A Model of the Consumption Response to Fiscal Stimulus Payments

Greg Kaplan
University of Pennsylvania and IFS
gkaplan@sas.upenn.edu

Giovanni L. Violante
New York University, CEPR, and NBER
glv2@nyu.edu

THIS DRAFT: AUGUST 2011

Abstract

A wide body of empirical evidence, based on randomized experiments, finds that 20-40 percent of fiscal stimulus payments (e.g., tax rebates) are spent on nondurable household consumption in the quarter that they are received. We develop a structural economic model to interpret this evidence. Our model integrates the classical Baumol-Tobin model of money demand into the workhorse incomplete-markets life-cycle economy. In this framework, households can hold two assets: a low-return liquid asset (e.g., cash, checking account) and a high-return illiquid asset (e.g., housing, retirement account) that carries a transaction cost. The optimal life-cycle pattern of wealth accumulation implies that many households are “wealthy hand-to-mouth”: they hold little or no liquid wealth despite owning sizeable quantities of illiquid assets. They therefore display large propensities to consume out of additional income. We document the existence of such households in data from the Survey of Consumer Finances. A version of the model parameterized to the 2001 tax rebate episode is able to generate consumption responses to fiscal stimulus payments that are in line with the data.

Keywords: Consumption, Fiscal Stimulus Payments, Hand-to-Mouth, Liquidity.

JEL Classification: D31, D91, E21, H31

*We thank Kurt Mitman for outstanding research assistance, and Jonathan Heathcote for his insightful comments at the early stage of this research.
1 Introduction

Fiscal stimulus payments (i.e., transfers to households such as tax rebates) are frequently used by governments to alleviate the impact of recessions on households’ welfare. In the last decade, this type of fiscal intervention was authorized by U.S. Congress in the downturns of 2001, 2008, and 2009.\(^1\) Households received one-off payments between $500 and $1,000, depending on the specific episode. In the aggregate, these fiscal outlays were remarkably large: $38B in 2001, $79B in 2008, and $60B in 2009, roughly equivalent to 0.5% of annual GDP.

On the empirical side, substantial progress has been made in measuring the size of household consumption responses to the tax rebate episodes of 2001 and 2008. Using data from the Consumer Expenditure Survey (CEX), Johnson, Parker, and Souleles (2006, hereafter JPS), Parker, Souleles, Johnson, and McLelland (2011, hereafter PSJM), and Misra and Surico (2011) cleverly exploit the randomized timing of the receipt of payments to estimate the effects of the fiscal stimulus payments on consumption expenditures. Shapiro and Slemrod (2003a, 2003b, 2009, hereafter SS) substantiate these studies with a detailed qualitative survey on how consumers use their rebate.

This collective body of evidence convincingly concludes that between 20 and 40 percent of rebates are spent by households on nondurables in the quarter that they are received. This strong consumption response is measured relative to the (comparable, because of the randomization) group of households who are arguably aware of the rebate but had not yet received their check. Two crucial findings are encoded in this fact: 1) the marginal propensity to consume (MPC) out of the extra cash is large; 2) the MPC out of the news of the extra cash is small.

In spite of this large body of empirical research, there are virtually no quantitative studies of these episodes within structural, dynamic, forward-looking models. Such a gap in the literature is troubling because thoroughly understanding the effectiveness of tax rebates as a short-term stimulus for aggregate consumption is paramount for macroeconomists and policy makers.\(^2\)

\(^1\)In the context of the latest downturn, Oh and Reis (2011) document that, contrary to common belief, large fiscal expansion of 2007-09 consisted primarily of growing social assistance, as opposed to government purchases. Half of this expansion comprised of discretionary fiscal stimulus transfers.

\(^2\)The JPS (2006) estimates feature prominently in the reports prepared by the Congressional Budget Office (CBO, 2009) and the Council of Economic Advisors (CEA, 2010) documenting and forecasting the macroeconomic effects of fiscal stimulus.
Knowing the determinants of how consumers respond to stimulus payments helps in choosing among the policy options and in understanding whether the same fiscal instrument can be expected to be more or less effective under different macroeconomic conditions.\(^3\)

To develop a structural model that has some hope of matching the micro evidence is a challenging task: ‘off-the-shelf’ consumption theory —the rational expectations, life-cycle, buffer-stock model (Deaton, 1991; Carroll, 1992, 1997; Rios-Rull, 1995; Huggett, 1996)— predicts that the MPC out of anticipated transitory income fluctuations, such as the tax rebates, should be negligible in the aggregate. In that model, the only agents whose consumption would react significantly to the receipt of a rebate check are those who are constrained. However, under plausible parameterizations where the model’s distribution of net worth is in line with the data, the fraction of constrained households is too small (usually below 10%) to generate a big enough response in the aggregate.

In this paper we overcome this challenge by proposing a quantitative framework that can speak to the data on both liquid and illiquid wealth, rather than net worth alone. To do this, we integrate the classical Baumol-Tobin model of money demand into the workhorse incomplete-markets life-cycle economy. In our model, households can hold two assets: a liquid asset (e.g., cash, or bank account) and an illiquid asset (e.g., housing, or retirement wealth). Illiquid assets earn a higher return but can be accessed only by paying a transaction cost. The model is parameterized to replicate a number of macroeconomic, life-cycle, and cross-sectional targets.

Besides the usual small fraction of agents with zero net worth, our model features a significant number of what we call “wealthy hand-to-mouth” households. These are households who hold sizeable amounts of illiquid wealth, yet optimally choose to consume all of their disposable income during a pay-period. Examining asset portfolio and income data from the 2001 Survey and Consumer Finances (SCF) through the lens of our two-asset model reveals that between 1/4 and 1/3 of US households fit this profile.\(^4\) Although in our model these households act as if they are ‘constrained’, such households would not appear constrained from the viewpoint of

\(^3\)JPS (2006) conclude their empirical analysis of the 2001 tax rebates with: “without knowing the full structural model underlying these results, we cannot conclude that future tax rebates will necessarily have the same effect.” (page 1607). SS (2003a) conclude theirs with “key parameters such as the propensity to consume are contingent on aggregate conditions in ways that are difficult to anticipate.” (page 394)

\(^4\)Our finding is consistent with recent survey evidence in Lusardi, Schneider and Tufano (2011).
the one-asset model since they own substantial net worth.5

It is because of these wealthy hand-to-mouth households that the model can generate much higher average consumption responses to fiscal stimulus payments compared to the standard one-asset model: such households do not respond to the news of the rebate, and have a high MPC when they receive the payment. When we replicate, by simulation, the randomized experiment associated with the tax rebate of 2001 within our structural model, we find consumption responses of comparable magnitude to those estimated in the micro data, i.e., around 25%. Two key features of the macroeconomic environment of 2001 act as important amplification mechanisms in the model: the Bush tax reform, and the 2001 recession. By raising future permanent income relative to current income, both components exacerbate liquidity constraints at the time of the rebate.

The presence of wealthy hand-to-mouth households represents a strong amplification mechanism relative to the one-asset model economy, where average consumption responses to the fiscal stimulus payments are only 3%. Clearly, even the one-asset model could, under extreme parameterizations where many agents hold close to zero net worth and are often constrained, predict large consumption responses. This explains the sizeable MPC out of lump-sum tax cuts reported in some of Heathcote’s (2005) experiments.6

Existing macroeconomic applications of the Baumol-Tobin model are essentially limited to financial issues and monetary policy.7 We argue that this is also a natural environment in

5Recently, Hall (2011) has also adopted the view that the degree of illiquidity in household wealth is useful to understand aggregate fluctuations and the effects of macroeconomic policy.

6A recent paper by the CBO (Huntley and Michelangeli, 2011) reports finding high MPC out of tax rebates in the one-asset model precisely because its calibration implies a disproportionate fraction of households with zero net worth. In a similar spirit to our approach, Huntley and Michelangeli (2011) extend the model to allow households to hold taxable and tax-deferred assets. However, the amplification in MPC they obtain compared to the benchmark one-asset model is barely significant (between 2 and 4 pct points).

7Building on Miller and Orr (1966), Frenkel and Jovanovic (1980, 1981) study the optimal precautionary demand for money, and the optimal international reserves in a stochastic framework. Jovanovic (1982) analyzes the welfare cost of inflation; Romer (1986) and Chatterjee and Corbae (1992) studied a deterministic, OLG version of the Baumol-Tobin model that, as we explain below, bear some resemblance to our model during the retirement phase. More recently, within equilibrium complete markets models, Alvarez, Atkeson and Kehoe (2002) and Kahn and Thomas (2009) study how transaction costs lead to endogenous asset market segmentation and real effects of monetary injections. Within incomplete-markets economies, Aiyagari and Gertler (1991) focus on the equity premium and the low frequency of trading equities; Imrohoroglu and Prescott (1991) introduce a fixed per-period participation cost of bond holdings to support equilibria where money has value; Erosa and Ventura (2002) and Bai (2005) revisit, quantitatively, the question of welfare effects of inflation; Ragot (2011) studies the joint distribution of money and financial assets.
which to analyze fiscal policy. Our paper shows that combining the Baumol-Tobin model with an incomplete-markets life-cycle economy gives rise, endogenously, to a significant presence of hand-to-mouth households. As a result, deviations from Ricardian neutrality, in the short-run, can be large. Thus, properly designed government transfers and tax cuts can have substantial immediate impact on the macroeconomy.

