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Assortment optimization is an important problem that arises in many practical applications such as retailing

and online advertising. In such settings, the goal is to select a subset of items to offer from a universe of

substitutable items in order to maximize expected revenue when consumers exhibit a random substitution

behavior. We consider a capacity constrained assortment optimization problem under the Markov Chain

based choice model, recently considered in Blanchet et al. (2016). In this model, the substitution behavior of

customers is modeled through transitions in a Markov chain. Capacity constraints arise naturally in many

applications to model real-life constraints such as shelf space or budget limitations. We show that the capacity

constrained problem is APX-hard even for the special case when all items have unit weights and uniform

prices, i.e., it is NP-hard to obtain an approximation ratio better than some given constant. We present

constant factor approximations for both the cardinality and capacity constrained assortment optimization

problem for the general Markov chain model. Our algorithm is based on a “local-ratio” paradigm that

allows us to transform a non-linear revenue function into a linear function. The local-ratio based algorithmic

paradigm also provides interesting insights towards the optimal stopping problem as well as other assortment

optimization problems.
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1. Introduction

Assortment optimization problems arise widely in many practical applications such as retailing and

online advertising. In this problem, the goal is to select a subset from a universe of substitutable

items to offer to customers in order to maximize the expected revenue. The demand of any item

depends on the substitution behavior of the customers that is captured mathematically by a choice

model that specifies the probability that a random consumer selects a particular item from any
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given offer set. The objective of the decision maker is to identify an offer set that maximizes

expected revenue.

Many parametric choice models have extensively been studied in the literature in diverse areas

including marketing, transportation, economics, and operations management. The Multinomial

logit (MNL) model is by far the most popular model in practice due to its tractability (Talluri

and Van Ryzin 2004). However, some of the simplifying assumptions behind this model, such as

the Independence of Irrelevant Alternatives property, make it inadequate for many applications.

Consequently, more complex choice models have been developed to capture a richer class of sub-

stitution behaviors. Such models include the nested logit model (Williams 1977) and the mixture

of Multinomial logit model (McFadden et al. 2000). Nonetheless, the increase in model complexity

makes their estimation and assortment optimization problems significantly more difficult. Hence,

one of the key challenges in assortment planing is choosing a model that strikes a good balance

between its predictability and tractability, as there is a fundamental tradeoff between these desir-

able properties.

In a recent paper, Blanchet et al. (2016) consider a Markov chain based choice model. Here,

customer substitution is captured by a Markov chain, where each item (including the no-purchase

option) corresponds to a state, and substitutions are modeled using transitions in the Markov

chain. The authors show that this model provides a good approximation in choice probabilities

to a large class of existing choice models, allowing it to circumvent the model selection problem.

In particular, the Markov chain choice model is a generalization of several known choice models

in the literature including MNL, Generalized Attraction Model (GAM) (Gallego et al. (2015)),

and the exogenous demand model (Kök and Fisher (2007)). Furthermore, Blanchet et al. (2016)

show that the unconstrained assortment optimization problem under the Markov chain model is

polynomial time solvable. Zhang and Cooper (2005) also consider the Markov chain model in the

context of airline revenue management, and present a simulation study. In a recent paper, Feldman

and Topaloglu (2014b) study the network revenue management problem under the Markov chain

model and give a linear programming based algorithm.

In this paper, we consider the capacity constrained assortment problem under the Markov chain

model. In this problem, every item i is associated with a weight wi, and the decision maker is

restricted to selecting an assortment whose total weight is at most a given bound, W . Therefore,

we can formulate the capacity constrained assortment optimization problem as

max
S⊆N

{

R(S) :
∑

i∈S

wi ≤W

}

, (Capacity-Assort)

where N denotes the universe of substitutable items and R(S) denotes the expected revenue for

any assortment S ⊆N under the Markov chain model. For the special case of uniform item weights
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(i.e. wi = 1 for all i), the capacity constraint reduces to a constraint on the number of items in

the assortment. We refer to this setting as the cardinality constrained assortment optimization

problem:

max
S⊆N

{R(S) : |S| ≤ k} . (Cardinality-Assort)

The cardinality and capacity constraints on assortments arise naturally in many applications, allow-

ing one to model practical scenarios, such as a shelf space constraint or budget limitations. Capacity

constrained assortment optimization has been studied in the literature for many parametric choice

models. Davis et al. (2013) give an exact algorithm for MNL under cardinality constraint, and

more generally, under totally-unimodular constraints. Gallego and Topaloglu (2014) propose an

exact algorithm for the cardinality constrained problem for a special case of the nested logit model.

