr>
<td>Taylor-rule parameter, inflation τ_1</td>
<td>1.1</td>
</tr>
<tr>
<td>Taylor-rule parameter, consumption τ_2</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Our model’s population moments, evaluated at the parameter values of Table 1, are reported in Table 2. By and large, the model performs pretty well. Endogenous inflation — the focal point of our paper — matches the the sample mean, variance and autocorrelation of the U.S. data. The same applies for interest rates and the interest rate differential (the forward premium). Simulations of these variables are reported in Figures 1 and 2. Real and nominal exchange rates fit the Mussa (1986) evidence. See Figure 3. Nominal exchange rate variability is higher than in the data, but only slightly, at 18.6% versus 15.0%. This is good news in light of the point made by Brandt, Cochrane, and Santa-Clara (2006); the high pricing kernel variability required to explain asset prices (Hansen and Jagannathan (1991)) requires either highly correlated foreign and domestic pricing kernels, highly variable exchange rates, or some combination of the two. With standard preferences, low cross-country consumption correlations rule out the former, thus implying that observed exchange rate variability is too small relative to theory. Our model resolves this tension with the combination of recursive preferences and high correlation in cross-country long-run risk processes. This point has been made previously by Colacito and Croce (2008). Its empirical validity is an open question.
Where our model falls somewhat short is in the magnitude of the nominal UIP slope coefficient. While Fama’s conditions are satisfied — see Figure 4 and the “carry trade” graph, Figure 5 — we nevertheless get $b = -0.20$ whereas a rough average from the data is around $b = -2.00$. Herein lies our overall message, which echoes that of Section 3.1. The restrictions on inflation imposed by the Taylor rule are binding in the sense that, although the slope coefficient for real variables may be strongly negative, its nominal counterpart is less so. Put differently, if the mapping between real and nominal variables is an exogenous inflation process, then, given our real model, a realistic nominal slope coefficient would be easy to obtain. Endogenous inflation, on the other hand, ties one’s hands in an important manner.

This all presupposes symmetric Taylor rules. Further research should investigate the asymmetries pointed at toward the end of Section 3.1.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Sample and Population Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moment</td>
<td>Sample</td>
</tr>
<tr>
<td>$E(\pi_t) \times 12$</td>
<td>4.34</td>
</tr>
<tr>
<td>$\sigma(\pi_t) \times \sqrt{12}$</td>
<td>1.32</td>
</tr>
<tr>
<td>$\text{Corr}(\pi_t, \pi_{t-1})$</td>
<td>0.60</td>
</tr>
<tr>
<td>$E(i_t) \times 12$</td>
<td>6.42</td>
</tr>
<tr>
<td>$\sigma(i_t) \times 12$</td>
<td>3.72</td>
</tr>
<tr>
<td>$\text{Corr}(i_t, i_{t-1})$</td>
<td>0.98</td>
</tr>
<tr>
<td>$E(i_t - i_t^*) \approx 0.00$</td>
<td>0.00</td>
</tr>
<tr>
<td>$\sigma(i_t - i_t^*) \times 12$</td>
<td>3.70</td>
</tr>
<tr>
<td>$\text{Corr}(i_t - i_t^, i_{t-1} - i_{t-1}^)$</td>
<td>0.98</td>
</tr>
<tr>
<td>$E(s_{t+1} - s_t) \approx 0.00$</td>
<td>0.00</td>
</tr>
<tr>
<td>$\sigma(s_{t+1} - s_t) \times \sqrt{12}$</td>
<td>15.00</td>
</tr>
<tr>
<td>$\text{Corr}(s_{t+1} - s_t) \times \sqrt{12} \approx 0.00$</td>
<td>0.05</td>
</tr>
<tr>
<td>b^*</td>
<td>$??$</td>
</tr>
<tr>
<td>$b \approx -2.00$</td>
<td>-0.20</td>
</tr>
</tbody>
</table>

5 Conclusions

How is monetary policy related to the UIP puzzle? Ever since we’ve known about the apparent profitability of the currency carry trade people have speculated about
a lurking role played by monetary policy. The story is that, for some reason, central banks find themselves on the short side of the trade, borrowing high yielding currencies to fund investments in low yielding currencies. In certain cases this has seemed almost obvious. It’s well known, for instance, that in recent years the Reserve Bank of India has been accumulating USD reserves and, at the same time, sterilizing the impact on the domestic money supply through contractionary open-market operations. Since Indian interest rates have been relatively high, this policy basically defines what it means to be on the short side of the carry trade. This leads one to ask if carry trade losses are in some sense a cost of implementing Indian monetary policy? If so, is this a good policy? Is there some sense in which it is causing the exchange rate behavior associated with the carry trade?

Our paper’s questions, while related, are less ambitious than these speculations about India. What we’ve shown goes as follows. It is almost a tautology that we can represent exchange rates as ratios of nominal pricing kernels in different currency units:

$$\frac{S_{t+1}}{S_t} = \frac{n^*_t \exp(-\pi^*_t)}{n_{t+1} \exp(-\pi_{t+1})}.$$

It is less a tautology that we can write down sensible stochastic processes for these four variables that are consistent with the carry trade evidence.13 Previous work has shown that such processes have many parameters that are difficult to identify with sample moments of data. Our paper shows two things. First, that by incorporating a Taylor rule for interest rate behavior we reduce the number of parameters. Doing so is sure to deteriorate the model’s fit. But the benefit is lower dimensionality and parameters that are economically interpretable. Second, we’ve shown that some specifications of Taylor rules work and others don’t. This seems helpful in and of itself. It also shows that there exist policy rules which, when combined with sensible pricing kernels, are consistent with the carry trade evidence. This is a far cry from saying that policy is causing carry trade behavior in interest rates and exchange rates, but it does suggest a connection that we find intriguing. In our models, for instance, there exist changes in the policy parameters, τ_1 and τ_3, under which the carry trade profits go away.

