A Satisficing Choice Model

Peter Stüttgen, Peter Boatwright, and Robert T. Monroe

Abstract

While the assumption of utility-maximizing consumers has been challenged for decades, empirical applications of alternative choice rules are still very recent. We add to this growing body of literature by proposing a model based on Simon’s idea of a “satisficing” decision maker. In contrast to previous models (including recent models implementing alternative choice rules), satisficing depends on the order in which alternatives are evaluated. We therefore conduct a visual conjoint experiment to collect search and choice data. We model search and choice jointly and allow for interdependence between them. The choice rule incorporates a conjunctive rule and, contrary to most previous models, does not rely on compensatory tradeoffs at all. The results strongly support the proposed model. For instance, we find that search is indeed influenced by product evaluations. More importantly, the model results strongly support the satisficing stopping rule. Finally, we perform a holdout prediction task and find that the proposed model outperforms a standard multinomial logit model.

Keywords: Non-Compensatory Choice, Eye-Tracking, Visual Conjoint Experiment
1 Introduction

The large majority of choice models in the marketing literature focus on understanding the influence of product attributes or marketing variables on consumer choice. Implicitly, these models assume that the consumer has all information, or at least enough information to form a consideration set according to some rule. Yet, in reality a consumer needs to acquire product information before that information can, in turn, influence his choice decision. Thus, Pieters and Warlop (1999) suggest that visual attention may help understand consumer choice. Using eye-tracking methodology, they find that consumers do not gather all information about the alternatives. Moreover, they show that the percentage of people that look at the different alternatives is predictive of the alternatives’ choice shares. In addition, they find directional support that skipping pieces of information (brand information, ingredient information, and/or the pictorial) for an alternative is negatively related to its choice share. In our data, the percentage of people who skipped some information for an alternative is an even better predictor of choice shares (Pearson’s $r = -.75$) than the percentage of people who looked at a given alternative ($r = .36$). As discussed in more detail in our review of the literature, the phenomenon of skipped information within a product cannot be satisfactorily explained by standard utility maximizing models, even if allowing for search cost. Yet, the high correlation between choice shares and percentage of skipped information suggests that being able to understand why people skip some attribute information may be important for understanding consumer choice behavior. The satisficing model proposed in this paper does not only fully explain such behavior, but also responds to the repeated call for models with better “ecological rationality” (Netzer et al. 2008), i.e. the call for models that are “better representations of decision processes” (Johnson et al. 1989, p.268).

The assumption that consumers are utility-maximizers has been criticized for a long time on grounds of the unrealistically high cognitive burden these rules impose on the decision maker (Simon 1955) as well as due to common violations of basic axioms of utility maximizing rules (e.g., transitivity; Loomes et al. 1991). Instead, consumers are believed to use simplified choice heuristics when making their choices (Gigerenzer and Todd 1999). While several simple alternative choice rules were proposed several decades ago (e.g., Coombs 1951), such rules have
only been incorporated into empirical choice model very recently (e.g., Gilbride and Allenby 2004). We contribute to this new stream of research in the marketing literature by proposing a choice model based on Herb Simon’s idea of “satisficing” choice (Simon 1955).

Satisficing is a simple choice rule in which the first alternative that is “good enough” according to some criterion is chosen. The outcome of a satisficing choice then is search path dependent. Any model of product choice therefore must also account for the search path. Moreover, the search path may be dependent on what “good enough” means. This interdependence between search and choice allows us to parsimoniously explain the phenomenon of skipped information in the framework of a simple choice rule. To do so, we model the search path and the resulting choice jointly. We collect search path data in what we term a “visual conjoint experiment”. Using realistic shelf images for which product attributes vary according to a conjoint design, we use eye-tracking technology to record consumers’ search paths in addition to the standard choice data.

The satisficing choice rule implies a distinct stopping rule for the search process. Our results strongly confirm this stopping rule, providing evidence that consumers may in fact use a satisficing choice rule rather than a utility maximizing model in the product category that we studied. The satisficing choice rule is further supported by the results of a holdout prediction task in which the proposed satisficing model comfortably outpredicts a multinomial logit model.

The remainder of the paper is organized as follows: We will first briefly review the relevant streams of literature, then describe the experiment and the data, before explaining the proposed model and estimation. Finally, we present the results and conclude with a general discussion.

2 Literature Review

We first review the traditional approach to choice models and its merits but also argue why that approach cannot convincingly explain the observed data with skipped information. Then we review the literature on bounded rationality, and show that a satisficing choice rule in
contrast can explain the observed data very parsimoniously. Finally, given our use of an eye-tracking experiment, we briefly review the relevant work on eye-tracking based search models.

2.1 Maximizing Choice

At least since Guadagni and Little (1983) introduced the multinomial logit model to the marketing literature in their seminal paper, the idea of a compensatory utility maximizing choice has been the predominant framework for empirical analyses of consumer choice. The theory of utility maximizing choice has its foundations in the tenets of microeconomics. Typically, utility is specified as a linear combination of the alternative’s attributes, thereby making it a compensatory process (i.e., a “bad” value for one attribute can be compensated for by a “good” value for another attribute). The approach has proven to be straightforward to implement yet to yield valuable managerial insights, for instance enabling managers to segment the market (e.g., Kamakura and Russell 1989) or to understand the impact of marketing decisions (e.g., Gupta 1988). Building on this framework, the more recent advent of structural models has allowed researchers to examine consumers’ strategic and forward looking behavior (e.g., Sun 2005).

However, the assumption of a rational consumer with unlimited cognitive capabilities, as theoretically appealing as it may be from a normative standpoint, has long been challenged as an appropriate representation of actual human decision makers (e.g., Simon 1955; Kahneman and Tversky 1979). Even proponents of the utility maximizing approach typically agree that decision makers may not actually make decisions following the rules of the model, but rather they act as if they did. The models then are seen as a description of the outcome rather than the process. Nonetheless, following Shugan’s call for incorporating a “cost of thinking” (Shugan 1980) to allow for more realistic models, the literature on choice models has started to account for limited consumer search and introduced “cognitively less demanding” (for the decision maker) models.

Importantly, Hauser and Wernerfelt (1990) and Roberts and Lattin (1991) incorporated consideration sets into choice models, i.e. they proposed a two stage process in which only
a subset of the available alternatives is selected in the first stage for a utility maximizing choice in the second stage. The formation of the consideration set was originally dependent on cost-benefit tradeoffs for including an additional brand into the consideration set, or, with the rise of structural models, an explicit tradeoff of search cost and expected benefit (Mehta et al. 2003). Yet, these models of “constrained utility maximization” typically in fact increase the computational burden of the decision maker rather than decrease it. In Gigerenzer and Todd (1999)’s words, “[t]he paradoxical approach of optimization under constraints [i.e., optimization including a search or other sort of cost] is to model “limited” search by assuming that the mind has essentially unlimited time and knowledge with which to evaluate the costs and benefits to further information search” (p. 11).

Yet, even if we embrace constrained utility maximization as an appropriate framework to model consumer decision making, we encounter serious problems in trying to explain the search patterns observed in our visual conjoint experiment (to be described in section 3). Incorporating cost of thinking (i.e., search cost and or cost for evaluating information) in the model framework can easily explain why consumers may not evaluate all available alternatives. If consumers use a stopping rule for search based on cost-benefit tradeoffs, it may be optimal to not search all available options. However, search costs do not plausibly explain why consumers may start evaluating some alternatives but not collect all information about them, a frequent pattern in the search process. One explanation might be that search cost within a product is higher than across products. However, this does not seem likely since (a) search cost should be very low within a product as the shopper only needs to move his eyes minimally, and (b) integration of information should not be very difficult since the product category (instant [Ramen] noodles) does not involve difficult tradeoffs between attributes. Alternatively, incomplete search within a product could occur in a search cost framework if a given consumer cares a lot more about one attribute (say, flavor) than another (say, price). In that case, knowing that a product has a flavor he really dislikes may make it unprofitable for him to acquire the other attributes for this product, as even the lowest price may not offset the disutility caused by the flavor. However, in our data we find that it is not always the same attribute that is missing (within a person), so therefore this cannot be the correct explanation.
As we will show below, though, both limited search across alternatives as well as limited search within alternatives can be easily explained by a model that is not based on a utility maximizing framework but instead uses a satisficing choice rule.

2.2 Bounded Rationality

In his above mentioned critique of the rational utility-maximizing agent, Simon says “the task is to replace the global rationality of economic man with a kind of rational behavior that is compatible with the access to information to the computational capacities that are actually possessed by [...] man” (Simon 1955, p. 99).\(^1\) This is the foundation of what has become to be known as “bounded rationality”. In this view, decision makers are aware of their cognitive limits and therefore rely on simplified choice rules (depending on the task). The best-known of these simplified choice rules are the lexicographic rule, the conjunctive and disjunctive rules, and elimination by aspects.

In the lexicographic rule (von Neumann and Morgenstern 1947), a decision maker focuses on the attribute that is most important to her and simply chooses the alternative that is best on that particular attribute. If there is a tie, she compares the tied alternatives on her second most important attribute and chooses the alternative that is preferred according to that attribute. The process continues until a unique choice is found (or until all attributes are exhausted).

In the conjunctive and disjunctive rules (Coombs 1951; Dawes 1964), the decision maker has individual threshold levels for all attributes. In the conjunctive rule, every product that passes all of these thresholds is acceptable to him, whereas in the disjunctive rule all products that pass at least one threshold are acceptable.