More recently, Feldman and Topaloglu (2014a) present an exact algorithm for the latter model

when the cardinality constraint is across different nests. Rusmevichientong et al. (2010) devise a

polynomial-time approximation scheme (PTAS) for the cardinality constrained assortment prob-

lem under a mixture of MNL choice model. Désir and Goyal (2014) propose a fully polynomial-time

approximation scheme (FPTAS) for the capacity constrained assortment problem under both the

nested logit and the mixture of MNL models.

1.1. Our contributions

Hardness of Approximation. We show that the capacity constrained assortment optimization

problem under the Markov chain model is NP-hard to approximate within a factor better than some

given constant, even when all items have uniform prices and unit weights. In this case, the capacity

constraint reduces to a bound on the number of items, i.e. to a cardinality constraint. It is interesting

to note that, while the unconstrained assortment optimization problem under the Markov chain

choice model can be solved optimally in polynomial time, the cardinality constrained problem is

APX-hard. In contrast, in both the MNL and Nested logit models, the unconstrained assortment

optimization and the cardinality constrained assortment problems have the same complexity.

We also consider the case of totally-unimodular (TU) constraints on the assortment. Note that

a cardinality constraint is a special case of TU constraints. These capture a wide range of practical

constraints such as precedence, display locations, and quality consistent pricing constraints (Davis

et al. (2013)). We show that the assortment optimization problem under general totally-unimodular

(TU) constraints for the Markov chain choice model is hard to approximate within a factor of

O(n1/2−ε) for any fixed ε > 0, where n is the number of items. This result drastically contrasts that

of Davis et al. (2013), who prove that the assortment optimization problem with TU constraints

for the MNL model can be solved in polynomial time.
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Approximation Algorithms: Uniform Prices. The above hardness results motivate us to

consider approximation algorithms for the capacity constrained assortment optimization problem

under the Markov chain choice model. For the special case, when all item prices are equal, we

show that the revenue function is submodular and monotone. Therefore, we can obtain a (1−1/e)-

approximation for the cardinality constrained problem using a greedy algorithm (Nemhauser and

Wolsey (1978)). In fact, for this special case of uniform prices, we can get a (1−1/e)-approximation

for more general constraints such as a constant number of capacity constraints (Kulik et al. (2013))

and matroid constraint (Calinescu et al. (2011)).

It is worth mentioning that, from a practical point of view, the uniform-price setting turns the

objective function into that of maximizing sales probability. This scenario is very common when

products are horizontally-differentiated, i.e., differ by characteristics that do not affect quality or

price, such as iPads coming in a variety of colors, or yogurt with different amounts of fat-content.

Approximation Algorithms: General Prices. For the general case of non-uniform item prices,

the revenue function is neither submodular nor monotone. Moreover, the performance of the greedy

algorithm can be arbitrarily bad even for the cardinality constrained problem. Our main contribu-

tion in this paper is to present a “local-ratio” based algorithm to obtain a (1/2− ε)-approximation

for the cardinality constrained assortment optimization problem under the Markov chain model.

The running time of our algorithm is polynomial in the input size and 1/ε. The algorithm is based

on a “local-ratio” paradigm that builds the solution iteratively. In each iteration, the algorithm

makes an appropriate greedy choice and then constructs a modified instance such that the final

objective value is the sum of the objective value of the current solution and the objective value

of the solution in the modified instance. Therefore, the local-ratio paradigm allows us to cap-

ture the externality of our action in each iteration on the remaining instance by constructing an

appropriate modified instance; thereby, linearizing the revenue function even though the original

objective function is non-linear. This technique may be of independent interest. We also obtain

a (1/3− ε)-approximation for the general capacity constrained assortment optimization problem

using the local-ratio paradigm. Our approach also provides an alternative strongly-polynomial

exact algorithm for the unconstrained assortment optimization problem under the Markov chain

model.

Computational Results. We conduct a computational study to compare the numerical per-

formance of our algorithm. We focus on two particular issues: performance and computational

efficiency. We present an exact mixed-integer programming (MIP) formulation of the problem to

compute the exact optimal solution for comparison. In the numerical experiments, we observe
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that the practical performance of our algorithm is significantly better than its worst-case theo-

retical guarantee. Specifically, although the theoretical guarantee is (1/2− ε) for the cardinality

constrained problem, we observe that the approximation ratio is 0.97 on average and at least 0.77

across all instances considered in our experiments. With respect to computational efficiency, our

algorithm is scalable and terminates in a few seconds, and in fact, within one minute in the worst

case over all large instances tested. On the other hand, the MIP does not terminate even within a

time limit of 2 hours on most of these large instances (n= 200).