Finally, it’s worth noting that India, of course, is much more the exception than the rule. Most central banks — especially if we limit ourselves to those from OECD countries — don’t have such explicit, foreign-currency related policies. However, many countries do use nominal interest rate targeting to implement domestic policy and, therefore, we can think about central banks and the carry

13See, for example, Backus, Foresi, and Telmer (2001), Bakshi and Chen (1997), Bansal (1997), Brenna and Xia (2006), Frachot (1996), Lustig, Roussanov, and Verdelhan (2009), and Saá-Requejo (1994).
trade in a *consolidated* sense. For example, in early 2004 the UK less U.S. interest rate differential was around 3%. Supposing that this was, to some extent, a policy *choice*, consider the open-market operations required to implement such policies. The Bank of England would be contracting its balance sheet — selling UK government bonds — while (at least in a relative sense) the Fed would be expanding its balance sheet by buying U.S. government bonds. If the infamous carry-trader is in between, going long GBP and short USD, then we can think of the Fed funding the USD side of the carry trade and the Bank of England providing the funds for the GBP side. In other words, the consolidated balance sheets of the Fed and Bank of England are short the carry trade and the carry-trader is, of course, long. In this sense, central banks and their interest-rate policies may be playing a more important role than is apparent by just looking at their foreign exchange reserves.
References

———, 2008, If exchange rates are random walks, then almost everything we say about monetary policy is wrong, Federal Reserve Bank of Minneapolis Quarterly Review 32, 2–9.

Brandt, Michael W., John H. Cochrane, and Pedro Santa-Clara, 2006, International risk sharing is better than you think, or exchange rates are too smooth, Journal of Monetary Economics 53, 671–698.

Colacito, Ricardo, and Mariano Massimiliano Croce, 2008, Risks for the long run and the real exchange rate, Unpublished manuscript, University of North Carolina.

Lustig, Hanno N., Nikolai L. Roussanov, and Adrien Verdelhan, 2009, Common risk factors in currency markets, Unpublished manuscript, UCLA.

Saá-Requejo, Jesús, 1994, The dynamics and the term structure of risk premium in foreign exchange markets, Unpublished manuscript, INSEAD.

Appendix A
Symmetric Model

The short rate must satisfy both the Euler equation and the Taylor rule:

\[i_t = -\log E_t m_{t+1} \] \hspace{1cm} (A1)
\[i_t = \tau + \tau_1 \pi_t + z_t \] \hspace{1cm} (A2)

where the processes for \(z_t \) and its volatility \(v_t \) are

\[z_t = \theta_z (1 - \varphi_z) + \varphi_z z_{t-1} + \epsilon^z_t \]
\[v_t = \theta_v (1 - \varphi_v) + \varphi_v v_{t-1} + \sigma_v \epsilon^v_t \]

where \(\epsilon^z_t \) and \(\epsilon^v_t \) are i.i.d. standard normal. Given that \(m_{t+1} = n_{t+1} P_{t+1} / P_t \) and \(\pi_{t+1} = \log(P_{t+1} / P_t) \), set the real pricing kernel to a constant so that \(m_{t+1} = \exp(-\pi_{t+1}) \). Guess that the solution for endogenous inflation is:

\[\pi_t = a + a_1 z_t + a_2 v_t \] \hspace{1cm} (A3)

Substitute equation (A3) into the Euler equation (A1) and compute the expectation. The result is

\[i_t = C + a_1 \varphi_z z_t + (a_2 \varphi_v - a_1^2 / 2) v_t \] \hspace{1cm} (A4)

where

\[C \equiv -n + a + a_1 \theta_z (1 - \varphi_z) + a_2 \theta_v (1 - \varphi_v) - (a_2 \sigma_v)^2 / 2 \]

Substitute the postulated solution (A3) into the Taylor rule, match-up the resulting coefficients with those in equation (A4), and solve for the \(a_i \) coefficients:

\[a = \frac{C - \tau}{\tau_1} \]
\[a_1 = \frac{1}{\varphi_z - \tau_1} \]
\[a_2 = \frac{1}{2(\varphi_z - \tau_1)^2(\varphi_v - \tau_1)} \]

It’s useful to note that

\[a_2 = \frac{a_1^2}{2(\varphi_v - \tau_1)} \]

Note that this is the same as saying that

\[\frac{\partial i_t}{\partial v_t} = \tau_1 \frac{\partial \pi_t}{\partial v_t} = \frac{\partial E_t \pi_{t+1}}{\partial v_t} = \frac{1}{2} \frac{\partial Var_t \pi_{t+1}}{\partial v_t} \]
Similarly, \(a_1 = 1/(\varphi_z - \tau_1) \) is the same as saying that
\[
\frac{\partial i_t}{\partial z_t} = \frac{\tau_1 \partial \pi_t}{\partial z_t} + 1 = \frac{\partial E_t \pi_{t+1}}{\partial z_t} - \frac{1}{2} \frac{\partial \text{Var}_t \pi_{t+1}}{\partial z_t}.
\]
Both of these things are kind of trivial. They just say that the effect of a shock on the Taylor rule equation must be consistent with the effect on the Euler equation.