Finally, elimination by aspects (Tversky 1972) essentially is a combination of the lexicographic and the conjunctive rules in which a decision maker first focuses on the most important attribute, but not only the best alternative makes it to the second round, but all alternatives passing the threshold for the particular attribute.

\(^1\)Following the rules of the well-known children’s game, we attempt to do exactly as ‘Simon says’ in this paper.
Notice that all of these choice rules are non-compensatory, i.e., a “bad” value for one attribute may be enough for not choosing a particular product, irrespective of how good it may be on other attributes. Thus, these decision rules tremendously simplify the decision process, as the decision maker does not have to evaluate any tradeoffs between attributes. Despite the fact that these models were proposed several decades ago, and despite more and more behavioral evidence that central assumptions of the utility maximizing framework seem to be violated in reality (see Bettman et al. 1991 for a review of consumer decision making), most empirical applications of non-compensatory models stem only from the last decade (but see Fader and McAllister 1990).

Several of these applications have extended the linear utility framework to be able to capture screening rules based on these simplified rules (e.g., Swait 2001; Elrod et al. 2004), while others have directly modeled the simplified rules (see Gilbride and Allenby 2004 and Jedidi and Kohli 2005 for the conjunctive and disjunctive rules, Kohli and Jedidi 2007 for the lexicographic rule, and Gilbride and Allenby 2006 for elimination by aspects). However, note that these simplified choice rules (1) assume that the decision maker knows the values of at least one attribute for all alternatives and (2) that the conjunctive and disjunctive rule only result in a set of acceptable set of products. Thus, the disjunctive and conjunctive rules so far have either been used to predict a whole set (acceptable MBA candidates, Jedidi and Kohli 2005) or are followed by or combined with a compensatory choice rule (Swait 2001; Elrod et al. 2004; Gilbride and Allenby 2004).

“Satisficing”, a term coined by Simon combining “satisfactory” and “sufficing”, in contrast results in a unique choice and can explain limited search. The decision process is very simple: Start by evaluating one alternative. If it is satisfactory (according to a criterion to be defined), choose that product and stop searching. If not, evaluate the next alternative. Continue this process until you have found a satisfactory alternative.

It is obvious why people following a satisficing choice rule may not search all alternatives. However, depending on the satisfaction criterion, satisficing can also explain incomplete information acquisition within a product. For instance, say the satisfaction criterion is given by a conjunctive rule. Then, once the decision maker knows that the product fails to meet the
threshold on one attribute (be it price, flavor, or brand) there is no reason to continue the search within this product.

One difficulty for the empirical application of a satisficing rule is that the choice outcome depends on the sequence of evaluation. If there is more than one satisfactory product, the decision maker will choose whichever she comes across first. Thus, it is essential to know the search sequence. We therefore use eye-tracking technology to record the sequence of information acquisition in our visual conjoint experiment.

2.3 Eye-Tracking

Eye-tracking hardware has improved tremendously over the last 15 years, allowing for unobtrusive observation of a person’s eye fixations. In an early application, Russo and Leclerc (1994) relied on human coders to code the location of the fixations based on a video of the participants’ face. They identified three processing stages in consumer choice: Orientation, evaluation, and verification. In the verification stage, most relevant to our work for reasons that will become clear later, participants continue to search and acquire information despite already having made a choice. In the study by Pieters and Warlop (1999) the data collection was automated, but consumers had to keep their heads fixed to the apparatus. Improvements in software and hardware nowadays allow participants to move freely in about a 25x25x25 inch box, while the location of their eye fixations is determined based on the eyes’ reflection of infrared signals.

Applications of eye-tracking in marketing research have brought valuable insights in consumers’ processing of print ads (e.g., Pieters et al. (2002)), the optimal design of TV commercials (Teixeira et al. 2010), and the effect of in-store marketing activities (Chandon et al. 2009), among others. For a review of the findings from eye-tracking applications in marketing, see Wedel and Pieters (2008). Most relevant to our application, though, is the research explaining consumer search patterns. van der Lans et al. (2008a) show that consumer search is influenced both by features of the stimulus, so-called bottom-up effects, and by strategic or intentional strategies, so-called top-down effects. Liechty et al. (2003) propose a hidden Markov Model to capture two distinct types of search, local search and global search. In the local search state
“stimuli are explored in detail by extracting information from specific and adjacent locations”, whereas the global state “is characterized by longer saccades” (i.e., movements between fixations) and “stimuli are explored to identify locations to extract information” (Liechty et al. 2003, p. 520).

3 Visual Conjoint Experiment

As discussed above, the empirical application of a satisficing model requires knowledge of both search path and product choice. Moreover, since search and product choice may be inter-dependent, we model the search path and the choice jointly. To collect the data needed to do this, we conduct what we term a “visual conjoint experiment”, i.e., we develop a standard conjoint design, but then translate the resulting choice sets into realistic images of shelves from which participants make their selections.

3.1 Participants

The experiment was conducted at the Doha, Qatar campus of Carnegie Mellon University. Participants were 75 undergraduate students from the Doha, Qatar campuses of Carnegie Mellon University, Texas A&M University, Georgetown University, Northwestern University, and Cornell Medical College. 11 of these participants are excluded from the analysis due to calibration problems and/or incomplete eye-recordings, leaving a total of 64 students (29 female, 35 male) in the sample.2 Participants’ age ranges from 17 to 23 years, with a mean of 19.88 years. Participants’ nationalities are predominantly (~55%) South Asian (e.g., Indian, Pakistani, Bangladeshi), and Middle Eastern countries combine for a total of 18 participants (28%).3 Six out of the 64 participants were U.S. American. Subjects were paid approximately $14 (depending on their choices), and sessions lasted between 30 and 60 minutes.

2The calibration procedure is explained in the following subsection.
3Many of the participants have lived in Qatar for most, if not all, of their lives.
3.2 Stimuli and Procedure

We choose instant noodles (also known as “Ramen noodles”) as the product category. Products vary on price, flavor, and brand. We use four brands, five equidistant price levels (ranging from ~$1.10 to ~$1.90 for a five pack of noodles), and ten flavors. The brands and flavors were selected from brands and flavors present in the local market. Similarly, the price levels span the price range found in the local market. The conjoint design consists of 15 choice sets with 15 alternatives each. We translate each choice set into an image of three shelves with five alternatives each. To approximate a realistic amount of clutter on the shelves, each alternative has four facings. See Figure 1 for an example. We used a 50 inch HD television (1920 x 1080 pixels) in the experiment, which allowed for the products to be approximately real-life sized and made all information easily readable.

![Figure 1: Example stimulus](image)

Subjects participated in the experiment in individual sessions. After reading the instructions, including a list of the available brands and flavors as well as an example shelf image, the eye-tracking software was calibrated. For the individual specific calibration, subjects were
asked to follow a dot moving around the screen with their eyes to “teach” the software how eye movements relate to location on the screen. Calibration was repeated after one third and after two thirds of the experiment to ensure high quality data. After calibration, the first shelf image appeared on the screen and participants could take as long as they needed to make a decision. Once they reached a decision, they clicked a button on a presentation clicker which caused the screen to blur and the products were overlayed with letters from A to O. This was done to prohibited acquisition of additional information after a choice has been made; note that Russo and Leclerc (1994)’s verification state, if present, then inherently becomes a part of the recorded search path. Subjects then indicated their choice by announcing the corresponding letter to the experimenter, or said that they chose not to buy anything from this particular choice set (Pieters and Warlop 1999). After the last choice, participants completed a questionnaire to collect, among other things, explicit measures of their preferences.

To ensure that the task was incentive compatible, one of the choice sets was selected at the end of the experiment and the corresponding purchase realized (i.e., participants received their chosen item and paid the respective price from their participation fee).

3.3 Data

For each participant, we then have the 15 choice outcomes, the questionnaire responses, as well as the sequence of the locations of eye fixations for each choice set. Since our interest lies mainly in information acquisition, we aggregate the pixel-level data into meaningful areas of interest (AOI), namely the price tag, the flavor information, and the rest of the package for each of the alternatives, plus fixations on the background (Pieters and Warlop 1999; Shi et al. 2010). Following Shi et al. (2010) we exclude fixations on the background as well as consecutive repeat fixations on the same AOI, as they are not informative about a consumers information acquisition process. Thus, we have 45 AOIs (15 products with 3 AOIs each) which provide an exhaustive and mutually exclusive partition of each shelf image. Since the packaging distinguishes brands and brands are well-known, we assume that participants learn a product’s brand by looking anywhere on the packaging (including the flavor AOI), whereas they have to fixate on the corresponding AOI to learn the flavor or price.
Figure 2 shows the average number of fixations per choice set. It is obvious that participants tend to search longer in the first few shelf images, most likely to get used to the task. For the effect of number of fixations on the likelihood of termination (see section 4.2.3), we therefore normalize the number of fixations by the average number of fixations for the respective choice set.\(^4\) The number of fixations within a subject varies greatly across choice sets; even when only considering the last 11 choice sets (i.e., when average fixations have stabilized) the mean (across participants) standard deviation (for one participant across choice sets) is 13.9 fixations. This suggests that participants do not simply follow a fixed-search stopping rule, but employ a more variable stopping rule depending on the information acquired in a particular search.

Tables 1 and 2 provide a summary of brand and flavor choices, respectively, giving a first indication of consumer preferences. The Maggi brand as well as the chicken and onion chicken flavors are clear consumer favorites. Overall, participants decided not to buy in 7.0% of choices.