1.2. The Markov chain model and Notations

We denote the universe of n products by the set N = {1,2, . . . , n} and the no-purchase option by

0, with the convention that N+ = N ∪ {0}. We consider a Markov chain M with states N+ to

model the substitution behavior of customers. This model is completely specified by initial arrival

probabilities λi for all states i ∈ N+ and the transition probabilities ρij for all i ∈ N+, j ∈ N+. If

a retailer chooses to offer a subset of products S to consumers, then the corresponding states in

S of the Markov chain become absorbing states. A customer arrives in state i with probability

λi if the state is absorbing. Otherwise, the customer transitions to a different state j 6= i and the

process continues until the customer reaches an absorbing state. In other words, the probability of

a random customer purchasing product i with S being the offer set of products is the probability

that the customer reaches state i before any other absorbing states in the underlying Markov chain.

Following Blanchet et al. (2016), we assume that for each state j ∈N , there is a path to state 0

with non-zero probability. For a given offer set S ⊆N , let π(i, S) be the choice probability that item

i is chosen when the assortment S is offered. Let pi denote the price of item i. For any assortment

S, the expected revenue can be written as

R(S) =
∑

i∈S

π(i, S) · pi.

For any (possibly empty) pairwise-disjoint subsets U,V,W ⊆N+, let Pj(U ≺ V ≺W ) denote the

probability that starting from j, we first visit some state in U before visiting any state in V ∪W ,

and subsequently visit some state in V before visiting any state inW , with respect to the transition

probabilities of M. Let P(U ≺ V ≺W ) =
∑n

j=1 λjPj(U ≺ V ≺W ). Note that with this notation, we

can write π(i, S) = P(i≺ S+\{i}) where S+ = S ∪{0} for all S ⊆N (in this case, W = ∅).

1.3. Outline

The remainder of this paper is organized as follows. In Section 2, we present the hardness results for

the constrained assortment optimization problem under the Markov chain model. We present the

special case of uniform price items in Section 3. We also illustrate why several greedy algorithms,
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including the one that is provably good for uniform prices, do not provide good approximations

for arbitrary prices. In Sections 4 and 5, we present the local-ratio paradigm and our algorithm

for the cardinality constrained problem. We present the generalization to the capacity constrained

problem in Section 6. Finally, the computational study is presented in Section 7.

2. Hardness of Approximation

In this section, we present our hardness of approximation results for the constrained assortment

optimization problem under the Markov chain choice model.

2.1. APX-hardness for cardinality constraint with uniform prices

We show that Cardinality-Assort is APX-hard, i.e., it is NP-hard to approximate within a given

constant. In particular, we prove this result even when all items have uniform prices.

Theorem 1. Cardinality-Assort is APX-hard, even when all items have equal prices.

Our proof is based on gap preserving reduction from the minimum vertex cover problem on

3-regular (or cubic) graphs, to which we refer to as VCC. This problem is known to be APX-

hard (see Alimonti and Kann (2000)). In other words, for some constant α > 0, it is NP-hard to

distinguish whether the minimum-cardinality vertex cover is of size at most k or at least (1+α)k

for cubic graphs. Given any instance I of the VCC problem with a cubic graph G = (V,E) and

k > |E|/3, we construct an instance M(I) of Cardinality-Assort as follows. We consider a Markov

chain with states corresponding to each vertex in G and an additional state 0 corresponding to the

no-purchase item 0. Each state has a transition to state 0 with probability 1/4. In addition, each

state has transitions to the states corresponding to their neighbors in G with probability 1/4 each

(since G is a 3-regular graph, the sum of transition probabilities out of any state is one).

To prove the hardness result, we establish the following two properties: i) if the minimum vertex

cover of instance I has size at most k, then the optimal expected revenue for instance M(I) is at

least
(
3
4
+ k

4n

)
, and ii) if the minimum vertex cover of instance I has size at least (1+α)k, then the

optimal expected revenue for instance M(I) is at most
(
3
4
+ k

4n
− α

16

)
. Therefore, there is a constant

gap between the optimal objective value for instance M(I) of Cardinality-Assort for the two cases.

Since it is NP-hard to distinguish between the two cases for instance I, this implies that it is NP-

hard to approximate Cardinality-Assort better than some constant (strictly smaller than 1); thereby,

proving the APX-hardness of Cardinality-Assort. We would like to note that Cardinality-Assort is

APX-hard even for the special case of uniform item prices. Furthermore, our hardness reduction

provides interesting insights towards the structure of difficult instances of the problem.