Note also that
\[
C = \frac{\tau_1}{\tau_1 - 1} \left(-n - \frac{\tau}{\tau_1} + a_1 \theta_z (1 - \varphi_z) + a_2 \theta_v (1 - \varphi_v) - (a_2 \sigma_v)^2 / 2 \right)
\]
Inflation and the short rate are:
\[
\pi_t = \frac{C - \tau}{\tau_1} + \frac{1}{\varphi_z - \tau_1} z_t + \frac{1}{2(\varphi_z - \tau_1)^2 (\varphi_v - \tau_1)} v_t
\]
\[
i_t = C + \frac{\varphi_z}{\varphi_z - \tau_1} z_t + \frac{\tau_1}{2(\varphi_z - \tau_1)^2 (\varphi_v - \tau_1)} v_t
\]
\[= C + \varphi_z a_1 z_t + \tau_1 a_2 v_t
\]

The pricing kernel is
\[
-\log m_{t+1} = C + (\sigma_v a_2)^2 / 2 + a_1 \varphi_z z_t + a_2 \varphi_v v_t + a_1 v_t^{1/2} \epsilon_{t+1} + \sigma_v a_2 \epsilon_{t+1}
\]
\[= D + \frac{1}{\varphi_z - \tau_1} \varphi_z z_t + \frac{\varphi_v}{2(\varphi_z - \tau_1)^2 (\varphi_v - \tau_1)} v_t
\]
\[+ \frac{1}{\varphi_z - \tau_1} v_t^{1/2} \epsilon_{t+1} + \frac{\sigma_v}{2(\varphi_z - \tau_1)^2 (\varphi_v - \tau_1)} \epsilon_{t+1} v_t
\]
where
\[D \equiv C + (\sigma_v a_2)^2 / 2
\]
The GBP-denominated kernel and variables are denoted with asterisks. The interest-rate differential, the expected depreciation rate, \(q_t\), and the risk premium, \(p_t\), are:
\[
i_t - i_t^* = \varphi_z a_1 z_t - \varphi_z^* a_1^* z_t^* + \tau_1 a_2 v_t - \tau_1^* a_2^* v_t^*
\]
\[q_t = D - D^* + a_1 \varphi_z z_t - a_1^* \varphi_z^* z_t^* + a_2 \varphi_v v_t - a_2^* \varphi_v^* v_t^*
\]
\[p_t = -\frac{1}{2} \left(a_1^2 v_t - a_1^2 v_t^* + \sigma_v^2 a_2^2 - \sigma_v^2 a_2^2 v_t^2 \right)
\]
It is easily verified that \(p_t + q_t = i_t - i_t^*\).

If we assume that all foreign and domestic parameter values are the same (\(i.e., \tau = \tau^*\)) and if we set \(\varphi_z = 0\), then the regression parameter is:
\[
b = \frac{\text{Cov}(i_t - i_t^*, q_t)}{\text{Var}(i_t - i_t^*)}
\]
\[= \frac{\varphi_v}{\tau_1}
\]

38
Appendix B
Asymmetric Taylor Rule

Taylor rules

\[i_t = \tau + \tau_1 \pi_t + z_t + \tau_3 d_t \]
\[i^*_t = \tau^* + \tau^*_1 \pi^*_t + z^*_t + \tau^*_3 d_t \]
\[d_t \equiv \log(S_t/S_{t-1}) = \pi_t - \pi^*_t \]

State variables,

\[z_t = \theta_z (1 - \varphi_z) + \varphi_z z_{t-1} + v_{t-1}^{1/2} \]
\[v_t = \theta_v (1 - \varphi_v) + \varphi_v v_{t-1} + \sigma_v e_t^v \]

and the associated foreign-country processes with asterisks and with all shocks i.i.d. Collect them in the state vector, \(X_t \):

\[X_t \equiv [z_t \ z^*_t \ v_t \ v^*_t]^\top \]

Inflation solutions:

\[\pi_t = a + a_1 z_t + a_2 z^*_t + a_3 v_t + a_4 v^*_t \equiv a + A^\top X_t \]
\[\pi^*_t = a^* + a^*_1 z_t + a^*_2 z^*_t + a^*_3 v_t + a^*_4 v^*_t \equiv a^* + A^{*\top} X_t \]

Interest rates, from Euler equations with real interest rate = 0:

\[i_t = C + B^\top X_t \]
\[i^*_t = C^* + B^{*\top} X_t \]

where,

\[B^\top \equiv [a_1 \varphi_z \ a_2 \varphi_z^* \ (a_3 \varphi_v - a_1^2/2) \ (a_4 \varphi_v^* - a_2^2/2)] \]
\[C \equiv a + a_1 \theta_z (1 - \varphi_z) + a_2 \theta_z^* (1 - \varphi_z^*) + a_3 \theta_v (1 - \varphi_v) + a_4 \theta_v^* (1 - \varphi_v^*) - 1/2 (a_3^2 \sigma_v^2 + a_4^2 \sigma_v^{*2}) \]
\[B^{*\top} \equiv [a_1^* \varphi_z \ a_2^* \varphi_z^* \ (a_3^* \varphi_v - a_1^2/2) \ (a_4^* \varphi_v^* - a_2^2/2)] \]
\[C^* \equiv a^* + a_1^* \theta_z (1 - \varphi_z) + a_2^* \theta_z^* (1 - \varphi_z^*) + a_3^* \theta_v (1 - \varphi_v) + a_4^* \theta_v^* (1 - \varphi_v^*) - 1/2 (a_3^* \sigma_v^2 + a_4^* \sigma_v^{*2}) \]