\(^4\)Results are qualitatively equivalent if we instead exclude the first three choice sets. We prefer the normalization as to not lose the information contained for other parts of the model.
4 Model

For ease of presentation, we split the model into two interrelated parts: search and choice. Though we present them separately, satisficing truly combines both as the choice depends on the sequence and the search depends on previous judgments of satisfaction. To accommodate for the verification stage identified by Russo and Leclerc (1994), we relax Simon’s strict satisficing rule to allow for continued search after encountering the first satisfactory alternative. Nonetheless, even in the relaxed version the probability of stopping the search should increase significantly after encountering the first satisfactory alternative. The presence or absence of this effect can then be interpreted as an indicator for whether participants in fact used a satisficing choice rule or not.

4.1 Choice

We use a conjunctive rule as the satisfaction criterion to be used within the satisficing choice. That is, for each of the three attributes an individual has a set of acceptable levels, and only if she (1) has learned all three attribute levels for a given product and (2) all three attribute

<table>
<thead>
<tr>
<th>Table 1: Brand Choice Shares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fantastic</td>
</tr>
<tr>
<td>19.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Flavor Choice Shares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
</tr>
<tr>
<td>6.6%</td>
</tr>
<tr>
<td>Mushroom</td>
</tr>
<tr>
<td>4.6%</td>
</tr>
</tbody>
</table>
levels are acceptable, the product is judged to be satisfactory to her.\footnote{To avoid confusion, we will use un/satisfactory for the product level and (not) acceptable for the attribute level for the remainder of the paper.} In contrast, as soon as at least one unacceptable attribute level has been found for a product, the product is judged to be unsatisfactory. If no unacceptable attribute level has been encountered yet and not all attribute levels for a given product have been learned, the product’s status is undetermined. Note that this implies that all products are undetermined at the beginning of the search and can change status at any point during the search.

More formally, let Γ_{iA} denote the acceptable set for attribute $A \in \{B,F,P\}$ (brand, flavor, and price) for individual i and I_{ijf} be the cumulative information set of individual i in choice set j as of (and including) fixation f. Further, let a represent the distinct levels of attribute A and let a_{jx} denote the particular attribute level of product x in choice set j. S_{ijxf}, U_{ijxf}, and UD_{ijxf} are indicators for whether product x has been judged to be satisfactory or unsatisfactory, or is still undetermined, respectively, as of fixation f in choice set j by individual i.

Suppressing i and j for readability and using I_\cdot to represent the indicator function, we then have

$$S_{xf} = \prod_A I_{a_x \in \Gamma_A} \cdot I_{a_x \in I_f}$$ \hspace{1cm} (1)

$$U_{xf} = \max_A (I_{a_x \notin \Gamma_A} \cdot I_{a_x \in I_f})$$ \hspace{1cm} (2)

and

$$UD_{xf} = 1 - S_{xf} - U_{xf}$$ \hspace{1cm} (3)

The product over all attributes in equation 1 reflects the notion that all attributes of a product have to be known and acceptable for the product to be satisfactory. In contrast, a product is unsatisfactory if at least one attribute is known and unacceptable, as captured the maximum-operator in equation 2. Finally, a product is undetermined if and only if it is neither satisfactory nor unsatisfactory yet.

Since we allow for a verification stage in the search process, it is possible that a decision maker finds more than one satisfactory alternative before terminating the search. In order to keep the choice model as close to Simon’s original idea of satisficing, i.e., all a consumer
cares about is passing a certain threshold rather than some relative ranking, we posit random choice between all satisfactory alternatives. We also introduce the notion of a “trembling hand” to allow for unobserved error. In game theory, a “trembling hand” allows for non-zero probabilities of actions off the equilibrium path (Osborne and Rubinstein 1994). In our context, it allows for non-zero choice probabilities for undetermined alternatives as well as for no-choice (which should in theory never be chosen in the presence of a satisfactory alternative). However, we posit a choice probability of exactly zero for all unsatisfactory options as well as all options which were never fixated on at all.

Let F denote the last fixation in a given choice set by a given person. We then have the following choice probabilities for unsatisfactory, satisfactory, and undetermined alternatives (suppressing i and j):

$$Pr(x|U_x F = 1) = 0$$

$$Pr(x|S_x F = 1) = \frac{1}{C}$$

$$Pr(x|U D_x F = 1) = \frac{\tau}{C} \quad 0 \leq \tau \leq 1$$

Finally, we also let the probability of no-choice be given by $\frac{\tau}{C}$. C_{ij} is the appropriate normalizing constant such that all probabilities sum to 1.

Consumer heterogeneity in preferences is captured by a hierarchical structure. For brands and flavors, the individual level acceptability follows a Bernoulli distribution, i.e.,

$$\mathcal{I}_{a \in \Gamma_i A} \sim \text{Bern}(\hat{\gamma}_a) \text{ for } A \in \{B, F\}$$

For prices, we estimate the highest price acceptable (of the prices used in the experiment); the individual level threshold prices follow a multinomial distribution, i.e.,

$$\hat{p}_i \sim \text{MN}(1, \bar{p})$$

and

$$p \in \Gamma_{iP} \text{ if and only if } p \leq \hat{p}_i$$
Finally, τ_i follows a Beta distribution, i.e.,

$$\tau_i \sim \text{Beta}(\bar{\tau}_1, \bar{\tau}_2)$$

4.2 Search

Following the literature based on Liechty et al. (2003), we model consumer information search with a modified hidden Markov model. There are two unobserved search states, namely local and global search, as well as a termination state, defined by the button press of the participant at the end of his search.

4.2.1 Global Search

Recall that global search consists mainly of large “jumps” across the shelf image to explore different areas (Liechty et al. 2003). Since this implies moving to an area that has previously been only in peripheral vision, targeting a specific location for the next fixation is difficult for the participant. Therefore, we assume product-level effects for the probabilities of moving, and the probability of the exact location within that product (i.e., which AOI) is proportional to the size of the respective AOI.

In the global state, eye movements are largely influenced by the saliency and/or luminance of image areas (van der Lans et al. 2008b). Since these are confounded with brand through brand-specific packaging, we use separate brand intercepts to capture this effect. Moreover, the status of the alternative may influence the probability of moving to a respective product. If a product has already been judged to be satisfactory or unsatisfactory, there is no reason from an information acquisition viewpoint to return to that product later in the search. Notice that by incorporating the status into the search probabilities, these probabilities become path-dependent and vary with time.

Let AOIs be denoted by h. Further, let $b_j(h)$ and $p_j(h)$ be the brand and product that h belongs to in choice set j, respectively, and let $r_j(h)$ be the ratio of h size in choice set j relative to the size of $p_j(h)$. With this notation (but suppressing i and j again), the above
considerations can be expressed as follows.

Let \(\bar{S}_{f-1} \) and \(\bar{U}_{f-1} \) be the vectors containing the all product-level indicators \(S_{x,f-1} \) and \(U_{x,f-1} \). The probability of moving to AOI \(h \) at fixation \(f \) in the global state \(g \) conditional on the statuses of all alternatives (summarizing the previous search) is then given by

\[
\eta_{fg}(h|\bar{S}_{f-1},\bar{U}_{f-1}) = \frac{\psi_{fg}(h|\cdot)}{\Psi_{fg}}
\]

where

\[
\psi_{fg}(h|\cdot) = r(h) \cdot \exp(\phi_{g0}\theta(h) + \phi_{g1}S_{p(h),f-1} + \phi_{g2}U_{p(h),f-1})
\]

and \(\Psi_{fg} = \sum_h \psi_{fg}(h|\cdot) \) is the appropriate normalizing constant and \(\phi \)s are parameters to be estimated. While equation 10 has the same form as a standard logit probability, we want to stress that we do not assume that a person is moving to the AOI with the maximum value for \(\psi_{fg} \) subject to unobserved extreme value error. Instead, eye-fixations are believed to be at least partly not under conscious control and therefore to have a truly random component (Shi et al. 2010).

4.2.2 Local Search

In contrast to global search, local search is aimed at gathering specific pieces of information in the same area of the image as the previous fixation (Liechty et al. 2003). Thus, re-fixating on the same product or moving to an adjacent product should be most likely. Moreover, staying in the same area of the image allows for targeted search for specific attribute information. In the local state, people may also use systematic search strategies such as search by attribute. Finally, similar to the global state, we expect people to be less likely to return to a product that has already been determined to be unsatisfactory.

Let \(R_{ijf}(h|h_{ij,f-1}) \), \(N_{rijf}(h|h_{ij,f-1}) \), and \(N_{hijf}(h|h_{ij,f-1}) \) be dummy variables for whether moving to AOI \(h \) would constitute a re-fixation on the same product, a move to the neighboring product to the right, or a move to the neighboring product to the left, respectively.\(^6\) In

\(^6\)For readability, we will omit the conditioning term for the remainder of the paper as it can be easily derived from the first set of subscripts.
case the product last fixated on was on the left (right) edge of the shelf, $N_{ijf}(h)$ ($N_{rijf}(h)$) equals one for the AOIs corresponding to the product(s) directly above and/or below that product. Further, let $L_{ijf}(h_{ij,f-1})$ (or short $L_{ijf}(h)$) be the sum of these three indicators, thereby defining the “local” area around the last fixation. Finally, to keep track of the type of information represented by a given AOI, let $A(h)$ denote whether h is a price tag ($A(h) = P$), flavor information ($A(h) = F$), or the remaining packaging ($A(h) = B$). This helps to investigate target information search as well as search by attribute.