We present a detailed proof of Theorem 1 in Appendix A.
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2.2. Totally-unimodular constraints

We consider the assortment optimization under the Markov chain model for the more general case

of totally-unimodular constraints. Let xS ∈ {0,1}|N | denote the incidence vector for any assortment

S ⊆N where xS
i = 1 if i ∈ S and xS

i = 0 otherwise. The assortment optimization problem subject

to a totally-unimodular constraint can be formulated as follows:

max
S⊆N

{
R(S) :AxS ≤ b

}
. (TU-Assort)

Here, A is a totally-unimodular matrix, and b is an integer vector. Note that the cardinality

constraint in Cardinality-Assort is a special case of TU-Assort. We show that TU-Assort is NP-hard

to approximate within factor O(n1/2−ε), for any fixed ε > 0 for the Markov chain model. This result

drastically contrasts that of Davis et al. (2013), who proved that the assortment optimization

problem with totally-unimodular constraints can be solved in polynomial time when consumers

choose according to the MNL model.

To establish our inapproximability results for TU-Assort, we demonstrate that totally-unimodular

constraints in the Markov chain model capture the distribution over permutations model as a

special case. Aouad et al. (2015) show that even unconstrained assortment optimization under a

general distribution over permutations (or rankings) model is hard to approximate within factor

O(n1−ε) for any fixed ε > 0 (n is the number of substitutable items). In an instance of the assortment

optimization problem over the distribution over permutations model, we are given a collection of

items N = {1, . . . , n} with prices p1 ≤ · · · ≤ pn, respectively. In addition, we are given an arbitrary

(known) distribution on K preference lists, L1, . . . ,LK , each of which specifies a subset of the items

listed in decreasing order of preference. A customer with a given preference list selects the most

preferred item that is offered (possibly the no-purchase item) according to his/her list. The goal is

to find an assortment such that the expected revenue is maximized.

Theorem 2. TU-Assort cannot be approximated in polynomial-time within a factor O(n1/2−ε), for

any fixed ε > 0, unless P =NP .

We present the proof in Appendix A.

3. Special Case: Uniform Price Items

In this section, we consider a special case of Cardinality-Assort when item prices are uniform, and

prove that this setting can be efficiently approximated within factor 1− 1/e.
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3.1. Constant factor approximation algorithm

When all prices are equal, we show that the revenue function is submodular and monotone. Using

the classical result of Nemhauser and Wolsey (1978), we have that a greedy algorithm guarantees a

(1−1/e)-approximation for Cardinality-Assort for this special case of uniform prices. We start with

a few definitions.

Definition 1. A revenue function R : 2N → R+ is monotone when for all S ⊆N and i ∈ N , we

have R(S ∪{i})≥R(S).

Definition 2. A revenue function R : 2N → R+ is submodular when for all S ⊆ T ⊆ N and i ∈

N\T , we have R(S ∪{i})−R(S)≥R(T ∪{i})−R(T ).

Theorem 3. When all items have uniform prices, the revenue function R(·) is submodular and

monotone.

Proof. Let p be the price of every item in N . Since item prices are identical, for every subset

S and item i∈N\S, we have

R(S ∪{i}) =R(S)+ p ·P(i≺ 0≺ S).

Recall that P(i≺ 0≺ S) is the probability that the Markov chain visits state i and then visits state

0 without visiting any state in S. When all prices are equal, the marginal increase in revenue by

adding item i is only due to the additional demand that item i is able to capture. Consequently,

R(·) is monotone as the quantity p ·P(i≺ 0≺ S) is non-negative. Moreover, the submodularity of

R follows from the fact that for all S ⊆ T , we have

R(S ∪{i})−R(S) = p ·P(i≺ 0≺ S)≥ p ·P(i≺ 0≺ T ) =R(T ∪{i})−R(T ).

�

Therefore, from the classical result of Nemhauser and Wolsey (1978) for maximizing a monotone

submodular function subject to a cardinality constraint, we know that the greedy algorithm gives

a (1− 1/e)-approximation bound for Cardinality-Assort with uniform prices. Algorithm 1 describes

this procedure in detail. Note that for uniform prices, when |S|< k < n, the condition in Step 2

that there exist i ∈N\S such that R(S ∪ {i})−R(S)≥ 0 is redundant as the revenue function is

monotone, which is not necessarily true for the case of arbitrary prices. Therefore, we include this

condition to describe the greedy algorithm for the general case to discuss implications for arbitrary

prices.
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Algorithm 1 Greedy Algorithm

1: Let S be the set of states picked so far, starting with S = ∅.