Since Campbell and Mankiw (1989), it has been argued that some aspects of the data are best viewed as generated not by a single forward-looking type of consumer, but rather by the coexistence of two types of consumers: one forward-looking and consuming its permanent income (the saver); the other following the “rule of thumb” of consuming its current income (the spender; see also Mankiw (2000)). Our model can be seen as a microfoundation for this view since it endogenously generates ‘wealthy hand-to-mouth’ households alongside standard buffer-stock consumers. A natural question is: why would households optimally choose to consume all of their earnings every period, instead of withdrawing from their illiquid wealth and smoothing shocks? The answer is that households are better off taking this welfare loss than smoothing consumption because the latter option entails either (i) paying the transaction cost more often to withdraw cash when needed to smooth shocks, or (ii) holding large balances of cash and foregoing the high return on the illiquid asset. This explanation is reminiscent of calculations by Cochrane (1989), and more recently by Browning and Crossley (2001), who show that the utility loss from setting consumption equal to income, instead of fully optimizing, is very small.

An important implication of Cochrane’s remark is that small tax rebates may not be a powerful validating source of data for choosing between competing structural models of consumption behavior. Chetty (2011) makes a similar argument in the context of labor supply choices. We take this point very seriously and show that a number of additional implications of the model are consistent with the data: (i) the heterogeneity in consumption responses

8The model by Campbell and Hercowitz (2009) also features ‘wealthy constrained’ agents endogenously, but through a very different mechanism. It assumes that, periodically, households discover they will have a special consumption need T periods ahead (e.g., education of their kids). This induces them to consume low amounts until they have saved enough for the special consumption need. During this phase, they may have large MPC out of unanticipated transitory income. However, in their model the response to the news would also be strong, and hence rebate coefficients estimated in the micro data as the difference between households who receive the check and those who receive the news (e.g., JPS, 2006) would be of negligible magnitude.
(Misra and Surico, 2011); (ii) the correlation between consumption response and holdings of liquid wealth (Broda and Parker, 2011); (iii) the size-asymmetry of the responses (Hsieh, 2003); (iv) their dependence on the aggregate state of the economy (JPS, 2009); (v) the increase in consumption inequality over the life-cycle (Heathcote et al., 2010).

Our approach to explaining the consumption response to fiscal stimulus payments incorporates ‘frictions’ in asset markets but abstracts from ‘behavioral’ biases. A number of frameworks (e.g., myopia, hyperbolic discounting, self-control, mental accounting) provide foundations for the existence of impatient consumers and can hence generate large MPCs, especially out of windfalls.\(^9\) However, without the addition of some form of transaction cost, they cannot generate small consumption responses to news about future payments. To match the evidence on anticipated income shocks, models based on information processing costs have been proposed (e.g., Reis, 2006; Luo, 2008). We cannot exclude a priori that some specific formulation of models along these lines might be almost isomorphic to our setup.

The rest of the paper proceeds as follows. In Section 2, we describe the 2001 tax rebates and present the associated empirical evidence on consumption responses. In Section 3, we outline our model, and present a series of examples from a simplified version to convey intuition about how the model works. In Section 4, we describe our parameterization. Section 5 contains the quantitative analysis of the 2001 rebates and explores several additional implications of the model. In Section 6, we perform a number of robustness checks. Section 7 concludes.

2 Measuring the consumption response to tax rebates

Direct cash transfers from governments to households are a commonly used policy tool for stimulating consumption in the face of an economic downturn. In the 2007-09 recession, for example, the government resorted twice to this type of intervention.\(^10\) In this paper, we focus our attention on the tax rebate episode of 2001 for two reasons. First, the 2001 tax rebates

\(^9\)Applications to consumption behavior include, among others, Laibson (1998), Angeletos et al. (2001), and Thaler (1990).

\(^10\)The Economic Stimulus Act of 2008 provided most households with payments of $300-$600 per adult, and $300 per child, for a total outlay of $79 billion. The average payment per household was close to $1,000. The American Recovery and Reinvestment Act of 2009 contained a refundable tax credit of up to $400 per adult, for a total outlay of $60 billion.

5
are the most extensively studied, and the ones for which we have the richest set of empirical evidence on household consumption responses. Second, we are able to obtain data from the Survey of Consumer Finances (SCF) about households’ balance sheets in 2001. As we discuss in Section 4, this is a crucial input into our analysis, and such data does not yet exist for the period surrounding the latest recession.

The 2001 tax reform The tax rebate of 2001 was part of a broader tax reform, the Economic Growth and Tax Relief Reconciliation Act (EGTRRA), enacted in May 2001 by Congress. The reform decreased federal personal income tax rates at all income brackets, including a reduction in the tax rate on the first $12,000 of earnings for a married couple filing jointly ($6,000 for singles) from 15% to 10%. The majority of these changes were phased in gradually over the five years 2002-2006. According to the bill passed in Congress, the entire Act would “sunset” in 2011. Instead the bill was ultimately renewed in December 2010 for a further two years.

The tax rebate The reduction from 15% to 10% for the lowest bracket was deemed effective in January 2001 and meant that a tax refund would be received by households only in April 2002. In order to make this item of the reform highly visible during calendar year 2001, the Administration decided to pay an advance refund (informally called a tax rebate). The Treasury calculated that 92 million taxpayers received a rebate check, with 72 million receiving the maximum amount, ($600, or 5% of $12,000, for married couples). Overall, the payments amounted to $38B, i.e., just below 0.4% of 2001 GDP. The vast majority of the checks were mailed between the end of July and the end of September 2001, in a sequence based on the last two digits of social security number (SSN). This sequence featured in the news in June. At the same time, the Treasury mailed every taxpayer a letter informing them which week they would receive their check.

From the point of view of economic theory, the tax rebate of 2001 has three salient characteristics: (i) it is essentially a lump-sum, since almost every household received $300 per adult; (ii) it is anticipated, at least for that part of the population which received the check later and that, presumably, had enough time to learn about the rebate either from the news, from the Treasury letter, or from friends/family who had already received it; and (iii) the timing of
receipt of the rebate has the feature of a randomized experiment because the last two digits of SSN are uncorrelated with any individual characteristics. Whether the rebate was perceived as permanent or transitory is less clear: first, it depends on what beliefs households held with respect to the sunset; second, the rebate was more generous than its long-run counterpart in the tax reform: according to Kiefer et al. (2002), the tax reform reduced the effective marginal tax rate below $12,000 by 3.3 percent, or $390. As a result, there was a sizeable transitory component in the rebate (approximately 1/3).

Empirical evidence
JPS (2006) use questions added to the Consumer Expenditure Survey (CEX) that ask about the timing and the amount of the rebate check. Among the various specifications estimated by JPS (2006), we will focus on the most natural one:

\[
\Delta c_{it} = \sum_s \beta_{0s} \text{month}_s + \beta_1 X_{i,t-1} + \beta_2 R_{it} + \epsilon_{it}
\]

(1)

where \(\Delta c_{it} \) is the change in nondurable expenditures of household \(i \) in quarter \(t \), \(\text{month}_s \) is a time dummy, \(X_{i,t-1} \) is a vector of demographics, and \(R_{it} \) is the dollar value of the rebate received by household \(i \) in quarter \(t \). The coefficient \(\beta_2 \), which we label the ‘rebate coefficient’, is the object of interest. Identification comes from randomization in the timing of the receipt of rebate checks across households. However, since the size of the rebate is potentially endogenous, JPS (2006) estimate equation (1) by 2SLS using an indicator for whether the rebate was received as instrument. Table 1 reproduces estimates from JPS (2006). Their key finding is that \(\beta_2 \) is estimated between 0.20 and 0.40, depending on the exact definition of nondurables.

Since their original influential estimates, others have refined this empirical analysis. Hamilton (2008) argues that the CEX is notoriously noisy, and one should trim the sample to exclude outliers. When the top 10 and bottom 10 records are deleted from the sample (of roughly 13,000 observations), the rebate coefficient on nondurables drops to 0.24. Misra and Surico (2011) use quantile regression techniques to explicitly account for heterogeneity in the consumption response across households. Their point estimate is, again, around 0.24 and, more importantly, the rebate coefficient is much more precisely estimated.\(^\text{11}\) We conclude that estimates of the

\(^{11}\)More precise estimates of the order of 20%-25% are obtained by PSJM (2011) in the context of the 2008 episode. While this additional evidence reinforces the finding that consumption responses to fiscal stimulus payments are significant, since the economic environment and the program design were different between 2001 and 2008, one should be cautious in drawing conclusions.
Table 1: Estimates of the 2001 Rebate Coefficient ($\hat{\beta}_2$)

<table>
<thead>
<tr>
<th></th>
<th>Strictly Nondurable</th>
<th>Nondurable</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPS 2006, 2SLS ($N = 13,066$)</td>
<td>0.202 (0.112)</td>
<td>0.375 (0.136)</td>
</tr>
<tr>
<td>H 2008, 2SLS ($N = 12,710$)</td>
<td>0.242 (0.106)</td>
<td></td>
</tr>
<tr>
<td>MS 2011, IVQR ($N = 13,066$)</td>
<td>0.244 (0.057)</td>
<td></td>
</tr>
</tbody>
</table>

The rebate coefficient range between 0.20 and 0.40, with the most recent estimates putting more weight towards the lower bound.

