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Abstract

A/B tests are typically analyzed via p-values and confidence intervals; but these
inferences are wholly unreliable if users make decisions while continuously mon-
itoring their tests. We define always valid p-values that let users try to take ad-
vantage of data as fast as it becomes available, providing valid statistical inference
whenever they make their decision. Always valid p-values can be interpreted as the
natural p-values corresponding to a sequential hypothesis test. Through this con-
nection we derive always valid p-values with good detection properties. Notably,
we also extend our approach to address multiple hypothesis testing in the sequen-
tial setting. Our methodology has been implemented in a large scale commercial
A/B testing platform, from which we present empirical results.

1 Introduction
Technology platforms (such as web applications) typically optimize their product of-
ferings using randomized controlled trials (RCTs), or A/B testing. A/B tests deliver
inference: they control for exogenous factors that could influence observed outcomes,
quantifying the differences between the variations being tested. The rapid rise of A/B
testing has led to the emergence of a number of widely used platforms for implemen-
tation and analysis of experiments [7, 22].

These tools use standard frequentist statistical measures: p-values and confidence
intervals. We begin with a reminder of how to interpret the p-value in a classical hy-
pothesis testing framework. A standard A/B test with two variations (control and treat-
ment) has a null hypothesis that both groups share the same parameter (e.g., customer
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Figure 1: A typical dashboard from a large commercial A/B testing platform service.
The graph depicts the “chance to beat baseline” of a test, which measures 1 − pn
over time, where pn is the p-value after n observations of the null hypothesis that the
clickthrough rate in treatment and control is identical. This particular test is a A/A test:
both the treatment and control are the same. The graph shows that 1 − pn rises above
the 95% significance threshold if the user continuously monitors the test, triggering a
Type I error.

conversion rate), and alternative that they are different. The p-value is then the prob-
ability of observing data as extreme as that observed, if the null hypothesis had been
true.

It is worth noting that measures such as p-values have come under increasing
scrutiny of late. For example, “p-value hacking” is a term given to the practice of data
mining until statistically significant results are found, but not updating significance cal-
culations to account for the search. P-values and confidence intervals can provide valid
inference, but only when interpreted and used correctly.

Given this skepticism, why are p-values and confidence intervals so prevalent in
these platforms? Their main benefit is that they provide objective measures of infer-
ence. P-values are powerful because they are interpretable: they give a common unit
of statistical measurement of risk. For example, if a user rejects the null hypothe-
sis when p ≤ α, they are guaranteed to have controlled their risk of false positives
(i.e., Type I errors) at level α, without additional knowledge of the experiment itself.
Equally important, p-values enable transparency across multiple observers of the same
experiment: by reporting a valid p-value, interpretation of experimental output can be
calibrated to the personal tolerance for error of each observer. The same arguments
apply to confidence intervals.

However, these measures are objective only if properly used. Notably, they are
computed under the assumption that the experimenter will not continuously monitor
their test—in other words, there should be no “peeking” at the results [14]. Repeated
significance testing (with rejection or continuation on the basis of those results) is a
particularly pernicious form of “p-value hacking”: it can lead to very high false positive
probabilities—well in excess of the nominal α. In fact, as an extreme example, it can
be shown that stopping the first time that pn ≤ α actually has Type I error of 100%
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[20]. Even on moderate sample sizes (e.g., 10,000 samples, which is quite common
in online A/B testing), Type I error can be inflated by over two-fold; see Appendix B.
That is a problem both for the original user and for anyone else using the same p-value,
since interpretability and transparency are lost.

Ultimately, users continuously monitor because it aligns with their incentives. They
want to find true effects as quickly as possible, and technology has brought down the
cost (see Figure 1 for an example of an A/B testing dashboard). In this paper, we claim
the user is right: they should be able to use data as it arrives, and stop tests in a data-
dependent manner. Thus we address the following challenge: can we present users
with the exact same simple dashboard, enabling continuous monitoring of p-values
and confidence intervals, and yet guarantee valid inference?

Dynamic monitoring of tests, and data-dependent rejection, place us squarely in the
realm of sequential hypothesis testing [23, 20, 9, 19]. With that viewpoint, our main
contributions are as follows. In Section 3, we implement p-values for sequential hy-
pothesis tests; the analogous theory for confidence intervals is developed in Appendix
A. Our definition is always valid: users can stop the test at any data-dependent time,
and rejecting the null if the p-value is below α at that time controls Type I error (anal-
ogously for confidence intervals). We show that our definition is essentially tight.

Next, in Section 4, we discuss a particular sequential test, the mixture sequen-
tial probability ratio test (mSPRT) [17, 18, 16], and compare its performance to non-
sequential testing. These results are novel as normal data with a normal prior are not
covered by existing optimality literature (c.f. [8]). We also solve for optimal choice
of mixing parameters, and present simulation results. Together with the “user inter-
face” of always valid p-values and confidence intervals, our solution provides the in-
terpretability and transparency of standard statistical measures, with continuous mon-
itoring, and faster results.

The work in this paper has been deployed in a production A/B testing platform,
serving thousands of clients worldwide. In Section 5 we apply our analysis to provide
p-values and confidence intervals for A/B testing platforms. We also discuss extensions
to procedures that adaptively change allocation over time (such as multiarmed bandits).
In Section 6, we conclude with a discussion of error control for multiple sequential
hypothesis tests; in particular, we demonstrate how false discovery rate (FDR) can be
controlled in the sequential setting.

2 Preliminaries
To begin, we suppose that our data can be modelled as independent observations from
an exponential family X = (Xi)

∞
i=1

iid∼ Fθ, where the parameter θ takes values in Θ ⊂
Rp. Throughout the paper, (Fn)∞n=1 will denote the filtration generated by (Xi)

∞
i=1 and

Pθ will denote the measure (on any space) induced under the parameter θ. Our focus
is on testing a simple null hypothesis H0 : θ = θ0 against the composite alternative
H1 : θ 6= θ0. (In Section 5 we adapt our analysis to two-sample hypothesis testing, as
is needed to test differences between control and treatment in an A/B test.)

Decision rules and sequential tests. In general, a decision rule is a mapping (T, δ)
from sample paths X to a (possibly infinite) stopping time T that denotes the sample
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size at which the test is ended, and a binary-valued, (FT )-measurable random variable
δ that denotes whether or not H0 was rejected. Decision rules where the terminal
sample size may be data-dependent are commonly referred to as sequential tests.

Type I error. Type I error is the probability of erroneous rejection under the null,
i.e., Pθ0(δ = 1). Assuming that the user wants to bound Type I error, we will typically
consider a family of decision rules parameterized by their Type I error rate 0 < α < 1.
We assume these tests are nested in the following sense: T (α) is a.s. nonincreasing
in α, and δ(α) is a.s. nondecreasing in α. In other words, less stringent Type I error
control allows the test to stop sooner, and is more likely to lead to rejection.

Fixed horizon testing. Under the default fixed horizon testing approach, we restrict
to decision rules (n, δ), where the stopping time is required to be deterministic. In this
setting, the objective is to maximize the power (the probability of detection under H1)
at that n. Indeed, for data in an exponential family, for any given n, there exist a family
of uniformly most powerful (UMP) tests parameterized by α, which maximizes power
uniformly over θ among tests with Type I error rate α. These tests reject the null if a
particular test statistic τn exceeds a threshold k(α).

While this test maximizes power for the given n, the power increases as n is in-
creased. The user must choose n to trade off power against the opportunity cost of
waiting for more samples. Popular sample size calculators help. They ask for a “min-
imum detectable effect” (MDE), as well as a desired Type II error constraint β; the
MDE is the smallest θ that the user would like to detect, with probability at least 1−β.
Many standard statistics textbooks cover this procedure; see, e.g., [6].

The fixed horizon user interaction model. Testing platforms allow users to imple-
ment their optimal test via p-values. Specifically, the p-value at time n corresponding
to the UMP test is:

pn = inf{α : τn ≥ k(α)}.

In other words, this p-value is the smallest α such that the α-level test with sample size
n rejects H0.

The interpretation is straightforward: pn represents the chance of seeing a test
statistic as extreme as τn under the null. Further, the process pn provides sufficient
information for the user to implement her desired test with ease: she waits for her cho-
sen n, and rejects the null hypothesis if pn ≤ α. In addition, pn ensures transparency
in the following sense: since each rule δn(α) controls Type I error at level α, any other
user can threshold the p-value obtained at her own appropriate α level to satisfy her
desired Type I error bound.