Similarly to the specification for the local state and once again suppressing i and j, we then have

$$\eta_{fl}(h_{|f-1}, \bar{U}_{f-1}) = \frac{\psi_{fl}(h|\cdot)}{\Psi_{fl}}$$

where

$$\psi_{fl}(h|\cdot) = \exp \left(\phi_{l1} R_f(h) + \phi_{l2} N_{rf}(h) + \phi_{l3} U_{p(h,f-1)} + \sum_A[\phi_{l4A} I_{A(h)}=A \cdot L_f(h)] + \sum_A[\phi_{l5A} I_{A(h)}=A L_f(h) \cdot I_{A(h)}=A(h_{f-1})] \right)$$

and $\Psi_{fl} = \sum_h \psi_{fl}(h|\cdot)$ again is the appropriate normalizing constant. ϕ_{l0} to ϕ_{l2} represent the effects of staying in the same area as well as potential incremental effects of refixating on the same product or moving to the right (both relative to moving to the left). The second line captures the targeted search for information (ϕ_{l4A} only comes into play if moving to AOI h is a “local” move to attribute A) as well as the strategic search by attribute (ϕ_{l5A} only comes into play if moving to AOI h is a “local” move and both the current AOI and h correspond to attribute A).

4.2.3 Transition Probabilities

To complete the hidden Markov model for the search, we need to specify the transition probabilities between the states. Letting $s_{ijf} \in \{g, l, t\}$ be the state of the fth fixation of individual i in choice set j, the transition probabilities take the general form

$$Pr(s_{ijf} = s^*|f, s_{ij,f-1}, h_{ij,f-1}, S_{ij,f-1}, \bar{U}_{ij,f-1}) = \frac{\pi_{ijf}(s^*|\cdot)}{\sum_s \pi_{ijf}(s|\cdot)}$$

17
For the transition to the global and to the local state, we again allow transitions to depend on the status of the product last fixated on. If the status is already determined to be either satisfactory or unsatisfactory, transition to the global state may be more likely in order to move to a different area of the image. Moreover, it should depend on the previous state, allowing for auto-correlation between states. Again suppressing i and j, we thus have

$$\pi_f(g\cdot) = \exp(\lambda_{g0} + \lambda_{g1}I_{s_{f-1}=g} + \lambda_{g2}S_p(h_{f-1}), f_{-1} + \lambda_{g3}U_p(h_{f-1}), f_{-1})$$

(14)

and

$$\pi_f(l\cdot) = \exp(\lambda_{l0} + \lambda_{l1}I_{s_{f-1}=g} + \lambda_{l2}S_p(h_{f-1}), f_{-1} + \lambda_{l3}U_p(h_{f-1}), f_{-1})$$

(15)

Most interestingly, though, explicitly modeling the transition to the termination state allows for better insights into what causes consumers to quit searching (Liechty et al. 2003). This is of particular interest in our application, since the satisficing choice rule has a very distinct stopping rule that we can directly model. Though the stopping rule is not deterministic due to allowing for the verification stage, satisficing implies that transitioning to the termination state should be significantly more likely after finding the first satisfactory alternative. In addition, people probably are more likely to quit searching, the longer the search has been. With the understanding that the transition to the termination state occurs after the last recorded fixation, we then let

$$\pi_f(t\cdot) = \exp(\lambda_{t0} + \lambda_{t1}I_{s_{f-1}=g} + \lambda_{t2}f^* + \lambda_{t3}\max(S_{f-1}))$$

(16)

where f^*_j is the running count of fixations normalized by the average number of fixations for the respective choice set, as explained in section 3.3. If consumers use a satisficing rule, λ_{t3} (capturing the implied stopping rule of the satisficing model) should be positive. Moreover, its magnitude relative to λ_{t2} determines how important that effect is relative to the effect of the number of fixations (which can be interpreted as a proxy for search cost and/or fatigue).
4.2.4 Heterogeneity

Similar to the choice part of the model, all parameters in the search part of the model allow for inter-individual heterogeneity through a normal hierarchical structure, i.e., we have

\[
\phi_i \sim N(\bar{\phi}, \sigma)
\]

and

\[
\lambda_i \sim N(\bar{\lambda}, \zeta)
\]

5 Estimation and Identification

The model is completed by a set of uninformative priors (see appendix A.1 for details) and estimated with an MCMC algorithm in a Bayesian framework (Gelfand and Smith 1990; Casella and George 1992). The MCMC allows for efficient integration over the inherent discontinuities of the model caused by the indicator nature of acceptability and satisfaction judgments. We use 100,000 draws after discarding 30,000 draws as a burn-in period. Convergence is assessed using the Heidelberger and Welch convergence diagnostic as implemented in the \texttt{boa} package for R (Heidelberger and Welch 1983; Smith 2007).

Several restrictions have to be placed on the above model for identification. Analogous to standard choice models, the brand intercepts in equation 11 for the global search are not separately identified. We therefore normalize \(\phi_{gbi,Fantastic} \) to zero. Equation 12 for the local search is also not uniquely identified. In particular, since the brand, flavor, and price AOIs collectively make up the complete product, \(\phi_{l0i} \) is not separately identified from the set \(\{\phi_{lABi}, \phi_{lAFi}, \phi_{lAPi}\} \) and only weakly identified from the set \(\{\phi_{lIBi}, \phi_{lIFi}, \phi_{lIPi}\} \) (recall that consecutive repeat fixations on the same AOI are excluded from the data and that \(R(h) \) therefore does not play into the systematic search by attribute). We therefore normalize \(\phi_{lAB} \) and \(\phi_{lIB} \) to zero. Moreover, the initial fixation in each search sequence is assumed to be in the global state and its location to be exogenous (van der Lans et al. 2008a).

Once again analogous to intercepts in standard models, only two out of the three \(\lambda_{s0} \) and
the three λ_{s1} parameters for the transition probabilities are identified. (Note that $\lambda_{s0} + \lambda_{s1}$ is the intercept conditional on the last fixation being in the global state.) We thus normalize λ_{g0} and λ_{g1} to zero. The identification of λ_{g2} and λ_{l2} as well as of λ_{g3} and λ_{l3} relies on fitting the relative probability of termination. However, as reported below we find that the probability of termination is so low (at least before finding a satisfactory option) that only the difference of these parameter is well informed, as the termination probability changes only minimally for a wide range of absolute values of these parameters. We therefore set $\pi_{ijf}(g|\cdot) = 1$ for all i, j, and f. However, this still allows us to investigate the relative impact of an alternative’s status on transitioning to the global vs. the local state as well as, more importantly, the use of the stopping rule implied by the satisficing choice.

In addition to the “full model” described above, we also estimate an “independent model” in which all search model parameters corresponding to the status of the alternatives (ϕ_{g1i}, ϕ_{g2i}, ϕ_{l3i}, λ_{l2i}, λ_{l3i}, and λ_{l3i}) are set to zero. This allows us to analyze the influence of modeling the two parts jointly on the obtained results.

6 Results

Analog to the presentation of the model, we separate the presentation of the results into search and choice. We focus on the results of the full model and discuss the results of the independent model wherever they allow extra insight into the model.\(^7\) Finally, we present a holdout prediction analysis and compare the result against standard logit models.

While we will analyze all parameter results in detail, it is worth highlighting the results or the parameters corresponding to the alternatives’ statuses. Since estimating these indicators and having both choice and search depend on them is one of the main features of the proposed model, it is important to check whether they do in fact affect search and choice in reasonable ways. As discussed below, we find that all of the parameters corresponding to the alternatives’ statuses - including the one for the stopping rule - are non-zero (i.e., the 95% highest density interval of the posterior does not include zero) and all but one have the expected sign. The

\(^7\)None of the results of the independent model differ qualitatively from the full model unless mentioned.
one exception is explained by a closer look at the data. Thus, the results suggest that these un/satisfactory judgments are in fact meaningful and have real impact on continued search.

6.1 Search

Table 3 presents the posterior means and standard deviations for the population level hierarchies for the search model parameters.

For the brand intercepts in the global search, it is interesting to compare them to the choice shares given in Table 1. Recall that packaging is confounded with the brands in our experiment, so one could expect the search parameters to reflect some of the brand preferences. However, excluding the most preferred brand of Maggi, the order of parameter estimates is actually reversed to the order of brand shares. This suggests that while colors (e.g., yellow for Maggi) may be useful for top-down search goals (van der Lans et al. 2008a), this process is far from perfect.

As expected, a consumer is less likely to return to an alternative already judged to be unsatisfactory ($\bar{\phi}_g^2 = -.94$). In contrast, a consumer is more likely to return to an alternative already judged to be satisfactory ($\bar{\phi}_g^1 = 1.06$). We did not expect this result, since there should be no reason to return to an already determined alternative from an information acquisition viewpoint. One possible explanation might be that consumers make explicit comparisons between different satisfactory alternatives, going back and forth between them. However, a look at the search paths suggests that this result may mainly be driven by an end-of-search effect, as almost everyone finishes her search by returning to the product she chose, which of course is satisfactory.