It is crucial to understand exactly the meaning of the rebate coefficient β_2. Because households who do not receive the check at date t (the control group) may know they will receive it in the future, β_2 should be interpreted as the marginal propensity to consume (MPC) out of the rebate, net of the consumption response for households in the control group which, in general, is not zero. As a result β_2 is not a MPC out of the rebate, a point on which the existing literature is somewhat fuzzy. This qualification has two consequences. First, to be able to generate a large value for β_2, a model must feature a large MPC out of transitory shocks - but this is a necessary condition, not a sufficient one. The model must also feature a low MPC out of the news of the shock. In the absence of this second requirement, $\hat{\beta}_2$ would become small since it would be the difference between two equally large numbers. As argued in the Introduction, this observation is useful in distinguishing among competing theories. Second, since $\hat{\beta}_2$ is not a MPC, it cannot be used to draw inference on the impact of the policy on aggregate consumption. We return to this point in Section 5.3.

3 A life-cycle model with liquid and illiquid assets

We now describe our framework. The model integrates the Baumol-Tobin inventory-management model of money demand into an incomplete-markets life-cycle economy. In this section we outline the model in steady-state. We use a series of examples to highlight the economic mecha-
anisms at work. Then, in Section 4, we introduce two additional features needed to model the rebate experiment: tax reform and recession.

3.1 Model description

Demographics The stationary economy is populated by a continuum of households, indexed by i. Age is indexed by $j = 1, 2, \ldots, J$. Households retire at age J^w and retirement lasts for J^r periods.

Preferences Households have time-separable, expected utility given by

$$
E_0 \sum_{j=1}^{J} \beta^{j-1} c_{ij}^{1-\gamma} - 1 \left(\frac{1}{1 - \gamma} \right)^{1-\gamma}, \quad \gamma \geq 1
$$

(2)

where c_{ij} is consumption of nondurables for household i at age j.

Idiosyncratic earnings In any period during the working years, household labor earnings (in logs) are given by

$$
\log y_{ij} = \chi_j + \alpha_i + \psi_i j + z_{ij},
$$

(3)

where χ_j is a deterministic age profile common across all households; α_i is a household-specific fixed effect; ψ_i is the slope of a household-specific deterministic linear age-earnings profile; and z_{ij} is a stochastic idiosyncratic component that follows a first-order Markov process $\Gamma_z (z_{j+1}, z_j)$.

Financial assets There are two assets: a liquid asset m_{ij} (‘cash’), and an illiquid asset a_{ij}. The illiquid asset pays a gross return $R^a = 1/q^a$, while positive balances of the liquid asset pay a gross return $R^m = 1/q^m$. We assume that $R^a > R^m$ and note that, since these are real returns, they could be below one. When the household wants to make deposits into, or withdrawals from, the illiquid account, she must pay a transaction cost κ.\(^{12}\) This creates a meaningful trade-off between holding the two assets. Households start their working lives with an exogenously given quantity of each asset.

Illiquid assets are restricted to be non-negative, $a_{ij} \geq 0$, but we allow borrowing in the liquid asset to reflect the availability of credit up to a limit, m. The interest rate on borrowing is

\(^{12}\)It is straightforward to allow for a utility cost or a time cost (proportional to labor income) rather than a monetary cost of adjustment. We have experimented with both types of costs and obtained similar results in both cases. We return to this point in Section 6.
denoted by $1/q^m$ and we define the function $q^m(m_{i,j+1})$ to encompass both the case $m_{i,j+1} \geq 0$ and $m_{i,j+1} < 0$.

Government
Government expenditures G are not valued by households. Retirees receive social security benefits $p(\chi_{Jw}, \alpha_i, \psi_i, z_{i,Jw})$ where the arguments proxy for average gross lifetime earnings. The government levies proportional taxes on consumption expenditures (τ^c) and on asset income (τ^a, τ^m), a payroll tax $\tau^{ss}(y_{ij})$ with an earnings cap, and a progressive tax on labor income $\tau^y(y_{ij})$. The combined income tax liability function is:

$$T(y_{ij}, a_{ij}, m_{ij}) = [\tau^y(y_{ij}) + \tau^{ss}(y_{ij})] y_{ij} + \tau^a(1 - q^a)a_{ij} + \tau^m(1 - q^m)m_{ij} \cdot 1_{m_{ij} > 0} \quad (4)$$

where the indicator function means that there is no deduction for interest paid on unsecured borrowing. For retirees, the same tax function applies with $p(\chi_{Jw}, \alpha_i, \psi_i, z_{i,Jw})$ in place of y_{ij}.

Finally, we let the government issue one-period debt B at price q^g.

Household problem
We use a recursive formulation of the problem. Let $s_j = (m_j, a_j, \alpha, \psi, z_j)$ be the vector of individual states at age j. The value function of a household at age j is $V_j(s_j) = \max \{V^0_j(s_j), V^1_j(s_j)\}$, where $V^0_j(s_j)$ and $V^1_j(s_j)$ are the value functions conditional on not adjusting and adjusting (i.e., depositing into or withdrawing from) the illiquid account, respectively. This decision takes place at the beginning of the period, after receiving the current endowment shock, but before consuming.13

Consider a working household with $j \leq J^w$. If the household chooses not to adjust its

13The timing of the earnings shock and adjustment decisions implies that our model does not feature a cash-in-advance (CIA) constraint. In models with a CIA constraint, during a period of given length the household is unable to use a certain fraction (typically all) of his current income to finance purchases during that same period. In our model, after the earnings shock, the household can always choose to pay the transaction cost, withdraw from the illiquid account, and use all its income to finance consumption. Put differently, the period length for which some of the income of the agent is tied in the illiquid asset and unavailable for consumption expenditure is entirely under the agent’s control. Our model would feature a CIA constraint only if, within the period, the transaction cost was infinite. See Jovanovic (1982) for an exhaustive discussion of the difference between models with transaction costs and models with CIA constraints.
illiquid assets because \(V_j^0(s_j) \geq V_j^1(s_j) \), it solves the dynamic problem:

\[
V_j^0(s_j) = \max_{c_j, m_{j+1}} u(c_j) + \beta E_j [V_{j+1}(s_{j+1})] \tag{5}
\]

subject to:

\[
q_j^m (m_{j+1}) m_{j+1} + (1 + \tau^c) c_j = y_j - T(y_j, a_j, m_j) + m_j
\]

\[
q^a a_{j+1} = a_j
\]

\[
m_{j+1} \geq m
\]

\[
y_j = \exp(\chi_j + \alpha + \psi_j + z_j)
\]

If the household chooses to adjust its holding of illiquid assets because \(V_j^0(s_j) < V_j^1(s_j) \), then it solves:

\[
V_j^1(s_j) = \max_{c_j, m_{j+1}, a_{j+1}} u(c_j) + \beta E_j [V_{j+1}(s_{j+1})] \tag{6}
\]

subject to:

\[
q_j^m (m_{j+1}) m_{j+1} + q^a a_{j+1} + (1 + \tau^c) c_j = y_j - T(y_j, a_j, m_j) + m_j + a_j - \kappa
\]

\[
a_{j+1} \geq 0
\]

\[
m_{j+1} \geq m
\]

\[
y_j = \exp(\chi_j + \alpha + \psi_j + z_j)
\]

The problem for the retired household of age \(j > J^w \) is similar, with benefits \(p(\chi_{J^w}, \alpha_i, \psi_i, z_{i,J^w}) \) in place of earnings \(y_j \).

Equilibrium The returns on the two assets are exogenous. Given \(q^a \) and \(q^m (m) \), households optimize. Given \(G, p(Y_{J^w}), q^a \) and \(T(\cdot) \), we let \(B \) adjust so that the intertemporal government budget constraint

\[
G + \sum_{j=J^w+1}^J \int p(Y_{J^w}) \, d\mu_j + \left(\frac{1}{q^a} - 1 \right) B = \tau^c \sum_{j=1}^J \int c_j \, d\mu_j + \sum_{j=1}^J \int T(y_j, a_j, m_j) \, d\mu_j
\]

is balanced, where \(\mu_j \) is the distribution of households of age \(j \) over \(s_j \).
3.2 Behavior in the model: “wealthy hand-to-mouth” households

Two Euler equations Consumption and portfolio decisions are characterized by a ‘short-run’ Euler equation (EE-SR) that corresponds to (dis)saving in the liquid asset, and a ‘long-run’ Euler equation that corresponds to (dis)saving in the illiquid asset (EE-LR). To understand, consider a deterministic version of the model without income risk, borrowing, and taxes.

In periods where the working household is unconstrained and does not adjust:

\[u'(c_j) = \frac{\beta}{q^m} u'(c_{j+1}). \]

(EE-SR)

The slope of her consumption path is governed by \(\beta/q^m \) which, for plausible parameterizations, is below one. Hence consumption declines over time because of impatience and the low return on cash. A constrained household consumes all her earnings, i.e., \(c_j = y_j \).

During the working life, the agent saves to finance retirement by making periodic deposits into the illiquid account. Given the fixed cost of adjusting, households accumulate liquid assets and choose dates at which to deposit some or all of their liquid holdings into the illiquid account (the ‘cake-baking’ problem). Across two such adjustment dates \(N \) periods apart, consumption dynamics are dictated by

\[u'(c_j) = \left(\frac{\beta}{q^a} \right)^N u'(c_{j+N}). \]

(EE-LR)

Since \(\beta/q^a > \beta/q^m \), consumption grows more (or falls less) across adjustment dates, than in
between adjustments.