In fact to control Type I error, we require only that the p-value is super-uniform:

P0(pn ≤ s) ≤ s for all s ∈ [0, 1]. (1)

More generally, we refer to any [0, 1]-valued, (Fn)-measurable random variable
p̃n that satisfies (1) as a fixed horizon p-value for the choice of sample size n; we
refer to the entire sequence (p̃n)∞n=1 as a fixed horizon p-value process. Of course p-
values other than those defined above are rarely used in practice, because the associated
decision rule (n,1{p̃n ≤ α}) has suboptimal power.

Given one rule δn(α) for testing each θ0, an (1−α)-level fixed-horizon confidence
interval is the set of null values that are not rejected. With probability (1 − α), this
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interval will capture the true parameter.

3 Always Valid Inference
Our goal is to let the user stop the test whenever they want, in order to trade off
power with run-time as they see fit; the p-value they obtain should control Type I error.
Our first contribution is the definition of always valid p-values as those processes that
acheive this control:

Definition 1 (Always valid p-values). A fixed horizon p-value process (pn) is always
valid if given any (possibly infinite) stopping time T with respect to (Fn), there holds:

Pθ0(pT ≤ s) ≤ s ∀s ∈ [0, 1]. (2)

(An analogous definition is used to describe always valid confidence intervals; see
Appendix A for details.)

The following theorem connects always valid p-values with the existing sequential
testing literature. We leverage this connection in Section 4 to construct always valid
p-values that can detect true effects effectively.

Theorem 1. Let (T (α), δ(α))α∈[0,1] be a family of sequential tests. Then

pn = inf{α : T (α) ≤ n, δ(α) = 1}

defines an always valid p-value process.
Further, for any always valid p-value process (pn)∞n=1, a sequential test (T (α), δ(α))

is obtained from (pn)∞n=1 as follows:

T (α) = inf{n : pn ≤ α}; (3)
δ(α) = 1{T (α) <∞}. (4)

Note that (3)-(4) represent the most natural way for the user to make decisions
based on always valid p-values: stop the first time that the p-value process hits α.

Proof. For the first result, nestedness implies the following identities for any s ∈
[0, 1], ε > 0:

{pn ≤ s} ⊂ {T (s+ ε) ≤ n, δ(s+ ε) = 1} ⊂ {δ(s+ ε) = 1}.

∴ Pθ0(pn ≤ s) ≤ Pθ0(δ(s+ ε) = 1) ≤ s+ ε

and the result follows on letting ε→ 0. For the converse, we observe that for any ε > 0

Pθ0(δ(α) = 1) = Pθ0(T (α) <∞) ≤ Pθ0(pT (α) ≤ α+ ε)

≤ α+ ε

where the last inequality follows from the definition of always validity. Again the result
follows on letting ε→ 0.
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The p-value defined in Theorem 1 is not the unique always valid p-value associated
with that sequential test. However, it is a.s. minimal among such always valid p-values
for every n, resulting from the fact that it is uniquely a.s. monotonically nonincreas-
ing in n. With a one-to-one correspondence between monotone always valid p-value
processes and families of sequential tests, these processes can be seen as the natural
representation of sequential tests in a streaming p-value format.

4 Optimal Sequential Tests
With duality between always valid p-values and sequential tests established, we answer
the question: what is an optimal sequential test to use?

Since experimentation online is classified by plentiful data, and a dynamic envi-
ronment, the user typically wants to run experiments as long as she wants, update
preferences along the way, and obtain results quickly. We show the mixture Sequen-
tial Probability Ratio Test (mSPRT) achieves this through novel results comparing its
expected run time to fixed horizon tests, and further optimize the mixture for fast de-
tection.

The mSPRT is a well studied class of sequential tests first introduced in [16]. Con-
sider the set of mixture likelihood ratios,

ΛHt (x) =

∫
Θ

fθ(x)

f0(x)
dH(θ) (5)

where H is a mixing distribution over the parameter space Θ. The mSPRT is the
sequential test with T (α) = inf{n : ΛHn (Sn) ≥ α−1} and δα = 1(T (α) <∞), where
Sn =

∑n
i=1Xi. 1

A key feature of the mSPRT is it is a test of power one, or Pθ(T (α) <∞) = 1 for
all 0 < α < 1 and θ 6= 0 [18]. This allows the user to wait essentially indefinitely to
detect small effect sizes, or concede inconclusiveness through feedback from always
valid p-values.

4.1 Fast Detection
We now show the mSPRT achieves fast detection over a prior. Most of the technical
work to prove these results is contained in Theorem 6 in the Appendix. Compared to
previous results such as [8], ours are novel in that they examine the truncated mSPRT,
T (α) ∧ n. This allows for analysis of a wider class of distributions, for example nor-
mally distributed observations with a normal prior, and direct comparison to traditional,
fixed horizon testing.

For ease of exposition, we specialize to normal data, Xi ∼ N(θ, 1), and θ0 = 0.2

We also derive results as α → 0, and consequently, to have non-zero chance to reject,

1The choice of threshold α−1 on the likelihood ratio ensures Type I error is controlled at level α, via
standard martingale techniques [20].

2It is possible to extend results to tests on the natural parameter of exponential families, as well as general
priors that are positive and continuous on Θ. In fact, some misspecification of fθ in (5) is permitted provided
the mean as a function of θ is correct (see [12])
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n → ∞ in the fixed horizon. This is technically for tractability of the mSPRT, and
practically, identifies the A/B tester seeking nearly certain results and having lots of
data.

Recall the fixed horizon procedure is to determine a MDE level of θ, α, and β, to
calculate the required n(θ, α, β). A problem occurs when there is not enough informa-
tion to get a good estimate of the MDE before starting the test: too low and the user is
locked into lengthy experiments; too high and the effective power 1−β plummets. We
model this uncertainty as a normal prior over the effect size, θ ∼ N(0, τ).

Compare this to truncating a mSPRT at maximum size nS , and admitting an incon-
clusive result if we ever reach it. This is a sequential test with T ′(α) = T (α) ∧ nS
and δ′(α) = 0 on the event T (α) = nS . The following proposition establishes the
asymptotic Type II error probability, β, for both the truncated mSPRT and UMP fixed
horizon test when n→∞ fast enough.

Proposition 1. If α→ 0, n→∞ such that logα−1/n→ 0,

βk = Eθ∼N(0,τ)1− βk(θ) ∼ Ck(α)
2
√

2

τ

(
logα−1

n

)1/2

where k ∈ {(f )ixed , m(S )PRT}, 0 < Ck(α) < 1 and

Cf (α) =

∫ 1

0

Φ̄
(√

logα−1(x− 1)
)
dx

CS(α) =

∫ 1

0

Φ̄

(√
1

2
logα−1(x2 − 1)

)
dx,

where Φ̄(x) = 1− Φ(x), the right tailed standard Normal CDF.

It follows that similar asymptotic power can be achieved by nS = (CS(α)/Cf (α))
2
n.

The UMP fixed horizon test has no choice but to wait for all of its samples, and
so its sample size will always be n. Conversely, this is not true for the mSPRT; as the
following Theorem shows, there is a clear benefit of stopping early.

Theorem 2. Let T be the random time when the mSPRT for data xi ∼ N(θ, 1), and
hypothesis H0 : θ = 0, first rejects at level α. Then for α → 0, n → ∞ such that
logα−1/n→ 0,

Eθ∼N(0,τ)Eθ(T ∧ n) = o(n)

up to terms which are o(1).

(Explicit coefficients for the preceding result are given in the proof in Appendix C.)
Thus we find that the mSPRT can achieve similar asymptotic power to the fixed

UMP test with average sample size,

Eθ∼N(0,τ)Eθ(T ∧ nS) = o (nS) = o(n), (6)

of smaller order. This surprising superiority is precisely due to the ability of the mSPRT
to automatically calibrate its sample size to the effect size of the test.
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Yet these gains still understate the benefit from sequential testing. We have not in-
corporated the additional flexibility offered by the mSPRT—allowing the user to adjust
her α, β, δ′(α), and truncating n after the test has started; we intend to pursue analysis
of this impact in future work.

4.2 Optimal choice of mixture
The following theorem is an immediate consequence of Theorem 6, along with equa-
tion (67) of [12].

Theorem 3. Let Xi, i = 1, . . . , be drawn from an exponential family with density
fθ(x). Suppose Hγ is a parametric family, γ ∈ Γ, with density hγ positive and contin-
uous on Θ. Then up to o(1) terms as α→ 0, EGEθ(T ∧ n) is minimized by

γ∗ ∈ arg min
γ∈Γ

−Eθ∼G1AI(θ)−1 log hγ(θ) (7)

for A = {θ : I(θ) ≥ (logα−1)/n}, I(θ) = θΨ′(θ) − Ψ(θ), and Ψ the log-partition
function for fθ. Optimizing for hγ does not impact first order terms of EGEθ(T ∧ n).