Similarly to the global search, fixating on an alternative that is already determined to be unsatisfactory is less likely in local search ($\bar{\phi}_l^3 = -.62$). Confirming the characterization of the local search, the probability of staying in the “local” area is about \sim90% based on the results for $\bar{\phi}_l^0$ to $\bar{\phi}_l^2$. Refixating on the same product is most likely ($\bar{\phi}_l^1 = 1.14$), and moving to the right is somewhat more likely than moving to the left ($\bar{\phi}_l^2 = .04$). The remaining parameters have to be interpreted relative to the normalized brand parameters and with the previous
Table 3: Posterior Means (and Standard Deviations) for the Search Parameters

<table>
<thead>
<tr>
<th>Global Search</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\phi}_{g0,Indomie}$</td>
<td>-28 (.13)**</td>
<td>$\sigma_{g0,Indomie}$</td>
</tr>
<tr>
<td>$\bar{\phi}_{g0,Koka}$</td>
<td>12 (.07)*</td>
<td>$\sigma_{g0,Koka}$</td>
</tr>
<tr>
<td>$\bar{\phi}_{g0,Maggi}$</td>
<td>48 (.08)**</td>
<td>$\sigma_{g0,Maggi}$</td>
</tr>
<tr>
<td>$\bar{\phi}_{g1}$</td>
<td>1.06 (.10)**</td>
<td>σ_{g1}</td>
</tr>
<tr>
<td>$\bar{\phi}_{g2}$</td>
<td>-94 (.09)**</td>
<td>σ_{g2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Search</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\phi}_{l0}$</td>
<td>3.01 (.09)**</td>
<td>σ_{l0}</td>
</tr>
<tr>
<td>$\bar{\phi}_{l1}$</td>
<td>1.14 (.05)**</td>
<td>σ_{l1}</td>
</tr>
<tr>
<td>$\bar{\phi}_{l2}$</td>
<td>.04 (.04)</td>
<td>σ_{l2}</td>
</tr>
<tr>
<td>$\bar{\phi}_{l3}$</td>
<td>-62 (.04)**</td>
<td>σ_{l3}</td>
</tr>
<tr>
<td>$\bar{\phi}_{l4,Flavor}$</td>
<td>-08 (.04)**</td>
<td>$\sigma_{l4,Flavor}$</td>
</tr>
<tr>
<td>$\bar{\phi}_{l4,Price}$</td>
<td>-.77 (.06)**</td>
<td>$\sigma_{l4,Price}$</td>
</tr>
<tr>
<td>$\bar{\phi}_{l5,Flavor}$</td>
<td>-.38 (.06)**</td>
<td>$\sigma_{l5,Flavor}$</td>
</tr>
<tr>
<td>$\bar{\phi}_{l5,Price}$</td>
<td>1.14 (.08)**</td>
<td>$\sigma_{l5,Price}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transition Probabilities</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_{t0}</td>
<td>1.54 (.12)**</td>
<td>s_{t0}</td>
</tr>
<tr>
<td>λ_{t1}</td>
<td>-.08 (.14)</td>
<td>s_{t1}</td>
</tr>
<tr>
<td>λ_{t2}</td>
<td>-.28 (.06)**</td>
<td>s_{t2}</td>
</tr>
<tr>
<td>λ_{t3}</td>
<td>-.47 (.05)**</td>
<td>s_{t3}</td>
</tr>
<tr>
<td>λ_{t4}</td>
<td>-5.17 (.21)**</td>
<td>s_{t4}</td>
</tr>
<tr>
<td>λ_{t5}</td>
<td>.11 (.10)</td>
<td>s_{t5}</td>
</tr>
<tr>
<td>λ_{t6}</td>
<td>1.68 (.15)**</td>
<td>s_{t6}</td>
</tr>
<tr>
<td>λ_{t7}</td>
<td>2.34 (.14)**</td>
<td>s_{t7}</td>
</tr>
</tbody>
</table>

* 90% Highest Density Interval does not include zero
** 95% Highest Density Interval does not include zero
ones in mind. The negative signs of $\tilde{\phi}_{4,Flavor}$ and $\tilde{\phi}_{4,Price}$ are probably due to the relative differences in size of the AOI relative to the remaining package. However, when combined with $\tilde{\phi}_{11}$, the sum is still positive, suggesting that targeted information search within the same product is still more likely than moving to the next product. Finally, we find support for strategic search by attribute only for search by price ($\tilde{\phi}_{5,Price} = 1.14$), but not by flavor ($\tilde{\phi}_{4,Flavor} = -.38$). This is probably caused by the considerable clutter on the shelves, which makes it difficult to move from one flavor AOI to another flavor AOI, in particular since the location of the flavor information on the package differs by brand. For price, this is a lot easier since all prices are in one line at the bottom of each shelf. Notice that the effect for search by price is of the same magnitude as the effect for refixating on the same product; thus, if the last fixation was on a price tag, a consumer is equally likely to stay on the same product or to move to the neighboring price tag. However, there is considerable heterogeneity across participants in how much strong this systematic search effect is ($\sigma_{14,Price} = .33$), suggesting that some people may be more likely to use search by attributes than others.

As the final part for the search model, let’s move to the transition probabilities. In general, transitioning to the local state is a lot more likely than transitioning to the global state ($\tilde{\lambda}_{0} = 1.54$). This is reflected in the finding that almost 80% of all fixation are estimated to occur in the local state. However, there seems to be no consistent impact of the previous state on those transition probabilities ($\tilde{\lambda}_{11} = -.08$). The high level of heterogeneity across participants ($\xi_{11} = .88$) suggest that there may be inter-individual differences; looking at individual-level estimates, we find that 14.1% of participants are more likely to stay in the global state if the last fixation was also in the global state (relative to moving to the global state if the last fixation was in the local state), while 12.5% are more likely to move to the local state.

Similarly, participants are equally likely to quit their search after the local state as after the global state ($\tilde{\lambda}_{11} = .11$), with the initial stopping probability not surprisingly being extremely low ($\tilde{\lambda}_{0} = -5.17$). More interestingly, however, is a look at how the stopping probability changes over time. As one might expect, people become more likely to stop their search the longer they have already searched ($\tilde{\lambda}_{12} = 1.68$); this effect holds true for 90.6% of the participants, where the others do not seem to be affected by the length of their search. In
contrast, we find support for the increase in stopping probability implied by the satisficing choice rule for all participants, i.e. having found the first satisfactory alternative significantly increases the stopping probability ($\tilde{\lambda}_{t3} = 2.34$). To understand the relative magnitudes of these two effects, recall that the number of fixations is relative to the average number of fixations for a given choice set. Thus, the impact of finding the first satisfactory alternative on the stopping probability is 1.4 times larger than the effect of having searched the average search length (or alternatively, about 50 times larger than the impact of one additional fixation).

In the independent model, the satisficing stopping rule is not part of the model since λ_{t3i} is set to zero. We find that in this case the initial probability to stop searching immediately is significantly higher ($\tilde{\lambda}_{t0} = -3.78$), i.e., the intercept picks up some of the effect that is now missing from the model. More interestingly though, we also find that the effect of the length of the search increases significantly (i.e., no overlap of the 95% highest density intervals) to $\tilde{\lambda}_{t2} = 2.47$, also picking up some of the missing effect. The fact that the probability of having found at least one satisfactory alternative increases with the length of the search is trivially true, as by definition there is no satisfactory alternative at the beginning of the search and almost always at least one at the end of the search. Taken together with the results from the full model and the independent model, this essentially gives the standard three equations used for testing for mediation (Sobel 1982). The results can then be interpreted as evidence that the effect of the length of search is partially mediated by the indicator for having found at least one satisfactory alternative.

Taken together, these findings lend strong support to the hypothesis that consumers do in fact use the stopping rule implied by the satisficing choice rule.

6.2 Choice

Table 4 presents the posterior means and standard deviations for the population level hierarchies for the choice model parameters.

By and large, these estimates conform roughly to the choice shares presented in Tables 1 and 2. Every participant chose Maggi at least once, which is reflected in the high probability
of acceptability ($\hat{\gamma}_{\text{Maggi}} = .98$). At first glance, it might be surprising that the population level probability of the highest price being available is almost 50%. However, a closer look at the data reveals that in fact 48% of the participants chose a product priced at QR 7.00 at least once (implying that that price is acceptable to them), so the estimate is perfectly on target. Keeping in mind that even this highest price is only $1.90 for a five pack of noodles, this is not all that surprising. In contrast, only one person never chose a product that cost more than QR 4.00.

To further test the face validity of our results, we correlate the individual-level results with the explicit measures of brand and flavor preference collected in the questionnaire. Across all participants, the correlation is .47 for brands and .57 for flavors. These correlations are strong considering the numerous ties in the explicit measures due to using a five point Likert scale and, more importantly, the numerous ties in the model estimates due to its deterministic nature (if a person chose several different flavors, they all have a probability of being acceptable of 1). For the individual-level correlations based on only four and ten values, respectively (to avoid scale issues across participants), the mean correlation is .60 for brands and .61 for flavors.\(^8\)

Note that the model is absolutely deterministic in one direction: If someone chose a fla-

\(^8\)Individual level correlations could not be calculated for 27 individuals for brands and for one individual for flavors due to no variation in the explicit and/or estimated preference measures.
avor/brand at least once, that flavor/brand has to be acceptable for that person. While this feature may seem odd when thinking in compensatory terms, it perfectly makes sense if one truly believes that a person uses a non-compensatory rule. If the flavor/brand were not acceptable, a product with that flavor/brand could have never been chosen.9

However, the reverse is not true. One might think that the model should always estimate that a flavor/brand never chosen was unacceptable to that particular person. Yet, that is not the case. There are two reasons for that: (1) If a person acquires very little information before making a choice, he may rarely have encountered a certain flavor, if at all. In that case, there is simply little information on the respective parameter, making the estimation largely reliant on the hierarchy. (2) Including the status of an alternative into the search cost can provide additional information about whether a certain flavor/brand was acceptable or not, even if it was never chosen. Say a person never chose mushroom flavor, but whenever she sees mushroom flavor, she also gathers the corresponding price information rather than moving on to the next product. In that case, it should be very likely that she does actually find mushroom an acceptable flavor. To understand this dynamic, we take a closer look at the individual-level parameters of acceptability for brands and flavors that were never chosen.