During retirement, the household faces a ‘cake-eating’ problem, where optimal decisions closely resemble those in Romer (1986). Consumption in excess of pension income is financed by making periodic withdrawals from the illiquid account. Between each withdrawal, the household runs down its liquid holdings and consumption falls according to (EE-SR). The withdrawals are timed to coincide with the period where cash is exhausted. Across withdrawals, equation (EE-LR) holds.\(^\text{14}\)

Figure 1 shows consumption and wealth dynamics in an example where an agent with logarithmic utility starts her working life with zero wealth, receives a constant endowment while working and a lower endowment when retired.\(^\text{15}\) Panel (a) shows that the agent in this example chooses to adjust his illiquid account at only three points in time: one deposit while working, and two withdrawals in retirement. In between, the value of the illiquid account grows at rate \(1/q^a\). Panel (b) shows her associated income and consumption paths. In the same panel, we have also plotted the paths for consumption arising in the two versions of the corresponding one-asset model: one with the ‘short-run’ interest rate \(1/q^m\), and one with the ‘long-run’ rate \(1/q^a\). The sawed pattern for consumption that arises in the two-asset model is a combination of the short-run and long-run behavior: between adjustment dates the consumption path is parallel to the path in the one-asset model with the low return; while across consumption dates, the slope is parallel to consumption in the one-asset model with the high return. Finally note that, under this parameterization, the young agent is constrained for the initial phase of her working life, when her net worth is zero.

Endogenous ‘hand-to-mouth’ behavior Figure 2 illustrates how the model can feature households with positive net worth who consume their income every period: the “wealthy hand-to-mouth” agents. The parameterization is the same as in Figure 1, except for a higher return on the illiquid asset \(R^a\). This higher return leads to stronger overall wealth accumulation. Importantly, rather than increasing the number of deposits during the working life, the household changes the timing of its single deposit. The single deposit into the illiquid account

\(^{14}\)In this example, our problem during retirement with no discounting, log utility, and the transaction cost expressed in utility terms would coincide with Romer (1986) and withdrawal dates would be equidistant, subject to the ‘integer problem’ intrinsic in the discrete-time formulation.

\(^{15}\)To make this example as stark as possible, we impose a very large transaction cost.
Figure 2: Example of lifecycle of a ‘wealthy hand-to-mouth’ agent in the two-asset model.

is now made earlier in life in order to take advantage of the high return for a longer period (compare the left panels across Figures 1 and 2). Thus, instead of being constrained at the beginning of the life cycle, the household optimally chooses to hold zero liquid assets in the middle of the working life, after its deposit, while the illiquid asset holdings are positive and are growing in value. Intuitively, since her net worth is large, this household would like to consume more than her earnings flow, but the transaction cost dissuades her from doing it. This is a household that, upon receiving the rebate, will consume a large part of it and, upon the news of the rebate, cannot increase her expenditures without making a costly withdrawal from her illiquid account.\footnote{As discussed in the Introduction, the model by Campbell and Hercowitz (2009) also features ‘wealthy constrained’ agents. However, their mechanism is different and, even though it is consistent with high MPC out of transitory shocks, would not be capable of generating large MPC out of anticipated income changes or large rebate coefficients.}

Why would households choose to consume all of their earnings every period and deviate from the optimal consumption path imposed by the short-run Euler equation EE-SR, even for long periods of time? The answer is that households are better off taking this welfare loss than smoothing consumption because the latter option entails either (i) paying the transaction cost more often to withdraw cash when needed to smooth shocks; or (ii) accumulating more liquid wealth for precautionary reasons hence foregoing the high return on the illiquid asset (and, therefore, the associated higher level of consumption). This observation is reminiscent of
Cochrane’s (1989) insight that, in a representative agent model with reasonable risk aversion, the utility loss from setting consumption equal to income is very small.\footnote{See also Browning and Crossley (2001) for a similar calculation in the context of the life-cycle model of consumption.}

\section{Calibration}

We now present a calibration of the model without credit ($m = 0$) and without heterogeneous earnings slopes ($\psi_i = 0$). In Section 6 we analyze these extensions of the model.

\textbf{Demographics and preferences}\quad Decisions in the model take place at a quarterly frequency. Households begin their active economic life at age 22 ($j = 1$) and retire at age 60 ($J^w = 152$). The retirement phase lasts for 20 years ($J^r = 80$). We assume a unitary intertemporal elasticity of substitution ($\gamma = 1$) and we calibrate the discount factor β to replicate median illiquid wealth in the SCF (see below).\footnote{In the literature on quantitative macroeconomic models with heterogeneous households and incomplete markets there are two approaches to calibrating the discount factor. The first is to match median wealth (e.g., Carroll, 1992, 1997). The second is to match aggregate wealth (e.g., Aiyagari, 1994; Rios-Rull, 1995; Krusell and Smith, 1998). There is a trade off in this choice. Matching median wealth allows one to reproduce more closely the wealth distribution, with the exception of the upper tail. Matching mean wealth allows one to fully incorporate equilibrium effects on prices, at the cost of overstatement wealth holdings and, therefore, understating the MPC for a large fraction of households (due to the concavity of the consumption function, see Carroll and Kimball, 1996). Since, for the question at hand, matching the liquid and illiquid wealth holdings of households, as well as their MPC, the bottom half of the distribution is far more important than price effects, here we choose the former approach.}

\textbf{Earnings heterogeneity}\quad We estimate the parameters of the earnings process (common life-cycle profile, initial variance of earnings, and variance of earnings shocks) through a minimum distance algorithm that targets the empirical covariance structure of household earnings constructed from the Panel Study of Income Dynamics (PSID). Specifically, from the PSID we select a sample of households with heads 22-59 years old in 1969-1996, following the same criteria as in Heathcote, Perri, and Violante (2010). We construct the empirical mean age-earnings profile and covariance functions in levels and first differences, exploiting the longitudinal dimension of the data. We simulate the process in (3) at a quarterly frequency, also allowing for an i.i.d. shock, and aggregate quarterly earnings into annual earnings. From the implied annual earnings we construct the model counterpart of the empirical moments and minimize the distance between the two set of moments. We interpret the transitory component as measurement
error in earnings and hence, in simulations, we abstract from it.

Households’ portfolio data Our data source is the 2001 wave of the SCF, a triennial cross-sectional survey of the assets and debts of US households. For comparability with the CEX sample in JPS (2006), we exclude the top 5% of households by net worth. Average labor income for the bottom 95% is $52,696, a number close to the one reported by JPS (2006, Table 1).\(^{19}\)

Our definition of liquid assets comprises: money market, checking, savings and call accounts plus directly held mutual funds, stocks, bonds, and T-Bills net of revolving debt on credit card balances.\(^{20}\) All other wealth, with the exception of equity held in private businesses, is included in our measure of illiquid assets. It comprises housing net of mortgages and home equity loans, vehicles net of installment loans, retirement accounts (e.g., IRA, 401K), life insurance policies, CDs, and saving bonds. Table 2 reports some descriptive statistics.

The data provide overwhelming evidence that the majority of household wealth is held in (what we call) illiquid assets. For example, the median and mean of the liquid asset distribution are $2,700, and $30,531, compared with $70,000, and $133,932 for the illiquid asset distribution.

Figure 3(a) shows the evolution of illiquid and liquid wealth over the lifecycle. It is clear that the bulk of the life-cycle saving over the working life takes place in illiquid wealth, whereas liquid wealth is fairly constant.

Measuring hand-to-mouth households in the SCF An implication of these low holdings of liquid wealth is that a number of households are likely to be hand-to-mouth, i.e., they hold liquid assets only because earnings are paid as cash and because of a mismatch in the timing of consumption and earnings within a pay period, not because they save across periods. To measure the fraction of these hand-to-mouth households, one must take a stand on the frequency of pay dates. If households are surveyed at the midpoint of a pay-period, and if

\(^{19}\)In our definition of household labor income, we included unemployment and disability insurance, TANF, and child benefits.