Returning to our example of normal data, prior and now using a normal mixture,
hγ(θ) = 1

γφ( θγ ), the optimal choice of mixing variance becomes:

τ2∗ = σ2 Φ(−b)
1
bφ(b)− Φ(−b)

. (8)

This is a remarkably simple expression: it implies a rough matching of the mixing
variance to the prior variance, with a correction for truncating. The correction tends to
{0,∞} with b, showing that sampling efficiency is gained from focus on large effects
when few samples are available, and smaller effects where there is ample data.

Simulation results support the theory: using (8) matches the average runtime mini-
mizing mixture variance to within a factor of 10. There is also considerable robustness
in choosing τ . A factor of 10 misspecification increases average runtime by less than
5%, while a factor of 1000 misspecification increases average runtime by a factor of 2.
Table 1 in Appendix C provides more details.

Finally, we note that mixture-prior matching is important in practice as well. Our
own numerical analysis of over 40, 000 historical A/B tests on a leading industry plat-
form (Section 5) showed that prior matching has a significant beneficial effect on the
run length of experiments.

5 Application to A/B Testing
The optimal sequential test described in the preceding section led to a commercial im-
plementation (launched in January 2015) in a large scale platform serving thousands of
clients, ranging from small businesses to large enterprises. In this section we describe
how our results transfer to industrial practice, and we address some key challenges.
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Two data streams. The primary challenge in applying our results to A/B testing
is that there are two data streams: the control and the treatment. A common use case
is that each of these streams consists of binary data (e.g., clicks, conversions, etc.).
Formally, X = (Xi)

∞
i=1 where the Xi are i.i.d. Bernoulli(p0); and Y = (Yi)

∞
i=1

where the Yi are i.i.d. Bernoulli(p1), and we test H0 : θ = 0 against H1 : θ 6= 0, where
θ = p1−p0. It is useful to parameterize this composite null in terms of p̄ = (p0+p1)/2.

We suppose that the data arrives in some possibly random order. If at a cer-
tain time, there are m and n observations from X and Y respectively, as before we
base our choice of whether to stop and the terminal decision on the likelihood ratio
for {X1, ..., Xm, Y1, ..., Yn}. Throughout define X1:m = (X1, . . . , Xm), Y1:n =
(Y1, . . . , Yn), and

LR(X1:m,Y1:n); p̄, θ) =
Pp̄,θ(X1:m,Y1:n))

Pp̄,0(X1:m,Y1:n))
.

Randomized controlled trials. In an RCT, allocation is made equally to the two
groups. For simplicity suppose observations arrive in pairs (m = n), so we can recover
a hypothesis testing problem in terms of a single stream Zi = (Xi, Yi). We address the
composite null by treating p̄ initially as known. Then we can use the mSPRT: we reject
H0 when

ΛHn =

∫
LR(Z1:m; p̄, θ) dH(θ) (9)

exceeds 1/α. This test bounds Type I error at level α and has low average run-time.
There are two issues: (1) p̄ is in fact unknown; and (2) even if it were known, this

mSPRT is computationally challenging to implement in a streaming environment. By
making a Central Limit Theorem approximation (see Lemma 2 in the Appendix), we
solve both issues simultaneously. We approximate ΛHn with

Λ̃Hn =

∫ φ(θ,V̂n)(Ȳn − X̄n)

φ(0,V̂n)(Ȳn − X̄n)
dH(θ) (10)

where φ(µ, σ2) is the density of a N(µ, σ2) random variable.
This is easy to compute, at least when H is Gaussian. This approximation is good

when n is large, so the hitting times of 1/α for ΛHn and Λ̃Hn are similar when α is small.
In particular, as Λ̃Hn does not depend on p̄, we may test the composite hypothesis by
thresholding it at 1/α. Since this test approximates the exact mSPRT for any p̄, it
provides Type I error control uniformly over the composite null, and further it has
low average run-time under H1 for any true p̄ (provided the prior for θ is calibrated
appropriately).

Adaptive allocation and bandits. More generally, allocation to treatment and
control can be adaptive. For example, a multiarmed bandit policy may allocate obser-
vations to treatment and control to optimally tradeoff exploration of the two variations
against exploitation of the better performing variation [10, 1]. When p̄ is known there
is a natural extension of the mSPRT used above to the bandit setting. The following
theorem shows that indeed it controls Type I error. In particular, this result allows us to
generate always valid p-values for adaptive allocation strategies in that case.
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Theorem 4. Consider an arbitrary allocation rule, where the processesm(t), n(t) rep-
resent the number of observations on each stream among the first t total observations.
Let

ΛHt =

∫
LR(X1:m(t),Y1:n(t); p̄, θ) dH(θ) (11)

Then the test which rejects H0 as soon as ΛHt ≥ 1/α, controls Type I error at level α.

The proof rests on the fact that ΛHt is a martingale. This is well-known for de-
terministic allocation; the property extends to bandits because the arm pulled at t + 1
is conditionally independent of the value observed, given the first t observations. The
desired bound on the hitting probabilities then follows by the Optional Stopping Theo-
rem.

Unfortunately, ΛHt may depend heavily on the value of p̄, so it is more challenging
to extend to the case of p̄ unknown. A natural approach is to estimate this value by
ˆ̄p = (X̄m(n) + Ȳn)/2 and then approximate ΛHt by

ˆ̃ΛHt =

∫
LR(X1:m(t),Y1:n(t); ˆ̄p, θ) dH(θ) (12)

but we do not how much this may inflate the Type I error. This issue, as well as
extending the results to general multiarmed bandits and best arm selection problems,
remain important directions for future work.

Empirical results. In Figure 2, we carried out the following numerical experi-
ment using data from an industry leading A/B testing platform. For over 40,000 client
experiments, we first estimated the effect size θ using the observed effect size in the
experiment, and then computed an “optimal” fixed horizon sample size for a minimum
detectable effect (MDE) of θ. In other words, we compute the sample size needed for
Type I error control of 90% and Type II error control of 20%, i.e., power of 80%, with
an MDE of θ. We compared this sample size to the run length of our mSPRT, with the
same Type I error control of 90%.

Figure 2 shows the ratio of these run lengths. As can be seen from the dotted
line, there is a penalty paid for the flexibility of a sequential test. The sequential test
sometimes runs shorter than the fixed horizon test, but can also be 2x-3x longer in
sample size.

However, now suppose that we misestimated the true effect size when computing
our fixed horizon sample size. Indeed, we see that the sequential test is significantly
more robust (dashed and solid lines): when the MDE is off by 30% or 50%, the se-
quential test run lengths are typically much lower than the fixed horizon sample size.
Note that an MDE off by 30%-50% in practice is quite likely, given that differences
in conversion or clickthrough rates are rarely more than a few percentage points. In
this sense, our sequential testing approach yields significant sample size benefits to the
user, despite more disciplined control of Type I error.

6 Multiple Testing
When multiple experiments are conducted simultaneously, always valid p-values and
confidence intervals can be derived for each test individually. However, their per-
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experiment Type I error control may be insufficient, as the impact of multiple Type
I errors over successive experiments may compound dramatically. Multiple hypothesis
testing aims to bound a global error constraint: a function of the per-experiment Type
I errors that better represents their combined cost to the user. In this section we extend
our results to this setting; the methods presented have been commercially deployed in
the same A/B testing platform described in the preceding section.

We focus on the two error functions most studied in the literature. The first function
is the family-wise error rate (FWER):

FWER = max
θ

Pθ(δi = 1 for at least one i s.t. θi = θi0).

This is the worst-case probability of incurring any false positive; bounding FWER may
be appropriate when the performance of two variations is assessed on multiple metrics
and improvement on all metrics is required. The second is the false discovery rate
(FDR):

FDR = max
θ

Eθ

{
#{1 ≤ i ≤ m : θi = θi0, δi = 1}

#{1 ≤ i ≤ m : δi = 1} ∧ 1

}
.

This may be appropriate when the user wants to review many experiments to plan
future optimization: if her plan is weighted equally towards every result where a non-
zero effect is detected, the cost is simply the proportion of such conclusions that are
false.

In fixed-horizon statistics, established procedures exist to bound these quantities.
They take as input the entire vector of fixed-horizon p-values and produce as output
a set of rejections, such that an objective is controlled. These procedures satisfy a
transparency property that extends the transparency of fixed-horizon p-values described

Figure 2: This figure shows the performance of our sequential test on data from over
40,000 experiments on a commercially deployed A/B testing platform. When the effect
size is misestimated, our test provides better performance than the usual fixed horizon
test. See Section 5 for detailed discussion.
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in the Introduction. With multiple hypotheses, users may disagree on the global Type
I error to be controlled, not just the level; nevertheless, different users can apply their
chosen multiple testing correction to the same set of fixed-horizon p-values to achieve
their desired Type I error control.