Taylor rules become:

\[i_t = \tau + \tau_1 (a + A^\top X_t) + z_t + \tau_3 (a + A^\top X_t - a^* - A^{*\top} X_t) \]
\[= \tau + \tau_1 a + \tau_3 (a - a^*) + (\tau_1 A^\top + \tau_3 [A^\top - A^{*\top}]) X_t \]
\[i^*_t = \tau^* + \tau^*_1 (a^* + A^{*\top} X_t) + z^*_t + \tau^*_3 (a + A^\top X_t - a^* - A^{*\top} X_t) \]
\[= \tau^* + \tau^*_1 a^* + \tau^*_3 (a - a^*) + (\tau^*_1 A^{*\top} + \tau^*_3 [A^\top - A^{*\top}]) X_t \]
where \(\mathbf{\ell}_z^T \equiv [1 \ 0 \ 0 \ 0] \) and \(\mathbf{\ell}_z^{*T} \equiv [0 \ 1 \ 0 \ 0] \). Matching up the coefficients means

\[
\begin{align*}
C &= \tau + \tau_1 a + \tau_3 (a - a^*) \\
C^* &= \tau^* + \tau_1^* a^* + \tau_3^* (a - a^*) \\
B &= \tau_1 \mathbf{A}^T + \mathbf{\ell}_z^T + \tau_3 (\mathbf{A}^T - \mathbf{A}^{*T}) \\
B^* &= \tau_1^* \mathbf{A}^{*T} + \mathbf{\ell}_z^{*T} + \tau_3^* (\mathbf{A}^T - \mathbf{A}^{*T})
\end{align*}
\]

To solve for the constants (the first two equations):

\[
\begin{bmatrix}
1 - \tau_1 - \tau_3 & \tau_3 \\
-\tau_3^* & 1 - \tau_1^* + \tau_3^*
\end{bmatrix}
\begin{bmatrix}
a \\
a^*
\end{bmatrix} =
\begin{bmatrix}
\tau - stuff \\
\tau^* - stuff^*
\end{bmatrix}
\]

where stuff and stuff* are everything on the LHS of the solutions for \(C \) and \(C^* \), except the first terms, \(a \) and \(a^* \).

The \(B \) equations are eight equations in eight unknowns, \(A \) and \(A^* \). Conditional on these, the \(C \) equations are two-in-two, \(a \) and \(a^* \). The \(B \) equations can be broken into 4 blocks of 2. It’s useful to write them out because you can see where the singularity lies.

\[
\begin{align*}
&\begin{bmatrix}
(\tau_1 + \tau_3 - \varphi_z) & -\tau_3 \\
\tau_3^* & (\tau_1^* - \tau_3^* - \varphi_z)
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_1^*
\end{bmatrix} =
\begin{bmatrix}
-1 \\
0
\end{bmatrix} \\
&\begin{bmatrix}
(\tau_1 + \tau_3 - \varphi_v^*) & -\tau_3 \\
\tau_3^* & (\tau_1^* - \tau_3^* - \varphi_v^*)
\end{bmatrix}
\begin{bmatrix}
a_2 \\
a_2^*
\end{bmatrix} =
\begin{bmatrix}
0 \\
-1
\end{bmatrix} \\
&\begin{bmatrix}
(\tau_1 + \tau_3 - \varphi_v) & -\tau_3 \\
\tau_3^* & (\tau_1^* - \tau_3^* - \varphi_v)
\end{bmatrix}
\begin{bmatrix}
a_3 \\
a_3^*
\end{bmatrix} =
\begin{bmatrix}
-a_1^2/2 \\
-a_1^2/2
\end{bmatrix} \\
&\begin{bmatrix}
(\tau_1 + \tau_3 - \varphi_v^*) & -\tau_3 \\
\tau_3^* & (\tau_1^* - \tau_3^* - \varphi_v^*)
\end{bmatrix}
\begin{bmatrix}
a_4 \\
a_4^*
\end{bmatrix} =
\begin{bmatrix}
-a_2^2/2 \\
-a_2^2/2
\end{bmatrix}
\end{align*}
\]

Two singularities exist:

- **UIP holds exactly.** If \(\tau_3 = 0 \) (so that the Fed ignores the FX rate), \(\varphi_v = \varphi_v^* \) and \(\tau_1 = \tau_1^* \) (complete symmetry in parameters, save \(\tau_3 \) and \(\tau_3^* \)) then a singularity is \(\tau_3^* = \tau_1 - \varphi_v \). As \(\tau_3^* \) approaches this from below or above, the UIP coefficient goes to 1.0.

- **Anomaly resolved.** Similarly, if \(\tau_3 = 0 \), \(\varphi_v = \varphi_v^* \) and \(\tau_1 = \tau_1^* \) then a singularity is \(\tau_3^* = \tau_1 \). As \(\tau_3^* \) approaches from above, the UIP coefficient goes to infinity. As \(\tau_3^* \) approaches from below, it goes to negative infinity.

The latter condition is where the UIP regression coefficient changes sign. This says that we need \(\tau_3^* > \tau_3 \). This may seem pathological. It says that — if we interpret these coefficients as policy responses (which we shouldn’t) — the ECB responds to an appreciation in EUR by increasing interest rates more than 1:1 (and more than the ‘Taylor principle’ magnitude of \(\tau_1 > 1 \)).
Appendix C
Derivations for McCallum Model

Write the interest rate coefficients as follows:

\[i_t = \frac{1}{1-a_3} \left(C + a_1 \varphi_z z_t + (a_2 \varphi_v - a_1^2/2) v_t \right) \]
\[= c_i + c_{iz} z_t + c_{iv} v_t \]

and, for reasons that will become clear, define

\[\tilde{i}_t \equiv i_t - \theta_c z_t - \theta_v v_t \]

The exogenous state variables obey

\[z_t = \theta_z (1 - \varphi_z) + \varphi_z z_{t-1} + v_{t-1}^{1/2} \epsilon_{t}^{z} \]
\[v_t = \theta_v (1 - \varphi_v) + \varphi_v v_{t-1} + \sigma_v \epsilon_{t}^{v} \]

where a mean is now incorporated for \(z \). I’m not sure if this thing is identified or not. Denote the state vector as \(X_t^\top = [z_t \ v_t \ \tilde{i}_{t-1}]^\top \) so that we can write

\[X_t = (I - \Phi)\theta + \Phi X_{t-1} + V(X_{t-1})^{1/2}s_{t-1} \]

where

\[\theta^\top = [\theta_z \ \theta_v \ c_i]^\top \]
\[\Phi = \begin{bmatrix} \varphi_z & 0 & 0 \\ 0 & \varphi_v & 0 \\ c_{iz} & c_{iv} & 0 \end{bmatrix} \]
\[V(X_{t-1}) = \begin{bmatrix} v_{t-1} & 0 & 0 \\ 0 & \sigma_v^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]
\[s_{t}^\top = [\epsilon_{z}^{t} \ \epsilon_{v}^{t} \ 0]^\top \]