2: While |S|< k and there exists i∈N\S such that R(S ∪{i})−R(S)≥ 0,

(a) Let i∗ be the item for which R(S ∪{i})−R(S) is maximized, breaking ties arbitrarily.

(b) Add i∗ to S.

3: Return S.

More General Constraints for Uniform Prices. For the special case of uniform prices, since

the revenue function is monotone and submodular, we can exploit the existing machinery for

approximately maximizing submodular monotone functions subject to a wide range of constraints

(see, for instance, Lee et al. (2010), Buchbinder et al. (2014), Kulik et al. (2013), Calinescu et al.

(2011)). This way, constant-factor approximations can be obtained for the assortment optimization

under the Markov chain model for more general constraints. For instance, Kulik et al. (2013)

give a (1− 1/e)-approximation algorithm for maximizing a monotone submodular function under

a fixed number of knapsack (capacity) constraints, and Calinescu et al. (2011) give a (1− 1/e)-

approximation for maximizing a monotone submodular function under a matroid constraint.

3.2. Bad examples for arbitrary prices

The approximation guarantees we establish for uniform prices do not extend to the more general

setting with arbitrary prices, even for Cardinality-Assort. In what follows, we point out the drawbacks

of the natural greedy heuristics, including Algorithm 1, in approximating Cardinality-Assort for

arbitrary prices. Intuitively, the performance of Algorithm 1 for general prices can be bad since it

can make a low-price item absorbing that subsequently blocks all probabilistic transitions going

into high price items. We formalize this intuition in the following lemma.

Lemma 1. For arbitrary instances of Cardinality-Assort with a cardinality constraint of k, Algo-

rithm 1 can compute solutions whose expected revenue is only O(1/k) times the optimum.

Proof. Consider the following instance of Cardinality-Assort with n= k+1 items, where k is the

upper bound specified by the cardinality constraint. We have a state s and states i= 0, . . . , k. The

arrival rates are all equal to 0, except for λs which is equal to 1. Moreover

pi =

{
(1/k)+ ε if i= s

1 if i= 1, . . . , k,
ρij =







1/k if i= s and j = 1, . . . , k
1 if i= 1, . . . , k and j = 0
0 otherwise,

where ε≤ 1/(2k). Figure 1 provides a graphical representation of this instance. Algorithm 1 first

picks item s as R({s}) = (1/k) + ε while R({i}) = (1/k), for i= 1, . . . k. Once s is selected, adding

any other state cannot increase the revenue. Therefore, the greedy algorithm gives a revenue of
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s

1

2

k

0

ps =
1
k + ε

ρs,i =
1
k

pi = 1

λs = 1

Figure 1 A bad example for Algorithm 1.

(1/k)+ ε. However, the optimal solution is to offer items 1 to k, which gives a revenue of 1 in total.

When ε tends to 0, the approximation ratio goes to 1/k. �

In fact, we can show that the above example is the worst possible and Algorithm 1 gives a

1/k-approximation for Cardinality-Assort.

Lemma 2. Algorithm 1 guarantees a 1/k-approximation for Cardinality-Assort.

We present the proof of the above lemma in Appendix B.

Modified Greedy Algorithm. The bad instance for Algorithm 1 shows that the algorithm may

focus too much on local improvements in each iteration, without taking into account the informa-

tion of the entire network induced by the probability transition matrix or the number of remaining

iterations. Therefore, we consider a modified greedy algorithm that accounts for the Markov chain

structure by using the optimal solution to the unconstrained assortment problem, where there is

no restriction on the number of items picked. This solution can be computed via an algorithm pro-

posed by Blanchet et al. (2016) (we also give an alternative strongly-polynomial algorithm for the

unconstrained problem in Section 4.4). Intuitively, the items picked by the unconstrained optimal

assortment should not block each other’s demand too much. Let U∗ be the optimal unconstrained

assortment whose associated revenue can be written as

R(U∗) =
∑

i∈U∗

P(i≺U∗
+\{i}) · pi. (1)

A natural candidate algorithm takes the k states with the largest P(i≺ U∗
+\{i}) · pi value within

an unconstrained optimal solution, and sets these states to be absorbing. Algorithm 2 describes

this procedure.
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Algorithm 2 Greedy Algorithm on Optimal Unconstrained Assortment

1: Let U∗ be an optimal solution to the unconstrained problem.

2: Sort items of U∗ in decreasing order of P(i≺U∗
+\{i}) · pi.