In the sequential context, we seek multiple testing procedures that map always valid
p-values to a set of rejections, such that at any stopping time the desired error quantity
is controlled. On sample paths where the stopping time is infinite, we treat the error
incurred as zero. As ever, the purpose is to preserve transparency: no matter how the
primary user chooses this stopping time, this enables a new user to apply their chosen
multiple testing procedure to the p-values to obtain their desired Type I error control. If
a multiple testing procedure satisfies this property for a class of always valid p-values,
we say it commutes with always validity on that class.

The standard procedure to control the FWER in the fixed-horizon context is the
Bonferroni correction [5]: this rejects hypotheses (1), ...(j) where j is maximal such
that p(j) ≤ α/m, and p(1), ..., p(m) are the p-values arranged in increasing order. For
FDR, the standard procedure is Benjamini-Hochberg [2]. Two versions of BH are used,
depending on whether the data are known to be independent across experiments. If
independence holds (BH-I), we reject hypotheses (1), ..., (j) where j is maximal such
that p(j) ≤ αj/m; in the general (BH-G), we choose the maximal j such that:

p(j) ≤ αj

m
∑m
r=1 1/r

.

The next two propositions show that Bonferroni and the general form of BH com-
mute with always validity.

Proposition 2. Let (pin)mi=1 be always valid p-values, and let T be an arbitrary stop-
ping time. Then the set of decisions obtained by applying Bonferroni to pT controls
FWER at level α.

Proposition 3. Let (pin)mi=1 be always valid p-values, and let T be an arbitrary stop-
ping time. The set of decisions obtained by applying the BH-G procedure to pT controls
FDR at level α.

BH-I does not commute with always validity over all independent p-value pro-
cesses. For a counter-example, let p1

n be a.s. constant across n with p1
1 ∼ U(0, 1), and

let p2
1 = 1, p2

n = 0 for n ≥ 2. These are feasible always valid p-value processes when
the 1st hypothesis is null and the 2nd is non-null. Consider the following stopping time:
T = 1 if p1

1 ≤ α/2, else T = 2. BH under independence applied to (p1
T , p

2
T ) gives

an FDR of 3α/2. We note though that this example is somewhat artificial, because it
leverages knowledge of a rejected null hypothesis as unfavorably as possible.

FDR control with BI-I does hold if some assumptions are placed on the stopping
time. To analyse this, we begin by defining some stopping times associated with the
p-values that play a key role in our analysis.

Definition 2. Given independent always valid p-values pn, let SBHn be the rejections
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when BH-I is applied to these at level α and let RBHn = |SBHn |. Define:

Tr = inf{t : RBHt = r};
T+
r = inf{t : RBHt > r};

T ir = inf{t : pit ≤
αr

m
}.

Now, if p−i(1),n, p
−i
(2),n, ... are the p-values for the experiments other than i placed in

ascending order, consider a modified BH procedure that rejects hypotheses (1), ..., (k)
where k is maximal such that p−i(k),n ≤ α(k + 1)/m. Define the rejection set (SBHn )−i0

as those obtained under the original BH-I procedure if pin = 0. Let (RBHn )−i0 =
|(SBHn )−i0 | and define:

(Tr)
−i
0 = inf{t : (RBHn )−i0 = r}

(T+
r )−i0 = inf{t : (RBHn )−i0 > r}.

We have the following theorem.

Theorem 5. Given a stopping time T , let m0 be the number of truly null hypotheses
and let I be the set of null hypotheses i such that:

m∑
r=1

P
(

(Tr−1)−i0 ≤ T < (T+
r−1)−i0

∣∣∣ T ir ≤ T , T <∞
)
> 1 (13)

Then the rejection set SBHT has FDR at most

α

(
m0

m
+
|I|
∑m
k=2

1
k

m

)
.

In particular, if we permit only stopping times where I is empty, BH-I commutes with
always validity and controls FDR.

The theorem provides a method to study FDR control for several natural stopping
times that might be employed by the user. For example, perhaps the most natural
stopping time for a user is the first time some fixed number x ≤ m hypotheses are
rejected. Another very natural stopping time is the first time that the p-value on a fixed
hypothesis crosses a threshold. For both stopping times, it can be shown that I is indeed
empty. We prove these results in Appendix E. In addition, there we discuss stopping
times where the user waits for rejection on a specific subset of hypotheses; this is a
case where I may not be empty.

q-values. Although it is maximally transparent to let the user apply any multiple
testing procedure, it requires reasonable statistical savviness on their part, as the set
of p-values has no simple interpretation until the correction is applied. If there is no
ambiguity in the multiple testing quantity to be controlled, with users differing only on
their desired level, this can be addressed with a set of m q-values [21]. Just as users
in the single hypothesis case obtain their desired Type I error control by thresholding
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the p-value, users may obtain their desired global error control by thresholding each
q-value. For details, see Appendix E.

Confidence intervals. Effective decision-making may also require confidence in-
tervals that satisfy some global coverage bound. Analogous to controlling FWER, the
user may wish to bound the probability that any confidence interval fails to contain the
true value. Just like the Bonferroni correction for p-values, implementing always valid
confidence intervals at level (1 − α/m) bounds FWER uniformly over all stopping
times.

Similar to FDR, we often want confidence intervals that control the False Coverage
Rate (FCR) [4]: the expected proportion of intervals that fail to contain the true param-
eter among a subset of experiments that have been selected by some data-dependent
rule. FCR control is nontrivial in our setting, because the selection rule is an unknown
property of the user. Whereas users typically only view the p-values of significant ex-
periments, they may wish to gauge the range of plausible parameter values even on
tests i where Hi

0 is not rejected.
We approximate the selection rule as the union of the significant experiments and

some fixed set J of experiments, with j = |J | � m, which are always of interest
to the user. Then the next proposition follows the approach of Theorem 1 in [4] to
achieve approximate FCR control in the fixed-horizon context. The idea is that it is the
aggressive selection rules, which choose few experiments, that can obtain the highest
FCR. Where that paper requires the selection rule to be known, we are conservative by
reducing the nominal significance level of the CIs by an underestimate of the proportion
of experiments that are selected.

Proposition 4. Given fixed-horizon p-values p, let SBH be the rejection set under
BH-I, RBH = |SBH |, and (CIi(1− s))mi=1 be the corresponding fixed-horizon CIs at
each level s ∈ (0, 1). Define the corrected confidence intervals:

C̃I
i

=

{
CIi(1−RBHα/m) i ∈ SBH ;

CIi(1− (RBH + 1)α/m) i /∈ SBH .
(14)

Then for any J , if the selection rule is the experiments J ∪ SBH , the FCR is at most
α(1 + j/m).

In Appendix E, we show that this approximate FCR control is preserved in the
sequential setting, if we make restrictions on the stopping time that are analogous to
requiring I = ∅ for FDR control in applying Theorem 5.
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Supplementary Material

A Confidence Intervals
All the theory developed in this paper for always valid p-values carries over to con-
fidence intervals as well. In this section we develop the definition of always valid
confidence intervals. We note that construction of confidence intervals on completion
of a sequential test has been studied [19]. However, the real-time interface we present
for streaming confidence intervals is a crucial innovation. We begin with the following
definition of a fixed horizon confidence interval, analogous to fixed horizon p-values.

All the theory developed in this paper for always valid p-values carries over to
confidence intervals as well. In this section we develop the definition of always valid
confidence intervals. We note that construction of confidence intervals on completion
has been studied [19]. However, the real-time interface we present for streaming con-
fidence intervals is a crucial innovation. We begin with the following definition of a
fixed horizon confidence interval, analogous to fixed horizon p-values.

Definition 3 (Fixed horizon confidence interval). A (fixed-horizon) (1− α)-level con-
fidence interval (CI) process for θ is a process (CIn)∞n=1 ∈ P(Θ) that is measurable
wrt (Fn), such that for each n:

Pθ0(θ0 ∈ CIn) ≥ 1− α. (15)

For such a process we define:

CI∞ = lim inf
n→∞

CIn. (16)

By analogy to always valid p-values, we can define always valid confidence inter-
vals by extending the definition above to hold at any stopping time T .