The mean, variance and autocovariance of \(X \) are

\[\mu_X = [\theta_z \ \theta_v \ C/(1-a_3)] \]
\[\Gamma_0 = \begin{bmatrix} \frac{\theta_v}{1-\varphi^2} & 0 & \frac{c_{iz}\varphi_z \theta_v}{1-\varphi^2} \\ \frac{\sigma_v^2}{1-\varphi^2} & \frac{c_{iv}\varphi_v^2 \sigma_v^2}{1-\varphi^2} & \frac{c_{iz}^2 \sigma_v^2}{1-\varphi^2} + \frac{c_{iv}^2 \sigma_v^2}{1-\varphi^2} \end{bmatrix} \]
\[\Gamma_1 = \Phi \Gamma_0 \]
Moments

• Inflation. Let $\pi_t = a_\pi + A_\pi^\top X_t$ where $A_\pi^\top = [a_1 \ a_2 \ a_3]$. Since
 $$\pi_t = a + a_1 z_t + a_2 v_t + a_3 t_{t-1},$$
 we must have
 $$a_\pi = a + a_3 (c_{iz} \theta_z + c_{iv} \theta_v).$$
 The unconditional moments are:
 $$\mu_\pi = a_\pi + A_\pi^\top \mu_X$$
 $$\sigma_\pi^2 = A_\pi^\top \Gamma_0 A_\pi$$
 $$\text{Corr}(\pi_t, \pi_{t-1}) = A_\pi^\top \Gamma_1 A_\pi / \sigma_\pi^2$$
 I worked one out by hand as a check:
 $$\sigma_\pi^2 = (a_1 \varphi_z + a_3 c_{iz})^2 \frac{\theta_v}{1 - \varphi_z^2} + (a_2 \varphi_v + a_3 c_{iv})^2 \frac{\sigma_v^2}{1 - \varphi_v^2} + a_2 \theta_v + (a_2 \sigma_v)^2$$
 The conditional moments are:
 $$E_t \pi_{t+1} = a_\pi + A_\pi^\top \left((I - \Phi) \theta + \Phi X_{t-1} \right)$$
 $$\text{Var}_t \pi_{t+1} = A_\pi^\top \begin{bmatrix} v_t & 0 & 0 \\ 0 & \sigma_v^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} A_\pi$$

• Interest rate. Let $i_t = c_i + C_i^\top X_t$, where $C_i^\top = [c_{iz} \ c_{iv} \ 0]$ and
 $$C = a + a_1 \theta_z (1 - \varphi_z) + a_2 \theta_v (1 - \varphi_v) - (a_2 \sigma_v)^2 / 2$$
 $$c_i = C / (1 - a_3)$$
 $$c_{iz} = \varphi_z a_1 / (1 - a_3)$$
 $$c_{iv} = (\tau_1 + \tau_4) a_2 / (1 - a_3)$$
 The moments are:
 $$\mu_i = c_i + C_i^\top \mu_X$$
 $$\sigma_i^2 = C_i^\top \Gamma_0 C_i$$
 $$\text{Corr}(i_t, i_{t-1}) = C_i^\top \Gamma_1 C_i / \sigma_i^2$$

• Depreciation rate: $d_t = \pi_t - \pi_t^*$. With independence across countries we have
 $$\mu_d = a_\pi - a_{\pi^*} + A_\pi^\top \mu_X - A_\pi^\top \mu_{X^*}$$
 $$\sigma_d^2 = \sigma_\pi^2 + \sigma_{\pi^*}^2$$
 $$\text{Corr}(d_t, d_{t-1}) = \frac{\sigma_\pi^2}{\sigma_\pi^2 + \sigma_{\pi^*}^2} \text{Corr}(\pi_t, \pi_{t-1}) + \frac{\sigma_{\pi^*}^2}{\sigma_\pi^2 + \sigma_{\pi^*}^2} \text{Corr}(\pi_t^*, \pi_{t-1}^*)$$
So — obviously, in this model where relative PPP holds exactly — we have a strong counterfactual. The autocorrelation of the depreciation rate and the inflation rate are the same. Relaxing these things may work, to some extent. Here’s a start:

\[\mu_{\pi} = a_{\pi} - a^{*}_{\pi} + A_{\pi}^t \mu_X - (A_{\pi}^*)^T \mu_{X^*} \]
\[\sigma^2_{d} = A_{\pi}^0 \Gamma_{0} A_{\pi} + (A_{\pi}^*)^T \Gamma_{0}^* A_{\pi}^* + \text{Cov}() \]
\[\text{Corr}(d_t, d_{t-1}) = \text{Cov}(\pi_t, \pi_{t-1}) + \text{Cov}(\pi_t^*, \pi_{t-1}^*) + \text{Cov}(\pi_t, \pi_{t-1}^*) + \text{Cov}(\pi_t^*, \pi_t) \]

- **Interest rate differential**: \(i_t - i_t^* \)

\[i_t - i_t^* = c_i - c_i^* + C_i^T X_t - C_i^* X_t^* \]