3: Return S = {top k items in the sorted order}.

We show in the following lemma that even Algorithm 2 performs poorly in the worst case. In

fact, we present an example where every subset of k items of the optimal solution U∗ has revenue

a factor k away from the optimal.

Lemma 3. There are instances where the revenue obtained by Algorithm 2 is far from optimal by

a factor of k/|U∗| where k is the upper bound in the cardinality constraint.

Proof. Consider the following instance of the problem with n+ 2 items (or states). We have

a state s and states i= 1, . . . , n and state 0 corresponding to the no-purchase option. The arrival

rates are all equal to 0, except for λs which is equal to 1. Moreover

pi =

{
1− ε if i= s
1 if i= 1, . . . , n,

ρij =







1/n if i= s and j = 1, . . . , n
1 if i= 1, . . . , n and j = 0
0 otherwise,

where ε > 0. Figure 2 provides a graphical representation of this instance. For this example, the

s

1

2

n

0

ps = 1− ε

ρs,i =
1
n

pi = 1

λs = 1

Figure 2 A bad example for Algorithm 2.

unconstrained optimal assortment is U∗ = {1, . . . , n}, and the greedy algorithm on U∗ selects k

items among U∗, meaning that a total revenue of k/n is obtained. However, the optimal solution

of the constrained problem is to only offer item s, which gives a revenue of 1− ε. As ε tends to 0,

the approximation ratio goes to k/|U∗|. �
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The poor performance of Algorithm 2 on the above example illustrates that an optimal assort-

ment for the constrained problem may be very different from that of its unconstrained counterpart.

Hence, searching within an unconstrained optimal solution for a good approximate solution to the

constrained problem can be unfruitful in general. It is worth noting that the lower bound of k/|U∗|

for Algorithm 2 is tight, as stated in the following lemma, whose proof is given in Appendix C.

Lemma 4. Algorithm 2 guarantees a k/|U∗|-approximation algorithm to Cardinality-Assort.

The analysis of the two greedy variants for the cardinality constrained assortment optimization

under the Markov chain model provides important insights that we use towards designing a good

algorithm for the problem.

4. Local Ratio based Algorithm Design

In this section, we present the general framework of our approximation algorithm for the cardinality

and capacity constrained assortment optimization under the Markov chain model.

4.1. High-level ideas

As the example in Figure 1 illustrates, Algorithm 1 could end up with a highly suboptimal solution

due to picking items that cannibalize, i.e. block, the demand for higher price items. Picking the

highest price item will eliminate such a concern. However, a high price item might only capture

very little demand, and therefore, generate very small revenue as illustrated in the example in

Figure 2. When there is a capacity constraint on the assortment, picking such items may not be an

optimal use of the capacity. This motivates us to choose the highest price item in an appropriate

consideration set. Intuitively, the consideration set will consist of items that generate sufficiently

high incremental revenue.

We first give a high-level description of our algorithm that builds the solution iteratively. Let

Mt denote the problem instance in any iteration t. The algorithm (ALG) considers the following

two steps in each iteration t:

1. Greedy Selection. Define an appropriate consideration set Ct of items, and pick the “highest

price” item from Ct.

2. Instance Update. Construct a new instance, Mt+1, of the constrained assortment optimization

problem with appropriately modified item prices and transition probabilities such that

ALG(Mt) =∆t +ALG(Mt+1),

where ALG(·) is the revenue of the solution obtained by the algorithm on a given instance, and ∆t

is the incremental revenue in the objective value from the item selected in iteration t.
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The instance update step linearizes the revenue function even though the original revenue func-

tion is non-linear, which is crucial for our iterative solution approach. We can also view the update

rule as a framework to capture the externality of our actions in each iteration of the algorithm. To

completely specify the algorithm, we need to provide a precise definition for the consideration set

in the greedy step and for the instance update step. For both cardinality and capacity constrained

assortment optimization problems, the instance update step is similar, as explained in Section 4.2.

The consideration set, however, depends on the particular optimization problem being considered

and will be defined later on. The intuition is to include items whose incremental revenue is above

an appropriately chosen threshold. Our algorithm can be viewed in a local-ratio framework (see,

for instance, Bar-Yehuda and Even (1985), Bar-Yehuda et al. (2005) and Bar-Yehuda and Rawitz

(2006)). Therefore, we will interchangeably refer to the instance updates as local-ratio updates.

However, we would like to note that the local-ratio framework does not provide a general recipe for

designing an update rule or analyzing the performance bound. In most algorithms in this frame-

work, the update rule follows from a primal-dual algorithm. However, for the capacity constrained

assortment optimization problem under the Markov chain model, we do not even know of any good

LP formulation and the instance update rule requires new ideas.