Definition 4 (Always valid confidence interval). A fixed-horizon 1−α-level confidence
interval process (CIn) is always valid if, given any (possibly infinite) stopping time T
with respect to (Fn), there holds:

Pθ0(θ0 ∈ CIT ) ≥ 1− α. (17)

We recall that in a fixed-horizon framework, p-values and CIs are “inverses” of
each other in an appropriate sense: θ0 lies in a 1 − α CI if and only if the p-value for
the test of θ = θ0 is greater than or equal to α. (The test of θ = θ0 is the test of the null
hypothesis that θ = θ0 against the alternative that θ 6= θ0.) The same duality holds for
always valid p-values and CIs, as we show in the following proposition.

Proposition 5. 1. Suppose that, for each θ∗ ∈ Θ, (pθ
∗

n ) is an always valid p-value
process for the test of θ = θ0. Then

CIn =
{
θ∗ : pθ

∗

n > α
}

is an always valid (1− α)-level CI for θ.
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2. Conversely suppose that, for each α ∈ [0, 1], (CIαn) is an always valid (1 − α)-
level CI for θ. Then

pn = inf {α : θ0 ∈ CIαn}

is an always valid p-value process for the test of θ = θ0.

Proof. Let T be a stopping time. We have:

Pθ0(θ0 ∈ CIT ) = Pθ0(pθ0T > α) ≥ 1− α.

For α > t, Pθ0(pT < α) = Pθ0(θ0 /∈ CIαT ) < α. The result follows on letting
α→ t.

As with always valid p-values, we can easily construct always valid confidence
intervals using a nested family of sequential tests (T (α), δ(α)) that each control Type
I error at level α. Specifically, at time n, include θ0 ∈ CIn if the sequential test for
θ = θ0 has T (α) ≤ n. These confidence intervals share the same interpretability and
transparency benefits as always valid p-values: the user can choose to stop the test
at a time that is optimal for their own decision problem, and the resulting confidence
intervals yield 1− α coverage regardless of the stopping time chosen.

B Continuous Monitoring and Type I Error
As noted in the main text, continuous monitoring of fixed horizon p-values can lead
to severely inflated Type I error. Theoretically, it is known that repeated significance
testing — and in particular, stopping a test the first time the p-value drops below a
fixed α — can lead to Type I error of 100%, assuming arbitrarily large sample sizes are
allowed. In this section we investigate this result numerically, on finite sample sizes.

Specifically, we consider the following procedure. Suppose that the data is gen-
erated from a N(0, 1) distribution, and we test the null hypothesis µ = 0 against the
alternative that µ 6= 0. We use a standard z-test, and let pn denote the resulting p-value
after n observations.

We consider a user who continuously monitors the test, and rejects the null if the
p-value ever drops below α, for α = 0.1, 0.05, 0.01. In addition, we consider a post-
hoc power policy that works as follows: the user tracks the p-value, and rejects the null
if the p-value drops below level α = 0.05, and a sample size calculator (with power
1 − β = 0.8) using the currently observed effect size at the MDE yields a required
sample size which is smaller than the current number of observations. In other words,
informally, the post hoc power calculation treats the currently observed effect as the
true effect, and rejects if enough observations have been seen for detection at that
effect size. This approach is commonly used in practice, but turns out to be equivalent
to rejection at a fixed α.

In Figure 3 we show the Type I error for each of these policies, as a function of the
sample size. It is clear that Type I error is severely inflated above the nominal Type I er-
ror control, higher than 2x even for the post-hoc power approach described above with
10,000 observations. For many web applications, 10,000 observations in an A/B test
would be quite common. As a result, the plots demonstrate that the asymptotic Type
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Figure 3: Type I error of repeated significance testing in finite sample sizes.

I error of 100% for repeated significance testing is a significant problem in practice as
well, even on finite sample sizes.

C Proofs and Simulations for Optimal Sequential Test
To begin, we reiterate the setup in more detail.

LetXi ∼ fθ, i = 1, 2, . . . , be drawn i.i.d and real valued, with fθ(x) = eθx−Ψ(θ)f0(x),
and θ ∈ Θ, an open interval on the real line. If f0 is a measure on R, standard properties
of exponential families are that E[X] ≡ µ = Ψ

′
(θ), and Var(X) ≡ σ2 = Ψ

′′
(θ). The

relative entropy of θ0 from θ is defined as I(θ, θ0) = (θ− θ0)Ψ
′
(θ)− (Ψ(θ)−Ψ(θ0)).

Since any exponential family may be re-centered to have f0 = fθ0 , we present all
our results without loss of generality for θ0 = 0, and I(θ) = I(θ, 0). Finally we
use the notation: 1A as the indicator of a set A, Ā as the complement of A, and
log2(x) = log log(x).

The set of mixture likelihood ratios is then

ΛHt (x) =

∫
J

exp[(θ − θ0)x− t(Ψ(θ)−Ψ(θ0))]dH(θ)

where H is a distribution with density h, assumed everywhere continuous and positive
on Θ. The mSPRT for the null hypothesis H0 : θ = θ0 is a test (T (α), δ(α)) with
T (α) = inf{n : ΛHn (Sn) ≥ α−1}, δα = 1(T (α) <∞), and Sn =

∑n
i=1Xi. We also

assume the true parameter θ follows a prior distribution, θ ∼ G(θ), which is absolutely
continuous with respect to the Lebesgue measure on Θ

The following theorem is the main technical contribution for this section. Motivat-
ing arguments, as well as background exposition may be found in [15].

Theorem 6. ∫
Eθ(T ∧ n)dG(θ) = nPrG(θ)

(
Ā
)

+ Eθ∼G {1AEθ(T )} (18)
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up to o(1) terms as α→ 0.

Proof. Choose any 0 < ε < 1, and δ > 0. Define two times, n1 = (1−ε)log(α−1)/I(θ),
n2 = (1 + ε)log(α−1)/I(θ), Ai = {n ≥ ni}. On the set Ā, we have

Eθ(T ∧ n) = nPθ(T > n1) + Eθ(T ∧ n1T≤n1
)

By lemma 1, for some λ > 0, P (T ≤ n1) = O(αλ), and so

Eθ(T ∧ n) = n+O(nαλ).

On the set A, we have

Eθ(T ∧ n) = Eθ(T ) +

∫
n2>T≥n

(n− T )dPθ −
∫
T>n2

TdPθ.

By lemma 5 of [15], T ∼ log(α−1)/I(θ), and EθT 2 ∼ (log(α−1)/I(θ))2. Note also
that

Eθ∼G1AI(θ)−1 ≤ n
/

logα−1 <∞ (19)

And so using Cauchy-Schwartz, (19), and lemma 1,∫
T>n2

TdPθ ≤
(
Eθ(T

2)Pθ(T ≥ n2)
)1/2

= O(α−λ logα−1).

Finally, let Bθ = {θ : I(θ) ∈ [n2/n, n1/n]}. Then∣∣∣∣EG(θ),A

∫
n2>T≥n

(n− T )dPθ

∣∣∣∣ ≤ PG(θ)(Bθ) sup
θ∈Bθ

Pθ(n2 > T ≥ n) sup
n2>t≥n

|n−t| ≤ PG(θ)(Bθ)
2nε

1− ε
.

The result follows since ε is arbitrary.

Lemma 1. For any 0 < ε < 1, there exists a λ = λ(θ) > 0 such that

Pθ(|T − log(α−1)/I(θ)| > ε log(α−1)/I(θ)) = O(αλ)

.

Proof. The case for T < log(α−1)/I(θ) is handled by Lemma 3 of [15]. For T ≥
log(α−1)/I(θ) , using Jensen’s inequality

logL(sn, n) = n log

∫
eθsn−nψ(θ)G(dθ) + log

{ ∫
eθn(sn/n−ψ(θ))G(dθ)(∫
eθsn/n−ψ(θ)G(dθ)

)n
}

≥ n log

∫
eθsn−nψ(θ)G(dθ) = nγ(sn/n)

and γ is a smooth, positive function. Hence Pθ(T (α) > n) ≤ Pθ(T ′(α) > n) for

T ′n = inf{n : nγ(sn/n) ≥ log(α−1)}.
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It follows that for some δ > 0, (c.f. lemma 6 of [13] and lemma 2 of [15])

Pθ(Tα > (1 + ε) log(α−1)/I(θ)) ≤ Pθ(n =
log(α−1)

γ(µ) + ε
, |γ(sn/n)− γ(µ)| > ε)

≤ Pθ(n =
log(α−1)

γ(µ) + ε
, |sn/n− µ| > max(δ,

ε

2‖∇γ(µ)‖
))

The result follows since sn/n has exponentially fast convergence to µ .

Theorem 3 now follows immediately.