\(^{20}\)The SCF asks the following questions about credit card balances: (i) “How often do you pay on your credit card balance in full?” Possible answers are: (a) Always or almost always; (b) Sometimes; or (c) Almost never. (ii) “After the last payment, roughly what was the balance still owed on these accounts?” From the first question, we identify households with revolving debt as those who respond (b) Sometimes or (c) Almost Never. We then use the answer to the second question, for these households only, to compute statistics about credit card debt. This strategy (common in the literature, e.g., see Telyukova, 2011) avoids including, as debt, purchases made through credit cards in between regular payments.
Table 2: Household Portfolio Composition

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Earnings plus benefits (age 22-59)</td>
<td>41,000</td>
<td>52,696</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Net worth</td>
<td>77,100</td>
<td>164,463</td>
<td>0.95</td>
<td>5.5</td>
</tr>
<tr>
<td>Net liquid wealth</td>
<td>2,700</td>
<td>30,531</td>
<td>0.77</td>
<td>-1.1</td>
</tr>
<tr>
<td>Cash, checking, saving, MM accounts</td>
<td>1,880</td>
<td>12,026</td>
<td>0.87</td>
<td>-2.0</td>
</tr>
<tr>
<td>Directly held MF, stocks, bonds, T-Bills</td>
<td>0</td>
<td>19,920</td>
<td>0.28</td>
<td>4.1</td>
</tr>
<tr>
<td>Revolving credit card debt</td>
<td>0</td>
<td>1,415</td>
<td>0.33</td>
<td>–</td>
</tr>
<tr>
<td>Net illiquid wealth</td>
<td>70,000</td>
<td>133,932</td>
<td>0.93</td>
<td>6.2</td>
</tr>
<tr>
<td>Housing net of mortgages</td>
<td>31,000</td>
<td>72,585</td>
<td>0.68</td>
<td>7.1</td>
</tr>
<tr>
<td>Vehicles net of installment loans</td>
<td>11,000</td>
<td>14,562</td>
<td>0.86</td>
<td>5.8</td>
</tr>
<tr>
<td>Retirement accounts</td>
<td>950</td>
<td>34,431</td>
<td>0.53</td>
<td>4.5×1.35*</td>
</tr>
<tr>
<td>Life insurance</td>
<td>0</td>
<td>7,734</td>
<td>0.27</td>
<td>0.5</td>
</tr>
<tr>
<td>Certificates of deposit</td>
<td>0</td>
<td>3,805</td>
<td>0.14</td>
<td>1.3</td>
</tr>
<tr>
<td>Saving bonds</td>
<td>0</td>
<td>815</td>
<td>0.17</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Source: Authors’ calculations based on the 2001 Survey of Consumer Finances (SCF).
*The return on retirement assets is multiplied by a factor of 1.35 to account for the employer contribution. See the main text for details.

Expenditures are at constant rate between pay dates, then an estimate of hand-to-mouth households is the fraction of households with wealth less than half of their earnings per pay-period. Figure 3(b) provides an estimate of the number of such households, using two alternative definitions of wealth: net worth, which is the relevant definition for comparison with one asset models; and liquid wealth, which is the relevant definition for comparison with our two asset model. For each, we report three lines, corresponding to three alternative assumptions on the frequency of payment: weekly, biweekly, and monthly.21

Based on net worth, between 5.6% and 7.1% of households aged 22-79 are hand-to-mouth, while based on liquid wealth between 30% and 42% are hand-to-mouth. The grey area in between the two solid lines (which refers to biweekly payments) is composed of households.

21If one is unwilling to make the assumption that households are surveyed half-way through their pay period, then identifying who is constrained requires additional information. For example, under the assumption that households are surveyed uniformly during pay-periods, to compute the fraction of constrained agents one must know exactly when a household is paid relative to the survey date, and the balance on their account at the last pay date.
who have positive illiquid wealth but do not carry positive balances of liquid assets between pay periods. These are the empirical counterpart of the ‘wealthy hand-to-mouth’ agents in our model. Note that this last group of households, which represents a sizeable fraction of the population (between 24% and 35%), is only visible through the lenses of the two-asset model. From the point of view of the standard one asset model, these are households with positive net worth, hence unconstrained.

These findings are consistent with recent survey evidence in Lusardi, Schneider, and Tufano (2011) showing that almost one third of US households would “certainly be unable to cope with a financial emergency that required them to come up with $2,000 in the next month.” The authors also report that, among those giving that answer, a high proportion of individuals are at middle class levels of income. Similarly, Broda and Parker (2011) document, from the AC Nielsen Homescan database, that almost 40% of households report that they do not have “at least two months of income available in cash, bank accounts, or easily accessible funds ”.

Asset returns To measure returns on the various asset classes, we focus on the period 1960-2009. All of the following returns are expressed in annual nominal terms. We set the nominal return on checking accounts to zero and the return on savings accounts, T-Bills and savings bonds to the interest rate on 3-month T-Bills, which was 5.3% over this period (FRB database). For equities, we use Center for Research in Security Prices (CRSP) value-weighted returns,
assuming dividends are reinvested, and obtain an annualized nominal return of 11.1%. The SCF reports the equity share for directly held mutual funds, stocks and bonds and for retirement accounts, which allows us to apply separate returns on the equity and bond components of each saving instrument. An important incentive to save in retirement accounts is the employer’s matching rate. Over 70% of households in our sample with positive balance on their retirement account have employer-run retirement plans. The literature on this topic finds that, typically, employers match 50% of employees’ contributions up to 6% of earnings, but the vast majority of employees do not contribute above this threshold (e.g., Papke and Poterba, 1995). As a result, we raise the return on retirement accounts by a factor of 1.35.

For housing, we follow Favilukis, Ludvigson, and Van Niewerburgh (2010). We measure housing wealth for the household sector from the Flow of Funds, and housing consumption from the National Income and Products Accounts. The return for year \(t \) is constructed as housing wealth in the fourth quarter of year \(t \) plus housing consumption over the year minus expenses in maintenance and repair divided by housing wealth in the fourth quarter of year \(t-1 \).

We subtract population growth in order to correct for the growth in housing quantity. We also subtract the average property tax, 1% (Tax Foundation, 2011). As a result, we obtain an average annual nominal return of 13.2%.

Given the absence of data on the service flow from vehicles (autos, trucks and motorcycles), we adopt a user cost approach to calculate the return on vehicles. The sum of the interest rate on T-Bills plus the rate of economic and physical depreciation (available from the BEA) yields an annual nominal return of 11.6%. For saving bonds and life insurance (assuming actuarially fair contracts for the latter) we use the return on T-Bills, and for CDs we obtain a nominal return of 6.3% (FRB database).

22 After inflation (4.1% over this period), the real return is 7%. Favilukis, Ludvigson, and Van Niewerburgh (2010, Table 5), whose calculations we follow, report returns between 7.9% (1953-2008) and 6.6% (1972-2008).

23 Since we do not model explicitly the tax-deferred treatment of retirement accounts, we somewhat underestimate the effective return on this saving vehicle. See Huntley and Michelangeli (2011).

24 Our estimate of expenses in improvement and repair is based on a comprehensive study on housing compiled by the Joint Center for Housing Studies (2011). Figure 2 reports that these expenses amount to roughly 40% of total residential investment expenditures.

25 After inflation, the real return is 9.1%. Favilukis et al. (2010, Table 5) report returns between 9.8% (1953-2008) and 9.9% (1972-2008). They also report a housing return of 9.1% (1972-2008) computed based on the repeat-sale Freddie Mac Conventional Mortgage House Price index for purchases only (Freddie Mac) and on the rental price index for shelter (BLS).
We apply these nominal returns to each household portfolio in the SCF and compute average returns in the population. The implied average nominal return on illiquid wealth is 12.1% and on liquid wealth is 3.8%. Finally, we set the annual inflation rate to 4.0 percent (the average over this period is 4.1). After inflation and taxes (see below), the after-tax real returns on liquid and illiquid wealth are 6.2% and -1.1%, respectively. The final after-tax real returns on liquid and illiquid wealth by category are reported in Table 2.

Initial asset positions We use observed wealth portfolios of SCF households aged 20 to 24 to calibrate the age \(j = 0 \) initial conditions for assets in the model. We divide this group into fifteen sub-groups based on their earnings and calculate 1) the fraction with zero holdings, and 2) the median liquid wealth, illiquid wealth, and net worth in each sub-group, conditional on positive holdings. When we simulate life-cycles in the model, we create the same sub-groups based on the initial earnings draw. Within each sub-group, we initialize a fraction of agents with zero assets, and the rest with the corresponding median holdings of liquid and illiquid wealth.

Government We set \(\tau^{ss}(y) \) to 12.4% up to an earnings cap in order to reproduce the Old-Age, Survivors, and Disability Insurance (OASDI) tax rates in 2000. To compute social security benefits, individual average lifetime earnings \(Y_{i,w} \) are run through a formula based on replacement rates and bend points as in the actual system in the year 2000. The effective consumption tax rate \(\tau^c \) is set to 7.2% (McDaniel, 2007). The function \(\tau^y(y) \) is a smooth approximation to the estimates in Kiefer et al. (2002, Table 5) who report effective tax rates on wage income for ten income brackets in the year 2000. Kiefer et al. (2002, Table 5) also report the effective tax schedule on interests and dividends, and on long term capital gains by ten income brackets in 2000. We apply these tax rates on each household portfolio in our sample and derive an average effective tax of 22.9% on income from liquid assets (\(\tau^m \)), and of 15.9% on income from illiquid assets (\(\tau^a \)).26 When we set government expenditure \(G \) to its value in the year 2000 (using ‘Wages and Salaries Disbursements’ for the year 2000 in NIPA Table 2.1 as a metric), residual public debt from the government budget constraint is close to its observed value.

26We apply the interest/dividend tax rates on all assets except for housing and for the equity component of retirement accounts, on which we apply the capital gain tax rates.
4.1 Modelling the 2001 tax rebate, tax reform, and recession

Tax rebate We assume that the economy is in steady state in 2001:Q1. The rebate checks are then randomly sent out to half the eligible population in 2001:Q2, and to the other half in 2001:Q3. We set the rebate size to $500 based on JPS (2006) who report that the average rebate check was $480 per household.