4.2. Instance update in local ratio algorithm

Notation. Given an instanceM of the Markov chain model, we define an updated instanceM(S)

given that S is made absorbing by modifying the item prices as well as the probability transition

matrix. Note that we index the updates by a set S. Therefore, the instance Mt introduced in the

preceding discussion is going to be thought of as M(St−1), where St−1 denotes the set of items

picked up to (and including) step t− 1. For an instance M(S), we will denote by pSi the updated

price of item i, and by ρSij the updated transition probabilities for every i∈N , j ∈N+. Note that we

do not change the arrival rate to any state, i.e., λS
i = λi for all i∈N . We also denote by RS : 2N →R

the revenue function associated with the instance M(S) and by PS(·) the probability of any event

with respect to the instance M(S).

Price update. First, we introduce the price updates, such that when S is made absorbing, we

account for the revenue generated by every state j ∈ S. To this end, consider a unit demand at

state i /∈ S. This unit demand generates a revenue of pi when i is made absorbing. On the other

hand, when i is not absorbing, this unit demand at i generates a revenue of

∑

j∈S

Pi(j ≺ S+\{j}) · pj.
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The above revenue (which was already accounted for by S) is lost when i is also made absorbing in

addition to S. Hence, the net revenue per unit demand at i when we make it absorbing, provided

that S is already absorbing, is

pi −
∑

j∈S

Pi(j ≺ S+\{j})pj,

which we denote as the adjusted price pSi . Note that the adjusted prices can be negative, corre-

sponding to the situation where adding an item decreases the overall revenue. The price update is

explicitly described in Figure 3.

Transition probabilities update. Since the subset of states S is set to be absorbing, we will simply

redirect the outgoing probabilities from all states in S to 0. This is described in Figure 3.

Price update:

pSi =

{
0 if i∈ S

pi −
∑

j∈S

Pi(j ≺ S+\{j})pj otherwise.

Transition probabilities update:

ρSij =







1 if i∈ S and j = 0
0 if i∈ S and j 6= 0
ρij otherwise.

Figure 3 Instance update in local-ratio algorithm.

We would like to note that the probabilities Pi(j ≺ S+\{j}), needed for our price updates, can

be interpreted as the choice probability π(j,S) for a modified instance with λi = 1 and λ` = 0 for

` 6= i. Therefore, these quantities can be efficiently computed via traditional Markov chain tools

(see, for instance, Blanchet et al. (2016)).

4.3. Structural properties of the updates

We first show that the local-ratio updates allow us to linearize the revenue function.

Lemma 5. R(S1 ∪S2) =R(S1)+RS1(S2) for every S1, S2 ⊆N .

Proof. Assume without lost of generality that S1 ∩S2 = ∅, since the items in S1 ∩S2 all have 0

as their adjusted price and we can then apply the proof to S2\S1. Using the definition of the local

ratio updates, we have

RS1(S2) =
∑

i∈S2

PS1(i≺ S2+\{i})p
S1

i
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=
∑

i∈S2

PS1(i≺ S2+\{i})

(

pi −
∑

j∈S1

Pi(j ≺ S1+\{j})pj

)

=
∑

i∈S2

PS1(i≺ S2+\{i})pi −
∑

j∈S1

∑

i∈S2

PS1(i≺ S2+\{i})Pi(j ≺ S1+\{j})pj.

With the definition of ρS1 , note that all items of S1 are redirected to 0. This, together with the

fact that S1 ∩S2 = ∅ implies that for all i ∈ S2, we have PS1(i≺ S2+\{i}) = P(i≺ (S2 ∪S1)+\{i}).

Consequently,

R(S1)+RS1(S2) =
∑

j∈S1

(

P(j ≺ S1+\{j})−
∑

i∈S2

P(i≺ (S2 ∪S1)+\{i})Pi(j ≺ S1+\{j})

)

pj

+
∑

i∈S2

P(i≺ (S2 ∪S1)+\{i})pi

=
∑

j∈S1

(P(j ≺ S1+\{j})−P(S2 ≺ j ≺ S1+\{j}))pj

+
∑

i∈S2

P(i≺ (S2 ∪S1)+\{i})pi

=
∑

j∈S1

P(j ≺ (S2 ∪S1)+\{j})pj +
∑

i∈S2

P(i≺ (S2 ∪S1)+\{i})pi

=R(S1 ∪S2),

where the second equality holds since

∑

i∈S2

P(i≺ (S2 ∪S1)+\{i})Pi(j ≺ S1+\{j}) = P(S2 ≺ j ≺ S1+\{j}),

as by the Markov property, both the left and right terms in the above equality denote the probability

that we will visit some state in S2 before any state in S1+, followed by state j ∈ S1 before any other

state in S1+. �

The next lemma shows that the composition of two local ratio updates over subsets S1 and S2

is equivalent to a single local ratio update over S1 ∪ S2. This property is crucial for repeatedly

applying local-ratio updates.