Proof of Theorem 3 . Clearly 0 ≤ EGE(T ∧ n) < ∞ for all finite n. By Theorem 6,
and equation (67) of [12], the terms involving H in EGE(T ∧ n) as α→ 0 are

− 2Eθ∼G1AI(θ)−1 log hγ(θ) + o(1)

= o
(
KEθ∼G1AI(θ)−1 logα−1

)
since 0 < hγ(θ) <∞ on Θ.

We next specialize to the case of fθ(x) = φ(x) and prove the results in section 4.

Proof of Proposition 1. First, we prove the proposition for the fixed horizon test. Stan-
dard results show that z1−2α ∼

√
2 logα−1 as α→ 0 so that

1− βfixed(θ)

= Φ̄
(
|θ|
√
n− z1−2α

)
= ¯Phi

(
(logα−1)1/2Af (θ, α, n)

)
,

whereAf (θ, α, n) = |θ|
(

logα−1

n

)1/2

−
√

2. Hence it is necessary to have n/ logα−1 →
∞ for βfixed(θ)→ 1. Define Bf = {θ : Af (θ, α, n) ≥

√
2} and split the integral

Eθ∼N(0,τ)1− βfixed(θ) =

∫
Bf

1− βfixed(θ)
1

τ
φ(θ/τ)dθ

+

∫
B̄f

1− βfixed(θ)
1

τ
φ(θ/τ)dθ

= (i) + (ii)

where B̄f is the complement of Bf and φ(x) the standard normal density. For θ ∈ Bf ,
the standard tail bound on the Normal CDF, Φ̄(x) ≤ x−1φ(x) gives

Φ̄
(

(logα−1)1/2Af (θ, α, n)
)
≤ (4π logα−1)−1/2α

= o(α),

so that (i) = o(α) as well. For term (ii), note that B̄f → {0} so that φ(θ/τ) ∼ 1.

This, the change of variable x =
(

2 logα−1

n

)−1/2

θ and symmetry of the integrand give

(ii) ∼ 2
√

2

τ

(
logα−1

n

)1/2 ∫ 2

0

Φ̄
(

(logα−1)1/2(x− 1)
)
dx.
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The result follows on noting Φ̄
(
(logα−1)1/2(x− 1)

)
= o(1) when x > 1. For the

mSPRT, we use the normal approximation to Pθ(T > n) from Theorem 2 of [11]
which, in the case of standard normal data, gives

Pθ(T > n) ∼ Φ̄
{

(logα−1)1/2As(θ, α, n)
}

where Af (θ, α, n) = 1
2
√

2

(
θ2 logα−1

n − 2
)

. The rest of the proof proceeds as for the

fixed horizon test, except with Bs = {θ : As(θ, α, n) ≥
√

2} and changes in the
integrand of (ii) as stated in the proposition.

Proof of Theorem 2. For standard normal data we have I(θ) = θ2/2 so that by Theo-
rem 6

Eθ∼N(0,τ)Eθ(T ∧ n) = nPθ∼N(0,τ)(Ā) + Eθ∼N(0,τ),A(Eθ(T )).

Let δ = (2n−1 logα−1)1/2. The probability in the first term of the RHS is

Pθ∼N(0,τ)(Ā) = 2

∫ δ

0

1

τ
φ(θ/τ)dθ ∼ 2

√
2

τ

(
logα−1

n

)1/2

by similar arguments to those in the proof of Proposition 1. For the second term, by
equation (67) of [12] and the discussion following,

Eθ(T ) = 2θ−2 logα−1 + θ−2 log logα−1 +D1θ
−2 log |θ|

+D2θ
−2 +D3 +D4θ

−1B(θ/2) + o(1)

as α→ 0, where

B(u) =

∞∑
k=1

k−1/2φ(uk1/2)− uΦ(−uk1/2).

The remainder of the proof requires verifying the order of the expectation of the above
terms. First,

Eθ∼N(0,τ)(1AI(θ)−1)

= 4

∫ ∞
δ

θ−2 1

τ
φ(
θ

τ
)dθ =

4

τ2

(
τ

δ
φ(
δ

τ
)− Φ̄(

δ

τ
)

)
<∞

for all 0 < α < 1 and 1 6= n <∞, so that

Eθ∼N(0,τ),A2θ−2 logα−1 ∼ 2
√

2

τ
n

(
logα−1

n

)1/2

= o(n).

By calculus,

Eθ∼N(0,τ),Aθ
−2 log |θ| ∝

∫ ∞
δ

θ−2 log θe−θ
2/2τ2

=
1

4

[
1√
2τ

Γ

(
−1

2
,
δ2

2τ2

)
log δ

+ δ−1MeijerG
(
{{}, {3

2
,

3

2
}, {{0, 1

2
,

1

2
}, {}}, δ

2

2τ2

)]
,
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The MeijerG term is asymptotically constant as δ → 0, and

Γ

(
−1

2
,
δ2

2τ2

)
→ 2
√

2τδ−1.

It follows that

Eθ∼N(0,τ),Aθ
−2 log |θ|

∝ n
[
K1

(
n logα−1

)−1/2
+K2

(
δ log δ

logα−1

)]
where Ki are both constants depending on τ . Both terms in the bracketed sum clearly
converge to 0 since δ → 0. Next, we have by standard bounds of the normal CDF,
B(u) ≥ 0 and

B(u) ≤ u−2

(∫ ∞
1

x−3/2φ(ux1/2)dx+ φ(u)

)
= θ−2 (3φ(θ)− 2θΦ(−θ))

Hence,

Eθ∼N(0,τ),Aθ
−1B(θ/2) ≤ K3Eθ∼N(0,τ),Aθ

−3φ(θ/2) +K4

≤ K4δ
−2eK5δ

2

−K7Γ(0,K6δ
2) +K4,

where δ−2 = n/ logα−2 = o(n) and Γ(0,K6δ
2) ∼ logK6/δ

2 = O(log δ) =
o(n).

Clearly the remaining terms are of lower order to those considered above.

D Application to A/B Testing
The following lemma is a Central Limit Theorem approximation to the likelihood ratio.
It justifies approximating ΛHn by Λ̃Hn when n is large.

Lemma 2. For any 0 < p̄ < 1, θ 6= 0

LR(X1:m,Y1:n; p̄, θ) =
φ(θ,V̂m,n)(Ȳn − X̄m)

φ(0,V̂m,n)(Ȳn − X̄m)
+O(min(m,n)−1/2)

where V̂m,n = (X̄m(1− X̄m))/m+ (Ȳn(1− Ȳn))/n.

Proof. The pair X̄m, Ȳn is sufficient for (p0, p1). Rotating both the statistics and the
parameters, it follows that the pair (X̄m + Ȳn), (Ȳn − X̄m) is sufficient for (p̄, θ).
By the CLT, up to order min(m,n)−1/2, the new pair of statistics are distributed as
independent N(2p̄, Vn) and N(θ, Vn) respectively, where

Vn =
p0(1− p0)

m
+
p1(1− p1)

n
(20)
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α n Predicted % average runtime for r = Misspec. Error
Ratio 1e-4 1e-3 1e-2 0.1 1 10

0.001 10,000 0.047 0 0 36 64 0 0 2.2
0.010 10,000 0.039 0 0 40 56 4 0 2.5
0.100 10,000 0.027 0 0 52 40 8 0 4.6
0.001 100,000 0.015 0 24 76 0 0 0 4.3
0.010 100,000 0.012 0 48 56 0 0 0 4.6
0.100 100,000 0.009 0 48 48 4 0 0 7.4

Table 1: Simulation for optimal matching of mixing distribution over various choices
of Type I error thresholds, α, and maximum sample size n. We define a τ2 ratio as
r = τ2/σ2. The Predicted Ratio shows the τ2 estimate from (8). The next 6 columns
are the proportion of times the fixed r values were empirically found to have lowest
average expected run time, EG[T ]. This was done by sampling 200 experiment sample
paths with effect sizes drawn from G ∼ N(0, 1), and running a mSPRT with various
rs. The r value with lowest average run time over sample paths was counted to have
lowest expected run time for that replication. We perform B = 25 replications of each
parameter combination. The most winning r values coincide well with the estimate
in (8). The final column shows the average percent difference between the winning
r’s estimate of EG[T ] and the runner-up. A factor of 10 misspecification around the
optimal r value results in a less than 10% increase in average runtime. Comparatively,
there is over a factor of 2 difference between the winning and worst r estimates.

Hence

LR(X1:m,Y1:n); p̄, θ) (21)

=
Pp̄,θ(X̄m + Ȳn, Ȳn − X̄m)

Pp̄,0(X̄m + Ȳn, Ȳn − X̄m)
(22)

=
φ(θ,Vn)(Ȳn − X̄m)

φ(0,Vn)(Ȳn − X̄m)
+O(min(m,n)−1/2) (23)

The result now follows because V̂n
p→ Vn at rate O(min(m,n)−1).