For the full model, we find nonetheless that for 68% of these cases, the probability that a non-chosen brand or flavor is acceptable is below 5%. However, the remaining 32% have considerable variation, with a mean probability of acceptability of 34% and even 2% of cases for which this probability is over 90%.

For the independent model, reason (2) mentioned above does not apply anymore. Thus, by comparing the two models, we can analyze how much of this variation is due to not very informative data and how much of it is due to the joint modeling of search and choice. Looking at the hierarchy parameters, we find that all flavors are estimated to be more likely to be acceptable than in the full model, on average by 7.5%. Since the independent model is also deterministic for flavors chosen at least once, this increase in acceptability must be caused by participants who never chose the respective flavor. A look at the individual-level estimates confirms this insight. For the non-deterministic cases, only 20% have a probability

9See appendix A.2 for brief description and results of a probabilistic version of the model.
of the non-chosen brands and flavors being acceptable of less than 5% (down from 68%). Thus, using a status-dependent search helps overcome the potential problem of sparse data and draw the individual-level estimates away from the hierarchy.

As a final test for face validity, we identify three participants as vegetarians (defined by never choosing a non-vegetarian flavor and giving the lowest possible explicit rating to all non-vegetarian flavors). Naturally, the model should also be able to identify these individuals. Results are promising, yet lend further insight into reason (1) for non-zero acceptability probabilities given above. For all but one flavor for one person (out of five flavors times three people), the probabilities that non-vegetarian flavors are acceptable are very low. For the exception, this probability is 54%. Despite being the 8th lowest value for chicken across participants, this is still higher than one would like. Inspection of the search paths for this particular participant explains why: In six of the choice sets, s/he never even saw an option with chicken flavor at all! Thus, there is not enough information in the data to draw the estimate further away from the very high population value in the hierarchy ($\hat{\gamma}_{\text{Chicken}} = .88$). In order to overcome the population value for individuals such as these, one either needs more data to allow preferences to be more fully observed or one could explicitly model potential preference structures, e.g., by adding an extra layer to estimate whether a certain person is vegetarian or not and including a parameter for whether a flavor is a vegetarian option or not.

The situation is exacerbated in the independent model since we also miss the additional information from the search. While the non-vegetarian flavor acceptability probabilities for the vegetarians are consistently below the respective hierarchy levels, they are far from identifying vegetarians as such. On average, non-vegetarian flavors are estimated to be acceptable for vegetarians with a probability of 47%, with one estimate even being over 90%. Once again, this highlights the importance of modeling search and choice jointly.

Finally, to gain further insight into whether consumers may or may not be using the proposed satisficing choice rule, we analyze the number of satisfactory options a person has found before stopping his search. On average, people have 1.75 satisfactory options to choose from at the end of their search. On an individual level, more than 70% of participants average less than two satisfactory options across choice sets before terminating their search. Once
again this suggests that having found one satisfactory alternative is sufficient for many people to stop their search very soon after, lending further support to the hypothesis that they follow a satisficing choice rule. On the other hand, though, 8% of the participants have on average more than three satisfactory options before making their final choice, suggesting that a satisficing choice model may not be appropriate for them.

6.3 Holdout Prediction

We conduct two different holdout analyses. In the first, we re-estimate the model using only twelve of the 15 choice sets and use the remaining three choice sets for prediction, where the goal is to evaluate holdout fit using individual level estimates. In the second, we hold out both participants and choice sets, estimating the model on 12 choice sets and 44 participants, in order to evaluate the predictive ability of the satisficing model relative to a standard multinomial logit model.

6.3.1 Holdout Fit

Since the model provides probabilities of acceptability for each level of each attribute, we can check how well the model fits the holdout choices on an attribute level. The holdout choices conform extremely well with the model results. Recall that we estimate individual-level posterior probability that an attribute is acceptable. We define the individual-level acceptable sets for a given attribute as those that are acceptable with probability of at least 95%. We find that 88% of the flavors, 97% of the brands, and 98% of the prices chosen in the holdout choices are within the respective acceptable sets. Of course, the model strongly benefits from its deterministic nature, i.e., if a flavor chosen in the holdout choices was chosen by the same individual in one of the estimation choices, the probability of it being acceptable is necessarily 1. The somewhat lower hit rate for flavors is then mainly caused by the greater number of flavors to choose from and the resulting higher probability that a flavor chosen in the holdout choices may not have been chosen in the estimation choices.

\footnote{We exclude the no-choice instances that occur in the holdout choices for the analyses in this as well as in the next paragraph as the analyses are not applicable to them.}
Using the attribute-level results as well as the data on which pieces of information participants looked at for the holdout choices, we can calculate the product-level probabilities of each product for being satisfactory, unsatisfactory, or undetermined for each participant. Examining the products chosen in the holdout choices, we find that more than 75% of the choices have a probability above 95% of being satisfactory for the respective participant. The chosen product has the highest probability of being satisfactory in 82.2% of all cases; however, in more than half (53.3%) of those cases it is tied for first place with at least one more product. Once again, this is due to the fairly deterministic nature of the model.

Finally, we simulate choice probabilities for the holdout choices to examine the hit rate, defined as the probability that the chosen option has the highest predicted choice probability. Choice probabilities depend on the number of satisfactory and undetermined options at the time of decision as well as the trembling hand parameter. Using the product-level probabilities reported above, we simulate the satisfactory set, the unsatisfactory set, and the undetermined set for each holdout choice for each participant 100,000 times, calculate the resulting choice probability according to equations 4 to 6 (as well as the no-choice probability), and average across simulations.\(^\text{11}\) The resulting hit rate is a staggering 78.6%. However, the extremely high hit rate does not take into account that in many of these correct predictions, the chosen product is tied with one or more other products for the highest choice probability (as would be expected given the ties in the probabilities of being satisfactory reported in the previous section). So while it is a very encouraging result that the model picks the chosen option to be among the top choices in almost 80% of the cases, hit rates for models with ties may not be as informative as they are for models without ties.

6.3.2 Predictive Ability

In the previous section, we used all participants in the estimation sample as well as the holdout sample in order to evaluate the individual-level fit. In contrast, we follow the recommendation of Elrod (2002) for model validation and use only 44 participants and twelve choice sets as the estimation sample, and the remaining five participants and three choice sets as holdout

\(^{11}\)Note that we only use the data on which information was acquired, not the sequence in which it was acquired, i.e., we do not use the search part of the model in the predictions.
sample. The rationale is that for predictive purposes, a model not only needs to generalize to different choice sets, but also to different members of the same population. In order to evaluate the predictive performance of the proposed model, we compare it to a hierarchical multinomial logit (MNL) model.

For both models, we compare the observed choices from the holdout participants to the predicted choice probabilities from the respective model. The predicted choice probabilities are calculated using the population level estimates from the estimation sample. We use simulations to integrate over the population heterogeneity, i.e., we calculate choice probabilities for 500,000 realizations from the population hierarchy and average across the simulations. Since we have no information on the information sets of the hypothetical consumers, the choice probabilities are calculated with all products in the respective information set.

Following Elrod (2002), we use the log-likelihood (LL) of the holdout choices as measure of predictive ability. The LL for the MNL model is -150.2, whereas the LL for the proposed satisficing model is -137.0. Thus, the satisficing model generalizes better in terms of predictive ability to other choice sets and other consumers. While we use no information on search in the prediction task, we do use the search in the estimation of the satisficing model (we use individual information sets for the estimation of the MNL model also, i.e., the added information is information on the search sequence). Thus, one might think that this additional information is the cause for the better predictive ability. We conduct the same holdout prediction task using the independent model to test for the effect of adding search information to the estimation sample. The LL for the independent model is -145.0. Thus, using search path information in the estimation improves holdout prediction. Yet, about 40% of the difference in LLs is due to the differences in models rather than in the information used.

\footnote{Given the Bayesian framework, one may want to use the Bayes Factor instead (i.e., using likelihood times prior). We choose to focus on the likelihood because it is primarily the likelihood that differentiates the models, seeing that we use uninformative priors.}
7 Discussion

The proposed model continues the line of research started by Gilbride and Allenby (2004) and Jedidi and Kohli (2005). This line of research truly brings a paradigm shift to the empirical choice model literature in marketing, a shift away from compensatory utility maximizing and towards a quest for more realistic models of consumer choice. Most models in this new line of research employ a two-stage approach in which the simple heuristic is used to form a consideration set in the first stage, followed by a compensatory utility maximizing choice in the second stage. In contrast, the proposed model does not rely on compensatory tradeoffs at all. This is possible thanks to a search stopping rule based on Simon’s idea of a satisficing decision maker (Simon 1955). In a satisficing choice rule, the sequence in which products are evaluated is essential. We therefore collect choice and eye-tracking data in a visual conjoint experiment and jointly model search and choice.

The results lend significant support to the proposed model. Most importantly, the stopping rule implied by the satisficing rule is strongly supported by the parameter estimates. In addition, the distinction between satisfactory and unsatisfactory products is meaningful in explaining the search pattern, too. We also show that the joint model of search and choice informs the parameters of the choice model much better than the independent model. The model performs extremely well in a holdout prediction task. It has very good holdout fit on the individual level with a hit rate of almost 80%, and clearly outpredicts a MNL model in a holdout prediction task.

It has long been accepted that consumers do not really calculate the compensatory utilities implied by the standard models. Our results show that it is possible to estimate choice models that conform more closely to the actual decision making process - and that it may be worthwhile to do so! We therefore fully agree with Netzer et al. (2008) that is is time to improve what they call the “ecological fit” of the choice models to the respective task.