With independence, the moments are

\[\mu_{\pi} = c_i - c_i^* + C_i^T \mu_X - C_i^* \mu_{X^*} \]
\[\text{Var}(i_t - i_t^*) = \sigma_i^2 + \sigma_{i^*}^2 \]
\[\text{Corr}(i_t - i_t^*, i_{t-1} - i_{t-1}^*) = \frac{\sigma_i^2}{\sigma_i^2 + \sigma_{i^*}^2} \rho_i + \frac{\sigma_{i^*}^2}{\sigma_i^2 + \sigma_{i^*}^2} \rho_{i^*} \]

- **UIP Coefficient**. First the expected depreciation rate, with symmetry, is

\[q_t = E_t d_{t+1} = E_t (\pi_{t+1} - \pi_{t+1}^*) = a_{\pi} - a_{\pi^*} + A_{\pi}^T \Phi X_t - A_{\pi}^* \Phi^* X_t^*. \]

So the covariance (with independence) is

\[\text{Cov}(i_t - i_t^*, q_t) = \text{Cov} \left(C_i^T X_t - C_i^* X_t^*, A_{\pi}^T \Phi X_t - A_{\pi}^* \Phi^* X_t^* \right) \]
\[= C_i^T \Gamma_0 \Phi^T A_{\pi} + C_i^* \Gamma_0^* \Phi_{\pi}^* A_{\pi^*} \]

and the regression coefficient is

\[b = \frac{C_i^T \Gamma_0 \Phi^T A_{\pi} + C_i^* \Gamma_0^* \Phi_{\pi}^* A_{\pi^*}}{\text{Var}(i_t - i_t^*)} \]

- **p and q**

\[q_t = E_t \pi_{t+1} - E_t \pi_{t+1}^* \]
\[p_t = -\frac{1}{2} \left(\text{Var}_t \pi_{t+1} - \text{Var}_t \pi_{t+1}^* \right) \]
\[= -\frac{1}{2} \left(A_{\pi}^T \begin{bmatrix} v_t & 0 & 0 \\ 0 & \sigma_{\pi}^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} A_{\pi} - A_{\pi}^* \begin{bmatrix} v_t^* & 0 & 0 \\ 0 & \sigma_{\pi}^2 & 0 \\ 0 & 0 & 0 \end{bmatrix} A_{\pi^*} \right) \]

where the formulae for the conditional means is above (under the italicized heading **Inflation**).
Appendix D
Linearization for the Pricing Kernel

The log of the equilibrium domestic marginal rate of substitution in equation (15) is given by

$$\log(n_{t+1}) = \log \beta + (\rho - 1)x_{t+1} + (\alpha - \rho)[\log W_{t+1} - \log \mu_t(W_{t+1})],$$

where $x_{t+1} \equiv \log(c_{t+1}/c_t)$ is the log of the ratio of domestic observed consumption in $t+1$ relative to t and W_t is the value function. The first two terms are standard expected utility terms: the pure time preference parameter β and a consumption growth term times the inverse of the negative of the intertemporal elasticity of substitution. The third term in the pricing kernel is a new term coming from EZ preferences.

We work on a linearized version of the real pricing kernel, following the findings of Hansen, Heaton, and Li (2005). In particular, I focus on the the value function of each representative agent, scaled by the observed equilibrium consumption level

$$W_t/c_t = [(1 - \beta) + \beta(\mu_t(W_{t+1})/c_t)^\rho]^{1/\rho} = [(1 - \beta) + \beta \mu_t \left(\frac{W_{t+1}}{c_{t+1}} \times \frac{c_{t+1}}{c_t}\right)^\rho]^{1/\rho},$$

where I use the linear homogeneity of μ_t. In logs,

$$wc_t = \rho^{-1} \log[(1 - \beta) + \beta \exp(\rho g_t)],$$

where $wc_t = \log(W_t/c_t)$ and $g_t \equiv \log(\mu_t(\exp(wc_{t+1} + x_{t+1})))$. Taking a linear approximation of the right-hand side as a function of g_t around the point \bar{m}, I get

$$wc_t \approx \rho^{-1} \log[(1 - \beta) + \beta \exp(\rho \bar{m})] + \left[\frac{\beta \exp(\rho \bar{m})}{1 - \beta + \beta \exp(\rho \bar{m})}\right] (g_t - \bar{m})$$

$$\equiv \bar{\kappa} + \kappa g_t$$

where $\kappa < 1$. Approximating around $\bar{m} = 0$, results in $\bar{\kappa} = 0$ and $\kappa = \beta$, and for the general case of $\rho = 0$, the “log aggregator”, the linear approximation is exact with $\bar{\kappa} = 1 - \beta$ and $\kappa = \beta$.

Given the state variables of the economy, l, u and w, and the log-linear structure of the model, we conjecture a solution for the value function of the form,

$$wc_t = \bar{\omega} + \omega_l l_t + \omega_u u_t + \omega_w w_t,$$

where $\bar{\omega}$, ω_l, ω_u and ω_w are constants to be determined. Therefore

$$wc_{t+1} + x_{t+1} = \bar{\omega} + \omega_l l_{t+1} + \omega_u u_{t+1} + \omega_w w_{t+1} + x_{t+1}$$
and, using the properties of lognormal random variables, g_t can be expressed as

$$
g_t = \log(\mu_t(\exp(wc_{t+1} + x_{t+1})))
$$

$$
= \log(E_t[\exp(wc_{t+1} + x_{t+1})^\alpha])
$$

$$
= E_t[wc_{t+1} + x_{t+1}] + \frac{\alpha}{2} \text{Var}_t[wc_{t+1} + x_{t+1}] .
$$