Proof of Theorem 4. Let (Ft)∞t=1 be the algebra generated by observations across the
two streams in the order they arrive. The proof rests on the fact that ΛHt is a martingale
under (0, p̄) wrt this filtration. First we prove this in the case of an arbitrary determin-
istic allocation policy. Suppose wlog that the (t+ 1)th observation comes from stream
X. Then

ΛHt+1 =

∫
LR(X1:m(t)+1,Y1:n(t); p̄, θ) dH(θ)

=

∫
LR(X1:m(t),Y1:n(t); p̄, θ)

(Pθ,p̄(Xm(t)+1)

P0,p̄(Xm(t)+1)

)
dH(θ)

by independence. The martingale property holds because the term in parentheses is
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independent of Ft and has expectation

E0,p̄

(Pθ,p̄(Xm(t)+1)

P0,p̄(Xm(t)+1)

)
=

∫ (
Pθ,p̄(x)

P0,p̄(x)

)
P0,p̄(x)dx = 1

Now, to generalize to arbitrary allocation policies, let At be the event that the tth ob-
servation belongs to X. Then

ΛHt+1

=

∫
LR(X1:m(t),Y1:n(t); p̄, θ)Lt+1 dH(θ)

where

Lt+1 = 1At+1

(Pθ,p̄(Xm(t)+1)

P0,p̄(Xm(t)+1)

)
+ (1− 1At+1

)

(Pθ,p̄(Yn(t)+1)

P0,p̄(Yn(t)+1)

)
The key is that At+1 is conditionally independent of Xm(t)+1 and Yn(t)+1 given Ft.
Hence

Eθ,p̄(Lt+1|Ft) = Pθ,p̄(At+1|Ft)E0,p̄

(Pθ,p̄(Xm(t)+1)

P0,p̄(Xm(t)+1)

)
+ (1− Pθ,p̄(At+1|Ft))E0,p̄

(Pθ,p̄(Yn(t)+1)

P0,p̄(Yn(t)+1)

)
= 1

This implies that ΛHt is a martingale as before.
Since ΛHn ∧ α−1 is then a bounded martingale, the Optional Stopping Theorem

implies

1 = ΛH0 ∧ α−1 = E0,p0(ΛHT (α) ∧ α
−1) ≥ α−1 P0,p0(T (α) <∞) (24)

Rearranging gives the Type I error bound

P0,p0(δ(α) = 1) = P0,p0(T (α) <∞) ≤ α (25)

E Multiple Hypothesis Testing
q-values. For a given multiple testing procedure, the q-values are the vector q, such
that thresholding q at an arbitrary α obtains the same rejection set as the procedure ap-
plied to the p-values at that α. A q-value representation exists for any procedure where
the rejection set is non-increasing in the p-values and non-decreasing in α. Clearly the
minimum of two q-values is a q-value, so we will use the minimal representation. For
Bonferroni, this is
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qi = (pim) ∧ 1.

For BH with independence or general dependence respectively,

q(j) = min
k≥j

(
p(k)m

k

)
∧ 1 or min

k≥j

(
p(k)m

∑m
r=1 1/r

k

)
∧ 1.

FWER and FDR control: Proofs.

Proof of Proposition 2. ∀θ, the variables p1
T , ..., p

m
T satisfy the property that, for the

truly null hypotheses i with θi0 = θi, piT is marginally super-uniform. Hence there is a
vector of (correlated) fixed-horizon p-values with the same distribution as pT , and so
Bonferroni applied to the always valid p-values must control FWER.

Before we can prove proposition 3, we require the following lemma.

Lemma 3.

sup
f∈F

m∑
k=1

1

k

∫ kα/m

(k−1)α/m

f(x)dx =
α

m

m∑
k=1

1

k

where F = {f : [0, 1] → R+ : F (x) =
∫ x

0
f(x)dx ≤ x , F (1) = 1}, m ≥ 1, and

0 ≤ α ≤ 1.

Proof. Since f ∈ F are bounded, we restate the optimization in terms of Fk = F (kαm ),
and F0 ≡ 0,

sup
F1,...,Fm

m∑
k=1

1

k
(Fk − Fk−1)

subject to0 ≤ Fj ≤
kα

m
, Fk ≥ Fk−1 k = 1, . . . ,m.

(26)

The objective can be rearranged as
m−1∑
k=1

1

k(k + 1)
Fk +

1

m
Fm

which is clearly maximized by Fk = kα
m for all k.

Proof of Proposition 3. As in the proof of Proposition 2, there is a vector of (corre-
lated) fixed-horizon p-values with the same distribution as pT . However, we cannot
simply invoke Theorem 1.3 in [3], which states that this form of BH controls FDR
under arbitrary correlation, since that result requires that the fixed-horizon p-values be
strictly uniform (rather than super-uniform). Nonetheless, adapting the proof of that
theorem is straight-forward. Translating the proof into the sequential notation of this
paper, the only non-immediate step is to show

m∑
k=1

1

k

m∑
r=k

P
(
T ik ≤ T < T ik−1 , Tr ≤ T < T+

r , T ≤ ∞
)

≤
m∑
k=1

1

k
P
(

(k − 1)α

m
≤ piT ≤

kα

m

)
≤ α

m

m∑
k=1

1

k

(27)
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for all truly null hypotheses i. The first inequality is a restatement of definitions, and
the second follows from Lemma 3 since by always-validity piT is super-uniform.

Proof of Theorem 5. We assume wlog that the truly null hypotheses are i = 1, ...,m0.
Letting Vn denote the number of true null rejected at n, the FDR can be expanded as

E

(
m∑
r=1

1

r
VT 1{Tr ≤ T<T+

r }1T<∞

)

= E

(
m0∑
i=1

m∑
r=1

1

r
1{T ir≤T} 1{Tr ≤ T<T+

r }1T<∞

)

=

m0∑
i=1

m∑
r=1

1

r
P
(
T ir ≤ T , Tr ≤ T < T+

r , T <∞
)

Note that the sets {Tr ≤ T < T+
r } are disjoint and cover any location of T . Consider

the terms in the sum over i ∈ I and i /∈ I separately. For i /∈ I , we bound the
probability in the third equality by

P
(
T ir ≤ T , T <∞

)
P
(
Tr ≤ T < T+

r

∣∣∣ T ir ≤ T , T <∞
)

≤ αr

M
P
(
Tr ≤ T < T+

r

∣∣∣ T ir ≤ T , T <∞
)

=
αr

M
P
(

(Tr−1)−i0 ≤ T < (Tr−1)−i+0

∣∣∣ T ir ≤ T , T <∞
)

where the first inequality follows from always-validity of sequential p-values, and the
last equality because the modified BH procedure on the m − 1 hypothesis other than
the ith makes equivalent rejections at time T when T ir ≤ T .

For i ∈ I , arguing as in the proof of Proposition 3 shows
m∑
r=1

1

r
P
(
T ir ≤ T , Tr ≤ T < T+

r , T <∞
)

≤ α

m

m∑
k=1

1

k
.

The proof is completed on application of (13) to the terms in the first expansion with
i /∈ I and re-ordering of the resulting terms.

Examples. Here we apply Theorem 5 to three common classes of stopping times.

Example 1 (Rejection counts). Suppose we want some number x ≤ m significant
results to make a decision, and so stop at Tx. For each i

P
(

(Tr−1)−i0 ≤ Tx < (T+
r−1)−i0

∣∣∣ T ir ≤ Tx , Tx <∞)
= P

(
Tr ≤ Tx < T+

r

∣∣∣ T ir ≤ Tx , Tx <∞)
This probability is 1 if r = x and 0 otherwise. Thus I = ∅, and so the FDR is at most
αm0/m.
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Example 2 (Rejecting a single hypothesis).

T 2(k) = inf{t : Rt > 0 , pkt ≤ qRt/m}.

be the first time hypothesis j is rejected. By independence, for any i,

P
(

(Tr−1)−i0 ≤ T < (T+
r−1)−i0

∣∣∣ T ir ≤ T , T <∞
)

= P
(

(Tr−1)−i0 ≤ T < (T+
r−1)−i0

∣∣∣ T <∞
)

Summing over r again we find that I = ∅. In fact, it is obvious that FDR should be
controlled in this example since there is really only one hypothesis under consideration.

Example 3 (Rejecting a set of hypotheses). Let T 3∩(K) be the first time all hypotheses
in some setK ⊆ {1, . . . ,m} are rejected and T 3∪(K) be the first time any are rejected,

T 3∩(K)
.
= max

k∈K
T 2(k) , T 3∪(K)

.
= min
k∈K

T 2(k).