There are different views that one could plausibly take about the timing of when the rebate enters households’ information sets. At one extreme, households become fully aware of the rebate when the bill is discussed in Congress and enacted. This scenario implies the news arriving in 2001:Q1. Under this timing, the check is fully anticipated by both groups. At the other extreme, one could assume that households became aware of the rebate only after receiving their own check: under this assumption, both groups of households treat the rebate as a surprise. In our baseline, we take an intermediate position, i.e., all households learn about the rebate when the first set of Treasury checks are received, in 2001:Q2. Under this timing, the check was fully anticipated only by the second group who received the check in 2001:Q3. We explore the two alternative timing assumptions in Section 6. We assume throughout that the news/check reaches households before the consumption/saving and adjustment decisions for that quarter.

Tax reform The 2001 rebate was part of a broader tax reform which, beyond decreasing the lowest rate, also reduced all other marginal rates by roughly 3% or more. We construct the sequence of effective tax schedules based on Kiefer et al. (2002). Most of these changes were planned to be phased in gradually over the five years 2002:Q1-2006:Q1 and to ‘sunset’ in 2011. It turned out that instead of sunsetting, the tax cuts were further extended. We consider two scenarios regarding the ‘sunset’ clause: (i) households believe that the tax system will revert to its pre-reform state at the end of ten years; and (ii) households act as if the change in the tax system is permanent after the reform is fully phased in. A tax reform is defined as a sequence of tax schedules \(\{T_t\}_{t=t^*}^{t^{**}} \), which is announced, jointly with the rebate, in 2001:Q2. Date \(t^* \), the first quarter of the change in the tax code, is 2002:Q1. Date \(t^{**} \), the last quarter of the change

27Kiefer et al. (2002, Table 5) report the pre and post reform income tax rates, and describe the timing of the reduction in the various brackets (page 90).
in the tax code, is 2006:Q1 in absence of sunset, and 2011:Q1 when the tax reform sunsets as originally legislated.

Recession To model the downturn of 2001, we assume that in 2001:Q2 households become aware that they are entering a recession. At this time they learn that their labor income will fall linearly for the next three quarters, generating a cumulative drop of 1.5%, and will then fully recover over the following eight quarters.\(^\text{28}\)

Transition In 2001:Q2 the economy begins undergoing transitional dynamics. We start by assuming that the government finances the rebate program by increasing debt for ten years, and then repays the rebate outlays and the accumulated interest on the new debt by introducing a permanent proportional tax on earnings. In our benchmark calibration, the required additional tax rate is around 0.05%.\(^\text{29}\)

5 Quantitative analysis of the 2001 tax rebate

We start by studying a baseline economy where the tax rebate occurs in isolation. Next, we incorporate the tax reform and recession. We analyze the model economy for values of the transaction cost \(\kappa\) ranging from zero to $3,000. The case \(\kappa = 0\) corresponds to the standard one-asset model. At \(\kappa = 0\), we set \(\beta\) to reproduce median net worth, and we set the interest rate to the average return on net worth in the SCF data (see Table 2).\(^\text{30}\) For each value of \(\kappa > 0\), we re-calibrate \(\beta\) to match median holdings of illiquid wealth.\(^\text{31}\)

Baseline results To fix ideas, it is useful to start from the one-asset economy with \(\kappa = 0\). When we compute the rebate coefficient exactly as in JPS (2006) –i.e., we run regression (1) on simulated panel data– the estimated rebate coefficient is only 1.8%. The vast majority of

\(^{28}\)The NBER dates the 2001 recession as starting in March 2001 and ending in November 2001. The magnitude of the downturn and the duration of its recovery are calibrated from the ‘Wages and Salaries Disbursements’ series in NIPA Table 2.1.

\(^{29}\)We experimented by shortening the phase during which the government uses debt up to one year and found nearly identical results. There are two reasons. First, the financing scheme affects equally the treatment and the control group. Second, the behavior of constrained households is unaffected by future rises in taxes.

\(^{30}\)This latter choice has no bearing on the findings since the discount factor is always calibrated to generate the same amount of net worth. When we set the interest rate to the calibrated value of \(R^m\) or \(R^s\), we found virtually identical results.

\(^{31}\)The annualized values of \(\beta\) range between 0.950 and 0.956. Hence, our results are not driven by implausibly low discount factors which make households highly impatient.
households in this model hold enough net worth to save the bulk of the rebate, upon its receipt. Moreover, the response to the news and to the check itself are virtually identical for this group, as predicted by standard consumption theory. The action comes entirely from the constrained agents, most of which are very young (below age 35): those in the treatment group have a high MPC, while those in the control group do not respond at all. In our calibration, only 3% of households have zero net worth and are hand-to-mouth, which explains the small rebate coefficient.\footnote{As reported in Figure 3(b), in the 2001 SCF data this fraction is around 6%. Hence, even though the model at $\kappa = 0$ slightly underestimates this fraction, there is essentially no scope for the one asset model to generate significant rebate coefficients, while remaining consistent with SCF data on the distribution of net worth.}

We now move to the two-asset model with $\kappa > 0$. Figure 4(a) shows that the fraction of households adjusting (i.e., accessing the illiquid account to withdraw or deposit) falls with the size of the transaction cost κ. As illustrated in the simulations of Section 3, retirees adjust more often than working-age households because they finance their consumption largely by withdrawing from the illiquid account. Holdings of liquid wealth increase with the transaction cost (Figure 4(b)), because when κ is larger households deposit into/withdraw from the illiquid account less often and carry larger balances of liquid assets. However, even for large transaction costs, median liquid wealth remains small, around $1,500.\footnote{One may be surprised that optimal holdings of liquid wealth are so small, given the presence of plausibly calibrated earnings risk. However, with highly persistent shocks, there is little incentive to hold liquid wealth for precautionary reasons, a well known result in the literature. This is for two reasons. First, the opportunity cost of holding cash is very high, since R^a is large. Second, households can always withdraw (at a cost) from the illiquid account in the event of a large negative shock. This view of earnings risk is consistent with the observed distribution of liquid wealth holdings: had we allowed for a large transitory earnings component, households would hold counterfactually high quantities of liquid assets, and, accordingly, would have low marginal propensities to consume out of the rebate.}

A corollary of the skewed liquid wealth distribution in Figure 4(b) is that a substantial fraction of agents do not carry any balances of liquid assets across periods (i.e., do not use cash to save). In the model, there are two types of such agents. Some agents have zero liquid assets at the end of the period because they just made a deposit or they will make a withdrawal next period. Others have zero liquid assets at the end of the period because they are hand-to-mouth and consume their earnings every period. Figure 4(c) plots the fraction of households in the latter group, the hand-to-mouth consumers, and divides them into those who also have zero illiquid wealth and those with positive illiquid wealth. The size of both groups is increasing in κ.

23
As shown in Figure 4(d), the average length of spells in which hand-to-mouth households hold zero liquid assets and consume their income is also growing with the level of the transaction cost. Intuitively, a large value for κ makes it less likely that the household will withdraw from the illiquid account to smooth large negative earnings shocks.

In what follows, we often focus on the range $500-$1,000 for the transaction cost: in this range, (i) the fraction of households that adjust each quarter is 15%-20% (4%-8% among workers and 35%-45% among retirees); (ii) median holdings of liquid wealth are just below their data counterpart in Table 2; and (iii) the fraction of hand-to-mouth consumers is in line with the empirical estimates of Figure 3.
Figure 5: Rebate coefficient and marginal propensity to consume, by transaction cost

Figure 5(a) displays the rebate coefficient in the model for different levels of the transaction cost. The rebate coefficient grows steadily from 1.8% when $\kappa = 0$ (the one-asset model) to 21% when $\kappa = 3,000$. For transaction costs in the range 500-$1,000$, the rebate coefficient is around 15%, or 8 times higher than its one-asset model counterpart. Figure 5(b) shows the marginal propensities to consume (MPC) out of the fiscal stimulus payment for two groups of households: those who are hand-to-mouth and those who are not. Note how, for the latter group, the average MPC is close to zero, while for the former group it is around 45%. Therefore, most of the households in the model behave exactly as predicted by the PIH and have zero MPC. The high rebate coefficients are driven by constrained households, and the two-asset model generates a larger fraction of hand-to-mouth consumers, some of which hold sizeable quantities of illiquid assets. Such households have significant MPC out of the rebate check (when they are in the treatment group) and do not respond to the news of the check (when they are in the control group). As a back of the envelope calculation, the 15% rebate coefficient arises as a weighted average of zero MPC for 2/3 of the population and 45% MPC for the remaining 1/3 in the treatment group. In the control group, both hand-to-mouth and unconstrained agents have zero MPC.

For low transaction costs, marginal propensities to consume out of moderate income changes (and hence rebate coefficients) can be negative. When transaction costs are low enough, upon
receiving the rebate agents may choose to anticipate the adjustment decision and save the rebate, together with their current holdings of cash, into the illiquid account. As a result, they save more than the rebate amount (which explains the negative MPC in Figure 5(b)) and consume less than the control group (which explains the negative rebate coefficient in Figure 5(a)).

Tax reform and recession Figure 6(a) shows that the consumption responses to the tax rebate are substantially higher when the full tax reform is modeled. On average, the rebate coefficient increases by 7-8 percentage points. The reason is that the substantial reduction in future tax liabilities leads to a rise in the desired level of lifetime consumption. Since a substantial fraction of households (poor and wealthy) are constrained in terms of liquid wealth, the rebate enables such households to start consuming out of this additional future income earlier than they would otherwise be able to.34 As is clear from the figure, our finding is robust to whether the sunset clause is implemented or not.