Of course we do not intend to imply that all consumers always follow a satisficing decision rule. Heterogeneity across people in their tendency to use simple choice heuristics (often imprecisely called “satisficing”) vs. maximizing decision rules have been well documented.
(e.g., Schwartz et al. 2002). Moreover, the same person is likely to employ different choice rules when buying instant noodles vs. a car, for instance. And even for the same task, choice rules have been found to vary depending on time pressure, fatigue, etc. (e.g., Swait and Adamowicz 2001). Future research needs to address how to incorporate these issues into empirical choice models.

Given this heterogeneity in potential choice rules, we agree that a satisficing choice model may not always be the appropriate model when analyzing consumer choices. However, it should not come as a surprise that for frequently purchased (at least for the subject pool) and fairly inexpensive goods like instant noodles consumers employ simpler choice rules like the satisficing rule estimated in this paper. And if they do, our models should reflect that. Or so Simon says.
References

Appendix

A.1 Priors

To complete the hierarchical Bayesian setup, a set of priors is needed. We choose largely uninformative priors, as shown in Table 5. We scale the prior for $\hat{\tau}_2$ to be 100 times the prior for $\hat{\tau}_2$ to reflect the idea that the trembling hand probability should be fairly small. Nonetheless, the priors are wide enough to allow for a wide spectrum of Beta distributions on the trembling hand probabilities.

Table 5: Priors

<table>
<thead>
<tr>
<th>Choice</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma_a \sim$ Beta(1, 1)</td>
<td>$\phi \sim$ Normal(0, 100)</td>
</tr>
<tr>
<td>$p \sim$ Dirichlet(1, 1, 1, 1)</td>
<td>$\sigma \sim$ Inverse Gamma(.5, .5)</td>
</tr>
<tr>
<td>$\hat{\tau}_1 \sim$ Gamma(2, 1)</td>
<td>$\lambda \sim$ Normal(0, 100)</td>
</tr>
<tr>
<td>$\hat{\tau}_2 \sim$ 100-Gamma(2, 1)</td>
<td>$\zeta \sim$ Inverse Gamma(.5, .5)</td>
</tr>
</tbody>
</table>

A.2 Probabilistic Satisficing Model

We also estimated a probabilistic version of the model based on Jedidi and Kohli (2005). In the probabilistic version, each attribute level is acceptable or unacceptable only with a certain probability, rather than with certainty. This makes sense if one assumes that a consumer decides on the spot whether a given price, flavor, or brand is acceptable each time it is encountered, allowing for some decision uncertainty or error. In contrast, the deterministic model assumes that these decisions have already been made a priori and therefore stay the same across all choices.

It is easiest to represent the changes to the choice part of the model by replacing equations 1 and 2 with updating rules for whether a product is satisfactory or not. All products are undetermined at the start, i.e. $D_{x0} = 0$ for all x. Once a product has been determined to be either satisfactory or unsatisfactory, that status cannot change anymore (i.e., the updating rules only apply if the product is still undetermined). By fixating on a given attribute of a product (a^*_x), that product has a chance of becoming unsatisfactory if the attribute is judged to be unacceptable. Only after fixating on the third attribute can a product become satisfactory.
if all three attributes are acceptable. This is equivalent to saying that the product has not been judged to be unsatisfactory (implying the first two attributes were acceptable) and that the third attribute is acceptable. We thus have:

\[
P r(S_{xf} = 1 | D_{x,f-1} = 0) = P r(a_x^* \in \Gamma_A^*) \cdot \prod_{a_x \in \Gamma_{f}} I_{a_x \in \Gamma_{f}}
\]

and

\[
P r(U_{xf} | D_{x,f-1} = 0) = P r(a_x^* \notin \Gamma_A^*)
\]

Notice that while the interpretation of the model is still non-compensatory (i.e., if one attribute is judged to be unacceptable, the product is necessarily unsatisfactory), its mathematical form now becomes compensatory since the probability of a product being un/satisfactory is the product of the attribute-level probabilities. Thus, changing the flavor to a flavor that is less likely to be acceptable can be offset by changing the brand to a brand that is more likely to acceptable.

In addition, the hierarchies given in equations 7 and 9 need to be adjusted. For brands and flavors, the hierarchy becomes a Beta distribution. For price, we impose that the acceptance probability of a price can at most be as much as the acceptance probability of the next lower price. We therefore use a Beta hierarchy for the acceptance probability of the lowest price, and four more independent Beta distributions for the ratio of the acceptance probability of price level \(x\) relative to the acceptance probability of price level \(x - 1\).

Not surprisingly, the main differences in the result are found in the choice part of the model. It is noteworthy, though, that the search parameters corresponding to the status of the alternative (\(\tilde{\phi}_{g1}, \tilde{\phi}_{g1}, \) and \(\tilde{\phi}_{l3}\)) become larger in absolute value. This is most likely the result of the fact that participants tend to have even fewer satisfactory alternatives in their choice set at the end of the search (since not every flavor, brand, and price they ever chose automatically has to always be acceptable). While just over 70% of the participants had on average less than two satisfactory options per choice set in the deterministic version, all but one participant (98.4%) now fall in that range. In fact, more than 90% of the participants have an average of 1.5 satisfactory alternatives or less when making their choice!
Table 6: Posterior Means (and Standard Deviations) of the Means of the Hierarchy Distributions for Acceptability

<table>
<thead>
<tr>
<th>Brand</th>
<th>Flavor</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fantastic</td>
<td>Beef</td>
<td>.40 (.06)</td>
</tr>
<tr>
<td>Indomie</td>
<td>Cheese</td>
<td>.50 (.06)</td>
</tr>
<tr>
<td>Koka</td>
<td>Chicken</td>
<td>.87 (.04)</td>
</tr>
<tr>
<td>Maggi</td>
<td>Curry</td>
<td>.60 (.06)</td>
</tr>
<tr>
<td></td>
<td>Lobster</td>
<td>.30 (.05)</td>
</tr>
<tr>
<td></td>
<td>Mushroom</td>
<td>.38 (.06)</td>
</tr>
<tr>
<td></td>
<td>Onion Chicken</td>
<td>.74 (.05)</td>
</tr>
<tr>
<td></td>
<td>Shrimp</td>
<td>.37 (.05)</td>
</tr>
<tr>
<td></td>
<td>Tomato</td>
<td>.36 (.05)</td>
</tr>
<tr>
<td></td>
<td>Vegetable</td>
<td>.40 (.06)</td>
</tr>
</tbody>
</table>

Table 6 presents the posterior means of the means of the Beta hierarchies for acceptability. First note that both brands and flavors have a lower average acceptance probability than in the deterministic model. Once again, this is due to the fact that in the deterministic model having chosen a flavor once means the flavor is acceptable with certainty, whereas in the probabilistic model the probability may only be slightly higher than if never chosen. For the price column, the interpretation is very different due to the differing structure of the hierarchy. To illustrate the results for prices, we give the medians of the individual-level parameters. The lowest price of QR 4.00 has median acceptability probability of 95.9%, which is not surprising. The second level (QR 4.75) still has a median acceptability probability of 84.4%, but for one individual it already drops down to 5.7%. The remaining median acceptability levels are 70.2% for QR 5.50, 46.3% for QR 6.25, and 22.1% for QR 7.00.

These results for the attribute level are very reasonable, assuming people decide about the acceptability of a certain attribute level on the spot every time. Not surprisingly, the probabilities of a chosen product to be satisfactory are lower relative to the deterministic model due to the added uncertainty. Due to fewer ties thanks to the probabilistic nature, the chosen product now has the highest probability of being satisfactory in only 69% of the cases; however, in almost all (94.4%) of these cases it is not tied for first place.
When performing the holdout task described in section 6.3.2, we find that the LL for the probabilistic model is -138.1, i.e. slightly worse than for the deterministic model, but still much better than the MNL model (once again, partially due to the additional information of search sequence used in the estimation sample).
ADDENDUM

Model Fit and Predictive Ability

In this addendum, we present the results of additional work to test the model fit and predictive ability of the satisficing choice model proposed in the main body of the paper. We compare the performance of the proposed model to an alternative model based on a utility maximizing choice rule with sequential search and search cost. We follow Elrod (2002)’s recommendation for model validation and focus on the models’ performance in a “choice set and participant” holdout prediction task, rather than on in-sample fit. The remainder of this addendum is organized as follows: Section 1 explains the holdout task, while section 2 describes the alternative model. Finally, the results of the holdout task are discussed in section 3.

1 Holdout Task

Since a model should not only generalize to different choice sets but also to different people from the same population, Elrod (2002) argues that one need not only hold out choice sets from the estimation procedure, but also participants. Thus, we use twelve out of the 15 choice sets and 44 of the 64 participants in the estimation sample, leaving three choice sets and 20 participants (HP) for the holdout sample.

This is non-standard in that the results of the estimation sample do not include individual-level estimates for the participants in the holdout sample, but only estimates for the parameters of the population-level hierarchy. Since the holdout participants are assumed to be randomly drawn from the population, the variable of interest is the likelihood of the observed holdout search paths and choices conditional on the population-level estimates. Given the number of parameters in our model, this is a high dimensional integral. Thus, we have to resort to simulations for the solution.
The procedure is as follows: We simulate a random person from the population hierarchy. Given this simulated individual, we then calculate the likelihood of the three observed choices and search paths for each HP separately. Let L_{ij} denote the likelihood of HP i’s holdout data given simulation j. Repeating these steps 500,000 times and averaging across simulations results in L_i, an estimate for the likelihood of the observed data for HP i conditional on the population-level hierarchy, for each HP i. Finally, to get the overall likelihood of the holdout data, the L_is are multiplied out across HPs.\(^1\)

2 Sequential Search Model with Search Cost

We compare the performance of the proposed satisficing model to the performance of an alternative model based on the assumption of a rational decision maker using sequential search with search cost. The model is similar in structure to the satisficing model, yet differs in the details and behavioral assumptions. The model also consists of a search and choice part. For the choice part, the conjunctive rule is replaced by logit choice probabilities based on expected utilities. For the search part, we retain the two search states (local and global), yet the transition probabilities as well as the location probabilities now depend on the expected gain in maximum expected utility (MEU, see below), rather than on the un/satisfactory judgments. Most crucially, the satisficing stopping rule is replaced by a stopping rule based on a search cost tradeoff.