Clearly, T 3∩(K) has equivalent bounds to the previous example. For T 3∪(K),
we may argue that condition (13) holds for all k /∈ K as in the previous example.
The condition does not hold for any k ∈ K, however, as knowing that pin ≤ α r

m at
some n before the ith hypothesis is rejected makes it more likely that RT 2(k) ≤ r than
RT 2(k) > r. Thus, we can only bound the FDR at

α

m

(
m0 + |{1, . . . ,m0} ∩ I|

m∑
k=2

1

k

)
.

This bound is not tight though. In fact, when m0 = m and K = {1, . . . ,m0}, we
have T 3∪(K) = TK so the FDR is at most α.

Confidence intervals and FCR. We focus on the case of independent data streams,
with rejections made using BH-I. Firstly, Proposition 4 gives approximate FCR control
in the fixed-horizon context, uniformly over the user’s unknown selection rule.

Proof of Proposition 4. By Lemma 1 in [4],

FCR =

m∑
i=1

m∑
r=1

1

r
P(|J ∪ SBH | = r, i ∈ J ∪ SBH , θi /∈ C̃Ii)

On the event i ∈ J ∪ SBH , there are two possibilities. If i ∈ SBH , we can say
RBH ≤ |J ∪ SBH |. If i /∈ SBH , we can say further that RBH + 1 ≤ |J ∪ SBH |. In
either case, it follows that CIi(1−α|J ∪ SBH |/m) ⊂ C̃Ii, and so the FCR is at most

m∑
i=1

m∑
r=1

1

r
P(|J ∪ SBH | = r, i ∈ J ∪ SBH , θi /∈ CIi(1− αr/m))
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Case 1: i /∈ J .

{|J ∪ SBH | = r, i ∈ J ∪ SBH , θi /∈ CIi(1− αr/m)}
= {|J ∪ (SBH)−i0 | = r − 1, pi ≤ αr/m, θi /∈ CIi(1− αr/m)}
⊂ {|J ∪ (SBH)−i0 | = r − 1, θi /∈ CIi(1− αr/m)}

These two events are independent, so

m∑
r=1

1

r
P(|J ∪ SBH | = r, i ∈ J ∪ SBH , θi /∈ CIi(1− αr/m))

≤
m∑
r=1

1

r
P(|J ∪ (SBH)−i0 | = r − 1)P(θi /∈ CIi(1− αr/m))

≤ α

m

m∑
r=1

P(|J ∪ (SBH)−i0 | = r − 1) =
α

m

Case 2: i ∈ J .

m∑
r=1

1

r
P(|J ∪ SBH | = r, i ∈ J ∪ SBH , θi /∈ CIi(1− αr/m))

≤
m∑
r=1

1

r
P(|J ∪ SBH | = r, θi /∈ CIi(1− αr/m))

=

m∑
r=1

1

r
P(|J ∪ SBH | = r | θi /∈ CIi(1− αr/m))P(θi /∈ CIi(1− αr/m))

≤ α

m

m∑
r=1

P(|J ∪ SBH | = r | θi /∈ CIi(1− αr/m))

Since SBH is a function only of the p-values and the data streams are indepen-
dent, the events {|J ∪SBH | = r} and {θi /∈ CIi(1−αr/m))} are conditionally
independent given pi. Hence,

P(|J ∪ SBH | = r | θi /∈ CIi(1− αr/m)) ≤ max
ρ

P(|J ∪ SBH | = r | pi = ρ)

It is easily seen that this maximum must be attained at either ρ = 0 or ρ = 1, so

P(|J ∪ SBH | = r | θi /∈ CIi(1− αr/m))

≤ P(|J ∪ SBH | = r | pi = 0) + P(|J ∪ SBH | = r | pi = 1)

= P(|J ∪ (SBH)−i0 \i| = r − 1) + P(|J ∪ (SBH)−i1 \i| = r − 1)
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Thus
m∑
r=1

1

r
P(|J ∪ SBH | = r, i ∈ J ∪ SBH , θi /∈ CIi(1− αr/m))

≤ α

m

{
m∑
r=1

P(|J ∪ (SBH)−i0 \i| = r − 1) +

m∑
r=1

P(|J ∪ (SBH)−i1 \i| = r − 1)

}

=
2α

m

Summing over all i now gives the desired result.

Then this result carries over the sequential setting, if we make similar restrictions
on the stopping time to those required for FDR control.

Definition 5. If pi,θ0n is the p-value for testing H0 : θi = θ0, let

T i,θ0r = inf{t : pi,θ0t ≤ αr

m
} (28)

(Tr)
−i,J
0 = inf{t : |(SBHn )−i0 ∪ J\i| = r} (29)

(T+
r )−i,J0 = inf{t : |(SBHn )−i0 ∪ J\i| > r}. (30)

The last two stopping times denote the first times at least r and more than r experiments
other than i are selected.

If p−i(1),n, p
−i
(2),n, ... are the p-values for the experiments other than i placed in as-

cending order, consider another modified BH procedure that rejects hypotheses (1), ..., (k)
where k is maximal such that

p−i(k),n ≤ α
k

m
,

These are the rejections obtained under the original BH-I procedure if pin = 1. We
define stopping times associated with this procedure (Tr)

−i,J
1 and (T+

r )−i,J1 analogous
to the two stopping times above.

Theorem 7. Given independent always valid p-values pn and corresponding CIs
(CIin(1− s))mi=1 at each level s ∈ (0, 1). Define new confidence intervals

C̃I
i

n =

{
CIin(1−RBHn α/m) i ∈ SBHn
CIin(1− (RBHn + 1)α/m) i /∈ SBHn

(31)

Let J be a set of experiments and let T be a stopping time such that the following
conditions hold for every i, where θi is the true parameter value for that hypothesis:

m∑
r=1

P((Tr)
−i,J
0 ≤ T < (T+

r )−i,J0 |T i,θ
i

r ≤ T <∞) ≤ 1 (32)

m∑
r=1

P((Tr)
−i,J
1 ≤ T < (T+

r )−i,J1 |T i,θ
i

r ≤ T <∞) ≤ 1 (33)
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Then under the selection rule J ∪ SBHT , the intervals (C̃I
i

T ) have FCR at most α(1 +
j/m).

Proof. By the same argument as in Proposition 4, we find that the FCR is at most

m∑
i=1

m∑
r=1

1

r
P(|J ∪ SBHT | = r, i ∈ J ∪ SBHT , θi /∈ CIiT (1− αr/m), T <∞)

Case 1: i /∈ J . As in Proposition 4, we obtain

m∑
r=1

1

r
P(|J ∪ SBHT | = r, i ∈ J ∪ SBHT , θi /∈ CIiT (1− αr/m), T <∞)

≤
m∑
r=1

1

r
P(|J ∪ (SBHT )−i0 | = r − 1, θi /∈ CIiT (1− αr/m), T <∞)

=

m∑
r=1

1

r
P((Tr−1)−i,J0 ≤ T < (Tr−1)−i,J+

0 , T i,θ
i

r ≤ T <∞)

≤ α

m

m∑
r=1

P((Tr−1)−i,J0 ≤ T < (Tr−1)−i,J+
0 |T i,θ

i

r ≤ T <∞)

≤ α

m

Case 2: i ∈ J . As before,

m∑
r=1

1

r
P(|J ∪ SBHT | = r, i ∈ J ∪ SBHT , θi /∈ CIiT (1− αr/m))

≤ α

m

m∑
r=1

P(|J ∪ SBHT | = r | θi /∈ CIiT (1− αr/m))

=
α

m

m∑
r=1

P(|J ∪ SBHT | = r |T i,θ
i

r ≤ T <∞)

≤ α

m

m∑
r=1

max
ρ

P(|J ∪ SBHT | = r | piT = ρ, T i,θ
i

r ≤ T <∞)

≤ α

m

{
m∑
r=1

P(|J ∪ (SBHT )−i0 \i| = r − 1 |T i,θ
i

r ≤ T <∞) +

m∑
r=1

P(|J ∪ (SBHT )−i1 \i| = r − 1 |T i,θ
i

r ≤ T <∞)

}

=
α

m

{ m∑
r=1

P((Tr−1)−i,J0 ≤ T < (Tr−1)−i,J+
0 |T i,θ

i

r ≤ T <∞)

+

m∑
r=1

P((Tr−1)−i,J1 ≤ T < (Tr−1)−i,J+
1 |T i,θ

i

r ≤ T <∞)
}

≤ 2α

m
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Finally we sum over i.
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