Using the above expression, we solve for the value-function parameters by matching coefficients

$$
\omega_l = \kappa(\omega_l \varphi_l + 1)
$$

$$
\Rightarrow \omega_l = \left(\frac{\kappa}{1 - \kappa \varphi_l} \right)
$$

$$
\omega_u = \kappa(\omega_u \varphi_u + \frac{\alpha}{2})
$$

$$
\Rightarrow \omega_u = \frac{\alpha}{2} \frac{\kappa}{1 - \kappa \varphi_u}
$$

$$
\omega_w = \kappa(\omega_w \varphi_w + \frac{\alpha}{2} \omega_l^2)
$$

$$
\Rightarrow \omega_w = \frac{\alpha}{2} \omega_l^2 \frac{\kappa}{1 - \kappa \varphi_u}.
$$

The solution allows us to simplify the term $[\log W_{t+1} - \log \mu_t(W_{t+1})]$ in the pricing kernel in equation (5):

$$
\log W_{t+1} - \log \mu_t(W_{t+1}) = wc_{t+1} + x_{t+1} - \log \mu_t(\exp(wc_{t+1} + x_{t+1}))
$$

$$
= \omega_l \sqrt{w t \epsilon_{t+1}^l} + \omega_u \sigma_u \epsilon_{t+1}^u + \omega_w \sigma_w \epsilon_{t+1}^w + \sqrt{u t} \epsilon_{t+1}^u
$$

$$
- \frac{\alpha}{2} (\omega_l^2 w t + \omega_u^2 \sigma_u^2 + \omega_w^2 \sigma_w^2 + u t).
$$

Equation (39) follows by collecting terms. In particular,

$$
\delta^r = -\log \beta + (1 - \rho)\mu + \frac{\alpha}{2}(\alpha - \rho)[(\omega_u \sigma_u)^2 + (\omega_w \sigma_w)^2]
$$

$$
\gamma_l^r = (1 - \rho); \quad \gamma_u^r = \frac{\alpha}{2}(\alpha - \rho); \quad \gamma_w^r = \frac{\alpha}{2}(\alpha - \rho)\omega_l^2
$$

$$
\lambda_l^r = (1 - \alpha); \quad \lambda_u^r = -(\alpha - \rho)\omega_l; \quad \lambda_u^r = -(\alpha - \rho)\omega_u; \quad \lambda_w^r = -(\alpha - \rho)\omega_w
$$

$$
\omega_l = \left(\frac{\kappa}{1 - \kappa \varphi_l} \right); \quad \omega_u = \frac{\alpha}{2} \left(\frac{\kappa}{1 - \kappa \varphi_u} \right); \quad \omega_w = \frac{\alpha}{2} \left(\frac{\kappa}{1 - \kappa \varphi_w} \right) \omega_l^2
$$

45
Appendix E
Moment Conditions

- Consumption growth:
 \[E_t(x_{t+1}) = \mu + l_t, \quad \text{Var}_t(x_{t+1}) = u_t, \]
 \[E(x_{t+1}) = \mu, \quad \text{Var}(x_{t+1}) = \theta_u + \text{Var}_t, \]
 \[\text{Cov}(x_{t+1}, x_t) = \varphi_l \text{Var}_t, \quad \text{Corr}(x_{t+1}, x_t) = \frac{\varphi_l \text{Var}_t}{\theta_u + \text{Var}_t} \]

- Long run risk:
 \[E_t(l_{t+1}) = \varphi_ml_t, \quad \text{Var}_t(l_{t+1}) = w_t, \]
 \[E(l_{t+1}) = 0, \quad \text{Var}(l_{t+1}) = \frac{\theta_w}{1 - \varphi_l^2}, \]
 \[\text{Cov}(l_{t+1}, l_t) = \varphi_l \text{Var}_l, \quad \text{Corr}(l_{t+1}, l_t) = \varphi_l \]

- Short-run volatility:
 \[E_t(u_{t+1}) = (1 - \varphi_u)\theta_u, \quad \text{Var}_t(u_{t+1}) = \sigma_u^2, \]
 \[E(u_{t+1}) = \theta_u, \quad \text{Var}(u_{t+1}) = \frac{\sigma_u^2}{1 - \varphi_u^2}, \]
 \[\text{Cov}(u_{t+1}, u_t) = \varphi_u \text{Var}_u, \quad \text{Corr}(u_{t+1}, u_t) = \varphi_u \]

- Long-run volatility:
 \[E_t(w_{t+1}) = (1 - \varphi_w)\theta_w, \quad \text{Var}_t(w_{t+1}) = \sigma_w^2, \]
 \[E(w_{t+1}) = \theta_w, \quad \text{Var}(w_{t+1}) = \frac{\sigma_w^2}{1 - \varphi_w^2}, \]
 \[\text{Cov}(w_{t+1}, w_t) = \varphi_w \text{Var}_w, \quad \text{Corr}(w_{t+1}, w_t) = \varphi_w \]

- Real pricing kernel:
 \[E_t \text{log } n_{t+1} = - (\delta^r + \gamma^t l_t + \gamma^r u_t + \gamma^w w_t) \]
 \[\text{Var}_t \text{log } n_{t+1} = (\lambda^r)^2 u_t + (\lambda^l)^2 w_t + (\lambda^r \sigma_u)^2 + (\lambda^w \sigma_w)^2 \]
 \[E \text{log } n_{t+1} = - (\delta^r + \gamma^l \theta_u + \gamma^w \theta_w) \]
 \[\text{Var} \text{log } n_{t+1} = (\lambda^r)^2 \theta_u + (\lambda^l)^2 \omega_u + (\lambda^r \sigma_u)^2 + (\lambda^w \sigma_w)^2 \]
 \[+ (\gamma^r)^2 \text{Var}(l_t) + (\gamma^w)^2 \text{Var}(u_t) + (\gamma^r)^2 \text{Var}(w_t) \]