A similar logic applies when we add the recession to the tax rebate experiment. Figure 6(b) shows that allowing for the fact that the economy was undergoing a recession at the time of the rebates adds roughly 3 percentage points to the rebate coefficient. Overall, in the range

34 When adding the tax reform, the economy with κ = 0 also yields a higher rebate coefficient (see Figure 6(a)), because the effect we describe does apply there as well. However, quantitatively, the additional kick of the tax reform is insignificant in the one-asset model because the number of constrained households is so small.
$500-$1,000 for κ, the model generates a rebate coefficient between 22% and 29%, in line with the estimates of Table 1.

5.1 Further implications on consumption responses

Cochrane’s (1989) observation that there may be only small welfare differences between alternative consumption behavior when reacting to small transitory income shocks means that it is especially useful to investigate additional implications of our model, a point also raised by Card et al. (2007), and Chetty (2011). Our model has a number of implications about households’ consumption responses that can be compared to the data. We explore: 1) the heterogeneity in consumption responses across households; 2) their correlation with households’ liquid wealth; 3) their size-asymmetry; and 4) their state-dependence. When, in order to present more detailed features of our model, it is necessary to select a specific value for κ, we choose $\kappa = $750. In the presence of the tax reform and recession, this value corresponds to a rebate coefficient of 27%.

Heterogeneity Misra and Surico (2011) apply quantile regression techniques to the same data set as JPS (2006) to study cross-sectional heterogeneity in rebate coefficients. They conclude that there is a large amount of heterogeneity in consumption responses. There are two main findings. First, the distribution of consumption responses is bimodal, with around 40% of households saving all of the rebate, and another sizeable group of households spending a high

Figure 7: Heterogeneity in rebate coefficients in the model ($\kappa = $750)
fraction of the rebate.35 Second, high income households are disproportionately concentrated in the two tails of the distribution of consumption responses.36 Figure 7 shows that our model can broadly reproduce these findings.

Figure 7(a) plots a histogram of rebate coefficients for the working age population, in which the bimodal nature is stark. The bimodality arises because of the coexistence of a substantial fraction of (wealthy) hand-to-mouth consumers together with unconstrained agents who fully save the rebate as predicted by standard theory. Figure 7(b) plots median earnings in each quantile of the cross-sectional distribution of the consumption responses. The reason why there are high earnings households at both ends of the distribution is that some of them are unconstrained and some are wealthy hand-to-mouth. The former are income-rich but their expected earnings growth is low, the latter are income-rich but their expected earnings profile is steep, which makes the liquidity constraint more likely to bind. Moreover, because the rebate is a lump sum, among constrained agents the income-richest have the highest MPC.

Correlation with liquid wealth JPS (2006) estimate rebate coefficients for sub-groups of households with different amounts of liquid assets. They find that households in the bottom half of the distribution have substantially larger consumption responses. These effects are imprecisely estimated, though, for two reasons. First, the sample becomes very small when divided into sub-groups. Second, the asset data in the CEX must be viewed with extreme caution, due to the large amount of item non-response. For example, JPS (2006) have data on liquid wealth for less than half of the sample, and hence it is likely that respondents are a highly selected sub-sample. Misra and Surico (2011) also conclude that liquid assets are not strongly correlated with the size of the consumption response: they identify high liquid wealth

35A complementary source of evidence comes from SS (2003a, 2003b) who added an ad-hoc module to the Michigan Survey of Consumers to assess the impact of the rebate. This survey asked households what they would do with their rebate check. 22 percent of respondents said they would mostly spend it, while the rest said they would mostly save it or repay debt. From these studies, we can infer that the average estimate from JPS is likely to be the outcome of very high MPC among a relatively small group of households and very small (or zero) MPC among the majority of the population. PSJM (2011) validate this survey-based finding by documenting that CEX households who report that they mostly consumed the 2008 rebate had consumption responses almost twice as large as those households who report that they mostly saved it.

36This second finding is not inconsistent with (and could potentially explain) the result reported by JPS (2006) that, when splitting the population into three income groups, differences in rebate coefficient across groups are not statistically significant. Similarly, SS (2003a, 2003b) find no evidence of higher spending rates among low income households.
Figure 8: Rebate coefficients by size of the stimulus payment

households at both ends of the distribution of rebate coefficients.

These results are not inconsistent with our model. In the model, there are some high liquid wealth households who are not constrained and consume little out of the rebate, and others (with high income and high expected income growth) who are constrained and have a large MPC out of the rebate. This feature of the model explains why, empirically, the relationship between rebate coefficients and the level of liquid wealth is statistically weak.

The model’s sharpest prediction is that households with low liquid wealth to earnings ratios have larger consumption responses. Broda and Parker (2011) exploit the AC Nielsen Homescan database, a sample fifty times larger than the CEX, to study the consumption response to the fiscal stimulus payment of 2008. They ask households “In case of an expected decline in income or increase in expenses, do you have at least two months of income available in cash, bank accounts, or easily accessible funds?” Hence their liquid wealth variable is relative to earnings. They split households in two groups and find very strong (and statistically significant) evidence that households with a low ratio of liquid assets to income spend at least twice as much as the average household, precisely as predicted by our model.\footnote{Souleles (1999) studies the consumption response to anticipated tax refunds (whose median size is around $560 (Table 1). When the sample is split between low and high liquid wealth-earnings ratio households, the former group is found to have statistically significant larger responses to the refund (Table 4).}

\textbf{Size asymmetry} \quad Hsieh (2003) shows that the same CEX consumers who ‘overreact’ to the
2001 tax rebates, respond very weakly to payments received from the Alaskan Permanent Fund. These payments are, on average, much larger than the rebate we examined (around $2,000 per household). Browning and Collado (2001) document similar evidence from Spanish survey data: workers who receive anticipated double-payment bonuses (hence, again, large amounts) in the months of June and December do not alter their consumption growth significantly in those months. One interpretation of these results is that, although households spend large fractions of small anticipated shocks, they predominantly save large anticipated shocks.

Figure 8 shows how the propensity to consume the rebate declines when the size of the rebate is increased above $500, as a function of κ. In the baseline environment with a $750 transaction cost, the rebate coefficient drops by almost a factor of three (from 16% to 6%) as the size of the stimulus payment increases from $500 to $2,000. A large enough rebate loosens the liquidity constraint, and even constrained households will find it optimal to save a portion of their payment.\(^{38}\) Moreover, for rebates that are sufficiently high relative to the transaction cost, many working households will choose to pay the transaction cost and make a deposit upon receipt of the rebate. But, since adjusting households are not constrained, they will save a significant fraction of the rebate, as in the one-asset model.

This latter effect may be strong enough to cause the consumption response to fall also in absolute terms as the rebate size increases, for given transaction cost. Figure 8 shows that, when the transaction cost is $750, the average consumption expenditure is larger for a $1,000 rebate than for a $2,000 rebate. This example underscores the relevance for policy of understanding the structural mechanism that lies behind the empirical evidence.\(^{39}\)

State dependence As is clear from Figure 6(b), our model implies that recessions exacerbate the consumption response to tax rebates. Since most episodes of fiscal stimulus payments occur in recessions, it is difficult, empirically, to isolate the role of aggregate economic conditions on the size of the consumption response. A unique piece of evidence is offered by JPS

\(^{38}\) This occurs if the size of the rebate is larger than the amount by which consumption would increase if the household were not currently constrained.

\(^{39}\) Figure 8(a) shows how estimated rebate coefficient may become negative for large ranges of the transaction cost, as for the case of a $5,000. As explained earlier, this occurs when the stimulus payment is large relative to the transaction cost. In this case a substantial fraction of working households choose to make a deposit into the illiquid account upon receipt of the payment, and hence reduce their consumption in that period relative to that of the control group.
(a) Mean earnings, consumption and wealth in one asset model

(b) Mean earnings, consumption and wealth in two asset model

(c) Variance log earnings and log consumption in one asset model

(d) Variance log earnings and log consumption in two asset model

Figure 9: Lifecycle profiles (means and variances) in the one-asset and two-asset models

(2009) who examine the impact of the child tax credit of 2003, a period of sustained growth. Compared to the spending response to the 2001 rebates, their point estimates of the contemporaneous response of consumption are about half of those estimated for 2001 in similar specifications (although not statistically significant). This leads them to conjecture “a more potent response to such payments in recessions, when liquidity constraints are more likely to bind, than during times of more typical economic growth.” Our model suggests a mechanism why this force may be at work and quantifies its significance.\footnote{The state dependence can be quite complex. For example, a sufficiently sharp recession may induce households to pay the transaction cost and withdraw from the illiquid account. In such a scenario, rebate coefficients are likely to be very low. In other words, the size of the recession matters too. We return to this point in the Conclusions.}
5.2 Life-cycle implications

Figure 9 compares the life-cycle means and variances of earnings, consumption and net worth across the one-asset and two-asset models. Both models reproduce reasonably well the key features of the data (e.g., see Heathcote, Perri and Violante, 2010). The models are hardly distinguishable along these dimensions. Note, however, that consumption inequality grows slightly more in the two-asset economy, as households tolerate larger consumption fluctuations to avoid paying the transaction cost and hold assets in the high-return (illiquid) saving vehicle.