\(^1\)The order of averaging and multiplication is crucial, as the likelihoods of, say, the three holdout choices for one HP are not independent. If the simulated preferences fit very poorly (well) to an HP’s preferences, the likelihood of all three choices will be low (high). Thus, calculating the average likelihood of each choice and then multiplying out the likelihoods of an HP’s choices will have a different result compared to first multiplying them out and then averaging. A similar (but reversed) argument holds for why it is crucial to first average the likelihood per HP and multiply out for the final likelihood a the very end.
2.1 Choice Part

Let the utility function be given by (suppressing the i and j subscripts for consumer and choice set, resp.)

$$u(x) = \beta_{0b(x)} + \beta_{1f(x)} + \beta_{2} \cdot p(x)$$

where b, f, and p refer to brand, flavor, and price, respectively. Conditional on the information set I_k at fixation k, the expected utility of product x is then given by:

$$EU(x|I_k) = \sum_{b \in B} [Pr(b(x)|I_k)\beta_{0b}] + \sum_{f \in F} [Pr(f(x)|I_k)\beta_{1f}] + \sum_{p \in P} [Pr(p(x)|I_k)\beta_{2} \cdot p] + \epsilon_x$$

We assume that decision makers understand the true (uniform) distribution of the different attribute values, i.e., $Pr(b(x)|I_k) = 1/4$ for all b if the brand of product x has not been learned yet (and similarly for flavor and price). Of course, once a certain attribute of x has been looked up, $Pr(\cdot|I_k)$ reduces to 1 for the true value and 0 for all others.

Assuming an extreme value distribution for the error term, this then becomes a standard logit choice model. As in the satisficing model, we set the choice probability of products never fixated on equal to zero. Thus, the choice probabilities become

$$Pr(x^*|I_K) = \frac{EU(x^*|I_K) \cdot I_{x^* \in I_K}}{\sum_{x} EU(x|I_K) \cdot I_{x \in I_K}}$$

For the interdependence between the choice part and the search part of the model, we need to define the expected gain in MEU from acquiring a given piece of information. Let Δ_h be the expected change in the MEU from acquiring a given piece of information. Let Δ_h be the expected change in the MEU for any product in the choice set caused by adding information h to the information set I_k, i.e.,

$$\Delta_h = E[\max_x EU(x|I_k + h)] - \max_x EU(x|I_k)$$

Of course, if h is already in I, then $\Delta_h = 0$. Similarly, let Δ_x be the expected change in the
MEU for any product in the choice set caused by adding all three pieces of information for product \(x \).

2.2 Search Part

2.2.1 Global Search

Similar to the satisficing model, let the probability of moving to a given AOI be given by

\[
\eta_{kg}(h|\cdot) = \frac{\psi_{kg}(h|\cdot)}{\Psi_{kg}}
\]

where

\[
\psi_{kg}(h|\cdot) = r(h) \cdot \exp(\phi_{g0}(h) + \phi_{g1}EU(x|I_k) + \phi_{g2}\Delta x_k)
\]

Thus, the probability of moving to a certain product depends on (a) the packaging, (b) the expected utility of the product so far, and (c) the potential gain in MEU by exploring that product (compare to equation (11) in the main body of the paper). For a truly rational decision maker only \(\Delta x \) should have an impact on fixations, yet we also include \(EU(x|I_k) \) to allow for the end of sequence effect observed in the results of the satisficing model.

2.2.2 Local Search

Also similar to the satisficing model, the probability of moving to a given AOI is given by

\[
\eta_{kl}(h|\cdot) = \frac{\psi_{kl}(h|\cdot)}{\Psi_{kl}}
\]

where

\[
\psi_{kl}(h|\cdot) = \exp \left(\phi_{l0}L_k(h) + \phi_{l1}R_k(h) + \phi_{l2}N_r(k) + \phi_{l3}\Delta h_k \cdot L_k(h) \\
+ \sum_A[\phi_{l4A}L_A(h) = A \cdot L_k(h)] + \sum_A[\phi_{l5A}L_A(h) = A L_k(h) \cdot I_A(h) = A(h_{k-1})] \right)
\]
Thus, most parts (staying in the local area, targeted search, and search by attribute) remain the same relative to the satisficing model (cf. equation (12)). The only difference is that the next fixation is now dependent on the expected gain in MEU from a given piece of information, rather than on the unsatisfactory product evaluations up to that point. As in the global search, for a truly rational decision maker fixations should only be influenced by Δ_{hk}, yet we also allow for the other factors.

2.2.3 Transition Probabilities

Again similar to the satisficing model, let the transition probabilities be given by

$$Pr(s_{ijf} = s^* | \cdot) = \frac{\pi_{ijf}(s^* | \cdot)}{\sum_s \pi_{ijf}(s | \cdot)}$$

As for the satisficing model, $\pi_g = 0$ for identification. For the transition to the local state, let

$$\pi_f(l | \cdot) = \exp(\lambda_{l0} + \lambda_{l1}I_{s_{f-1} = g} + \lambda_{l2}[\max_{x \in L} \Delta_{xk} - \max_x \Delta_{xk}])$$

i.e., the probability of moving to the local state depends on the relative difference in expected gain in MEU within the local area vs. within the whole choice set rather than on the evaluation of the last fixated product (cf. equation (15)). The intuition for taking the difference between the Δs is that it is a measure for how beneficial a global move is expected to be relative to a local move at a particular point in time.

For the transition to the termination state, first note that the strict stopping rule implied by a search cost model would be to stop searching if and only if

$$\max_i \Delta_i \leq C$$

where C is a person’s search cost. However, as in the satisficing model, the stopping rule will
be relaxed to a probabilistic version to allow for the verification stage. Thus, let

\[\pi_f(t|\cdot) = \exp(\lambda_{t0} + \lambda_{t1}I_{s_{t-1}=g} + \lambda_{t2}f^* + \lambda_{t3}I_{\text{max}, \Delta_i < C}) \]

i.e., just as for the satisficing rule, we include the strict stopping rule as an indicator to affect stopping probability (cf. equation (16)).

3 Results

The first holdout prediction task we perform is one of managerial relevance. For this task, we only calculate the likelihoods of the observed holdout choices without making any usage of the observed holdout search paths. This is equivalent to a manager trying to predict choice shares, lacking any information on the search paths potential consumers may follow. The working assumption on information then is that a consumer knows all information when making her choice (or equivalently, and somewhat more realistically, that all pieces of information have an equal probability of being learned). Table 1 shows the results for the full satisficing model, for the independent satisficing model, and for the search cost model presented above. The results clearly shows that the simple choice rule based on the conjunctive evaluation rule fares much better in predicting holdout choices than a utility maximizing framework. The very small difference between the full satisficing and the independent model suggests that the independent model is sufficient to predict consumer choice if lacking information about search paths.

Next we move to a more standard test of model validation, i.e., we calculate the overall

| Table 1: Log-Likelihoods for Managerial Holdout Prediction Task |
|------------------|------------------|------------------|
| Satisficing | Independent | Search Cost |
| -89.5 | -89.8 | -137.1 |
likelihood of all holdout data. For more detail, we also present the log-likelihoods of the choices only (but using the data on what information was actually acquired by a given HP) and of the search paths only.\footnote{Since the two parts are not independent, the sum of these two partial log-likelihoods does not sum up to the total log-likelihood.} The results are presented in Table 2.

The first row of results shows that the proposed satisficing model fits the holdout data better than the search cost model described above. Moreover, the difference between the full satisficing model and the independent satisficing model again highlights the importance of allowing for the interdependence of evaluations and search (as mentioned in the main paper). When restricting attention to the holdout choices, the results are similar to the ones in Table 1. (They improve for all models since products that were never fixated on have zero choice probability by definition of the models.) The satisficing model still clearly outpredicts the search cost model in terms of choice likelihoods. Interestingly, when using the data on which information actually was available to a decision maker, the full satisficing model now also performs better than the independent model (as one might expect).

Interestingly, the search cost model fits better to the observed search paths than the satisficing model. It is tempting to interpret this as evidence that actual search behavior is based on the expected changes in maximum expected utility and search cost. However, some of the improved fit may in fact be due to using a continuous predictor variable (Δ) instead of simple indicator variables (U and S). To answer this question, more research is needed.

Table 2: Log-Likelihoods for Holdout Prediction Task

<table>
<thead>
<tr>
<th></th>
<th>Satisficing</th>
<th>Independent</th>
<th>Search Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Data</td>
<td>-8949</td>
<td>-9003</td>
<td>-8959</td>
</tr>
<tr>
<td>Choice only</td>
<td>-82</td>
<td>-87</td>
<td>-120</td>
</tr>
<tr>
<td>Paths only</td>
<td>-8874</td>
<td>-8906</td>
<td>-8848</td>
</tr>
</tbody>
</table>
Reference