- Real risk free interest rate:
 \[E(r_t) = \bar{r} + r^r_u \theta_u + r^r_w \theta_w \]
 \[\text{Var}(r_t) = (\gamma^r)^2 \text{Var}(l_t) + (r^u)^2 \text{Var}(v_t) + (r^w)^2 \text{Var}(w_t) \]
\[
\text{Corr}(r_{t+1}, r_t) = 1 - (1 - \varphi_i)(\gamma_i^2) \frac{\text{Var}(l_t)}{\text{Var}(r_t)} - (1 - \varphi_u)(\gamma_u^2) \frac{\text{Var}(u_t)}{\text{Var}(r_t)} - (1 - \varphi_w)(\gamma_w^2) \frac{\text{Var}(w_t)}{\text{Var}(r_t)}
\]

- Cross-country moments (symmetric coefficient):\(^\text{14}\)
 \[
 \text{Cov}(x_t, x^*_t) = \text{Cov}(l_t, l^*_t) + \eta_l E(\sqrt{a_t} \sqrt{w^*_t})
 \]
 \[
 \text{Cov}(l_t, l^*_t) = \frac{\eta_l E(\sqrt{a_t} \sqrt{w^*_t})}{1 - \varphi^2_l}
 \]
 \[
 \text{Cov}(v_t, v^*_t) = \frac{\eta_v \sigma_v^2}{1 - \varphi^2_v}
 \]
 \[
 \text{Cov}(w_t, w^*_t) = \frac{\eta_w \sigma_w^2}{1 - \varphi^2_w}
 \]

- Real depreciation rate:
 \[
 E_t(d^r_{t+1}) = q^r_t, \quad E(d^r_t) = 0,
 \]
 \[
 \text{Var}(d^r_{t+1}) = 2[\text{Var}(\log n_{t+1}) - \text{Cov}(\log n_{t+1}, \log n^*_t)]
 \]

- Inflation:
 \[
 E(\pi_t) = a + a_2 \theta_u + a_3 \theta_w + a_5 \theta_v
 \]
 \[
 \text{Var}(\pi_t) = a_1^2 \text{Var}(l_t) + a_2^2 \text{Var}(u_t) + a_3^2 \text{Var}(w_t) + a_4^2 \text{Var}(z_t) + a_5^2 \text{Var}(v_t)
 \]
 \[
 \text{Corr}(\pi_{t+1}, \pi_t) = 1 - (1 - \varphi_i) a_1^2 \frac{\text{Var}(l_t)}{\text{Var}(\pi_t)} - (1 - \varphi_u) a_2^2 \frac{\text{Var}(u_t)}{\text{Var}(\pi_t)} - (1 - \varphi_w) a_3^2 \frac{\text{Var}(w_t)}{\text{Var}(\pi_t)}
 \]
 \[
 \quad - (1 - \varphi_z) a_4^2 \frac{\text{Var}(z_t)}{\text{Var}(\pi_t)} - (1 - \varphi_v) a_5^2 \frac{\text{Var}(v_t)}{\text{Var}(\pi_t)}
 \]
 \[
 \text{corr}(x_{t+1}, \pi_t) = a_1 \frac{\text{Var}(l_t)}{\text{Stdev}(x_t) \text{Stdev}(\pi_t)}, \quad \text{corr}(x_t, \pi_t) = \text{corr}(x_{t+1}, \pi_t) \varphi_i
 \]

- Nominal interest rate:
 \[
 E(i_t) = i + r_u \theta_u + r_w \theta_w + r_v \theta_v
 \]
 \[
 \text{Var}(i_t) = \gamma_i^2 \text{Var}(l_t) + \gamma_u^2 \text{Var}(u_t) + \gamma_w^2 \text{Var}(w_t) + (r_u)^2 \text{Var}(u_t)
 \]
 \[
 \text{Corr}(i_{t+1}, i_t) = 1 - (1 - \varphi_i) \gamma_i^2 \frac{\text{Var}(l_t)}{\text{Var}(i_t)} - (1 - \varphi_u) \gamma_u^2 \frac{\text{Var}(u_t)}{\text{Var}(i_t)}
 \]
 \[
 \quad - (1 - \varphi_u) \gamma_u^2 \frac{\text{Var}(u_t)}{\text{Var}(i_t)} - (1 - \varphi_w) \gamma_w^2 \frac{\text{Var}(w_t)}{\text{Var}(i_t)} - (1 - \varphi_v) (r_v)^2 \frac{\text{Var}(v_t)}{\text{Var}(i_t)}
 \]

14The expressions for cross-country moments greatly simplify if we assume either independence or perfect correlation in the stochastic volatility processes, \(u_t\) and \(w_t\).
• Nominal depreciation rate:

\[E_t(d_{t+1}) = q_t, \quad E(d_t) = 0 \]

\[\text{Var}(d_{t+1}) = 2[\text{Var}(\log m_{t+1}) - \text{Cov}(\log m_{t+1}, \log m^*_t)] \]
Figure 1: Annualized Inflation and the Nominal Interest Rate, 30-Year Simulation. Discussion in Section 4.
Figure 2: Annualized Interest Rate Differential (Forward Premium), 30-Year Simulation. Discussion in Section 4.
Figure 3: Log Real and Nominal Exchange Rate, 30-Year Simulation. Discussion in Section 4.
Figure 4: Currency Risk Premium and Expected Depreciation, 30-Year Simulation. Discussion in Section 4.
Figure 5: Log Nominal Exchange Rate and Interest Rate Differential, 30-Year Simulation. The interest rate differential is USD less GBP. The exchange rate is “price of GBP.” So, UIP predicts that when the red line is above zero, the blue line will increase. The profitability of the carry trade is premised upon the opposite. While it’s obviously not clear from the graph (as in an analogous graph of data), the latter tends to happen slightly more than the former. The graph also highlights the riskiness of the carry trade. Variation in nominal exchange rates is large relative to the interest differential and its components, p and q. This graph is discussed in Section 4.