5.3 Aggregate implications of the rebate program

To isolate the impact of the rebate program on the aggregate economy, we study the dynamics of aggregate consumption relative to a counterfactual economy which has all the features of the baseline (including recession and tax reform) except for the fiscal stimulus payments. Figure 10(a) plots the time path of the rebate distribution and consumption for the two groups. Figure 10(b) shows that the aggregate impact of the policy: 13% and 18% of total rebate outlays are spent on nondurables, respectively, in the first two quarters. The impact, though, is very short lived: a year after the rebate disbursement differential consumption growth is essentially zero. Overall, within the first year, the cumulative fraction of the rebate outlays spent on nondurable

![Graph showing rebate and consumption dynamics for two groups.](image)

Figure 10: Aggregate consumption dynamics following the rebate
consumption is around 40%.

Since, in our model, we know the counterfactual path of aggregate consumption in the absence of the rebate (but in the presence of the tax reform and recession), it is possible to express the impact of the rebate as a percentage increase in aggregate consumption. We find it to be 0.62% and 0.85% in the first two quarters, respectively. The cumulative increase in aggregate consumption over the first year is 1.8%.

These calculations highlight two benefits of having a structural model that is consistent with the micro evidence. First, because the tax reform and the recession affect consumption even in the absence of the rebate, it is incorrect to measure consumption growth relative to a baseline of consumption in the period before the rebate announcement. Rather, the full path of counterfactual consumption should be taken into account. Second, to calculate the total portion of the rebate that is spent, it is incorrect to multiply the rebate coefficient by the total size of the rebate (as a fraction of aggregate consumption), as done for example by the CBO (2009). The reason is that, as explained, the rebate coefficient \(\beta_2 \) is not the MPC out of the rebate, but the difference between the MPC for those who receive the check and that of the rest of the population.

6 Robustness

In this Section, we discuss the robustness of our findings with respect to the timing of arrival of the news, the specific process for individual earnings, the specific form of the transaction cost, and the availability of consumer credit.

Arrival of news In Figure 11(a), we report the consumption response to the tax rebate under alternative assumptions about when the news of the rebate enters households’ information sets. When the rebate is a surprise for everyone, the rebate coefficient increases by around 5 percentage points on average. When it is anticipated by every household (the news arrives one quarter ahead for the first group and two quarters ahead for the second group), the estimated rebate coefficient drops by a similar amount. However, it still remains of a sizeable magnitude, between 17% and 25% in the $500-$1,000 range for \(\kappa \). The reason is that liquidity constrained households are those driving the results and, for such households, learning that they will receive
Earnings heterogeneity In our baseline calibration we took the view that the increase in earnings dispersion over the life-cycle is the result of the accumulation of highly persistent idiosyncratic shocks. An alternative view, also quite common in the literature (Guvenen, 2009), is that it is the result of heterogeneity in deterministic idiosyncratic earnings profiles. We re-estimated the parameters of our log household earnings process omitting the unit root component \(z_{it} \) and reinstating the household-specific slope \(\psi_i \) by matching the same set of cross-sectional moments described in Section 4. The discount factor \(\beta \) is always set to match median illiquid wealth, as in the baseline. Figure 11(b) compares the rebate coefficients in the baseline model (without tax reform and recession). The implications of these two models are very similar, but the heterogenous earnings profile model seems capable of generating slightly larger rebate coefficients for a wide range of \(\kappa \).

Transaction cost In the benchmark model, the fixed cost \(\kappa \) is the same across households. Here we explored two alternative forms of transaction cost: proportional to individual earnings (i.e., entering the budget constraint as \(-\kappa y_{ij} \)), and in terms of utility (i.e., entering period

41When the rebate is anticipated by all households, even though the measured rebate coefficient is smaller, the aggregate cumulative effect on consumption is very similar to the baseline specification. This result reinforces the view that one should be cautious in using the value of the estimated rebate coefficient to draw inference on aggregate implications for consumption, as we argued in Section 5.3.
Figure 12: Robustness analysis with respect to credit and the form of the transaction cost utility as \(\log(c_{ij}) - \kappa\). Given the log specification, the latter specification corresponds to a cost proportional to individual consumption. The key difference with the baseline is that the cost is not lump sum, but is larger for high income (or consumption) households. Figure 12(a) reports the rebate coefficients for these two models. Transaction costs of around 6% of quarterly earnings or consumption yield values for the rebate coefficient around 25%, as in the benchmark. For the median household whose annual earnings are $41,000 (see Table 2), this cost corresponds to roughly $600.

Consumer credit A natural conjecture is that the rebate coefficient would be significantly reduced by the existence of credit, if households that are paid the rebate later find it worthwhile to borrow in anticipation of the fiscal stimulus payment. Figure 12(b) shows that in the model this conjecture turns out to be correct only for an intermediate range on borrowing rates.\(^\text{42}\) For high enough rates (e.g., “expensive” borrowing through credit cards), borrowing is too costly and since households are not too impatient they are better off waiting for the check next quarter than pre-empting consumption at the cost of large interest payments. For low enough rates (e.g., “cheap” borrowing through home equity loans), there is an arbitrage opportunity in the

\(^{42}\)In all the experiments of Figure 12(b), we have set the individual borrowing limit equal to their current quarterly earnings, but the results are robust to changes in this parameter.
model: most households find it optimal to borrow up to the limit and save into the high-return illiquid account.\footnote{According to Greenspan and Kennedy (2008), 2/3 of the net proceeds of home equity loans are used for home improvements and purchase of durables.} As a result, households tend to bunch at two kinks: zero and $m\text{.}$ Since even more households in this version of the model are at a kink, rebate coefficients are larger than in the baseline (compare the top line of Figure 12(b) with the top line of Figure 6(a)). This parameterization is instructive because it clearly illustrates that the addition of credit to the model does not necessarily dampen rebate coefficients. Finally, as explained, for intermediate interest rates the conjecture goes through and rebate coefficients drop substantially – even though the amplification relative to the one asset model remains strong. Recall that in these experiments we allow every household to access credit and they can do so at zero transaction cost. Under costly access to credit, the results would be closer to our benchmark model.

7 Concluding remarks

The objective of this paper was to demonstrate how, by integrating the Baumol-Tobin model with the standard incomplete-markets life-cycle framework, one can provide a theoretical foundation, and a quantitative validation, for the observation that the MPC out of anticipated temporary income changes is large – an empirical finding that is substantiated by robust quasi-experimental evidence. Going forward, we plan to expand our analysis in several directions.

In using public funds to stimulate consumption, policy makers face a broad array of options, of which across-the-board tax rebates are only one specific example. A key benefit of having a fully structural model is that one can investigate the counterfactual welfare and aggregate effects of alternative policies. Among the policies that we plan to study are more targeted tax rebates and temporary reductions in consumption taxes, as was recently implemented in the UK (see Blundell (2009)).

The model can be used to address the 2008 episode of fiscal stimulus payments. Under the Economic Stimulus Act of 2008, households received on average nearly $1,000. PJSM (2011) and Broda and Parker (2011) estimate rebate coefficients for nondurable expenditures between half and 2/3 of the size of the 2001 estimates. The 2008 episode differs from the 2001 episode
in three ways. First, its magnitude is roughly twice as large. Second, it is not part of any broader tax reform. Third, eligibility phases out quickly starting at $75,000 of gross individual income. Qualitatively, the lack of a tax reform and the larger rebate size suggest that the model would generate a somewhat lower response in 2008, while the phasing out would induce a higher response as more of the hand-to-mouth households are among the low-income ones (although, as discussed in Section 5.1, we expect this effect to be weak). Moreover, the 2008 recession was much deeper than its 2001 counterpart: as explained in Section 5.1, it is a priori unclear whether a deeper recession is associated with a higher or lower consumption response. Overall, only a full quantitative analysis that contains all of these ingredients can shed light on what accounted for the smaller impact on consumption of the 2008 stimulus program.

In calibrating our model, we have included the consumption flow of large durables (notably, housing and cars) as part of the return. Modeling durables explicitly (with a consumption flow proportional to the stock in the period utility function) would not affect the response of nondurable consumption to the rebate, as long as utility is separable in the two consumption goods. However, such an extension could be useful to study the aggregate implications of the policy for consumption and output in more detail. Unsurprisingly, as documented by JPS (2006) and PSJM (2011), when durable goods are included among expenditures, the response of household consumption to the rebate almost doubles.44

Given the high-frequency OLG structure, solving a stochastic version of our model in general equilibrium (i.e., with asset returns determined endogenously and aggregate shocks) is not numerically feasible (see Krueger and Kubler, 2004). To make progress in these directions, one could develop an infinite-horizon version of our economy (possibly with households transiting randomly between work and retirement phases). To close the model, one would interpret the illiquid asset a as productive capital with a return equal to its marginal product, whereas the return on the liquid asset m could be pinned down by monetary policy (as in Ragot, 2011). In this set up, one could also endow agents with rational beliefs over the probability that the government will make fiscal stimulus payments during a recession, as in Heathcote (2005).

44See Guerrieri and Lorenzoni (2011) for a recent example of an incomplete-markets model with durable and nondurable consumption. As they emphasize, a crucial parameter affecting households’ response to an income shock is the degree of liquidity of durable goods.
References