Lemma 6. Let S1 ⊆N be some assortment, and let M1 =M(S1). For any S2 with S1 ∩ S2 = ∅,

the instance M1(S2) is identical to the instance M(S1∪S2) in terms of item prices and transition

probabilities.

It suffices to verify that (pS1

i )S2 = pS1∪S2

i for all S1,S2 and i /∈ S1∪S2, as the above identity clearly

holds for the transition matrix updates. The proof is similar to that of Lemma 5, and is presented

in Appendix D. Putting the previous two lemmas together gives the following claim.

Lemma 7. RS1(S2 ∪S3) =RS1(S2)+RS1∪S2(S3) for any pairwise-disjoint sets S1, S2, S3 ⊆N .
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4.4. Warm-up: Exact algorithm for the unconstrained problem

As a warmup, we first present an alternative exact algorithm for the unconstrained assortment

optimization problem under the Markov chain model by using the local-ratio framework. Our

algorithm is based on the observation that it is always optimal to offer the highest price item for the

unconstrained problem, as it does not cannibalize the demand of other items. The latter property is

implied by a slightly more general claim, formalized as follows. For any x∈R, let [x]+ =max(x,0).

Lemma 8. Let S ⊆N . For any item i /∈ S with price pi ≥ [maxj∈S pj]
+, we have R(S∪{i})≥R(S).

Proof. From Lemma 5, we have that

R(S ∪{i}) =R(S)+RS({i}) =R(S)+PS(i≺ 0) · pSi .

Now, pi ≥ [maxj∈S pj]
+ and

pSi = pi −
∑

j∈S

Pi(j ≺ S+ \ {j}) · pj ≥ 0,

which implies R(S ∪{i})≥R(S). �

The Algorithm. Based on the above lemma, we present an alternative exact algorithm for the

unconstrained assortment optimization problem under the Markov chain model. In particular, we

define the consideration set in each iteration to be the set of all items. Therefore, we select the

highest adjusted price item in every iteration (breaking ties arbitrarily) and update the prices and

transition probabilities according to the local ratio updates described in Figure 3. This selection and

updating process is repeated until all adjusted prices are non-positive, as explained in Algorithm 3.

Algorithm 3 Local Ratio for Unconstrained Assortment

1: Let S be the set of states picked so far, starting with S = ∅.

2: While there exists i∈N\S such that pSi ≥ 0,

(a) Let i∗ be the item for which pSi is maximized, breaking ties arbitrarily.

(b) Add i∗ to S.

3: Return S.

Theorem 4. Algorithm 3 computes an optimal solution for the unconstrained assortment opti-

mization problem under the Markov chain model.

Proof. The correctness of Algorithm 3 is based on the observation that it is always optimal to

offer the highest adjusted price item, as long as this price is non-negative. Suppose item 1 is the
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highest price item. From Lemma 8, we get R(S ∪{1})≥R(S) for any assortment S. Therefore, we

can assume that item 1 belongs to the optimal assortment. From Lemma 5, we can write

max
S⊆N

R(S) =R({1})+ max
S′⊆N\{1}

R{1}(S′).

It remains to show that, when we get to an iteration where our current absorption set is X, and the

adjusted price of every state in the modified instance M(X) is non-positive, then X is an optimal

solution to M. To see this, by repeated applications of Lemmas 5 and 6, we have

max
S⊆N

R(S) =R(X)+ max
S′⊆N\X

RX(S′).

However, since the adjusted price of every state in the instance M(X) is non-positive, we must

have RX(S′)≤ 0 for all S′ ⊆N\X. Hence, it is optimal not to make any state in M(X) absorbing,

which implies that X is an optimal solution to M. �

Implications. Our algorithm for the unconstrained assortment optimization over the Markov

chain model provides interesting insights for some known results about the optimal stopping prob-

lem and the assortment optimization over the MNL model. Blanchet et al. (2016) relate the uncon-

strained assortment problem to the optimal stopping time on a Markov chain (see Chow et al.

(1971)). In this problem, we need to decide at each state i whether to stop and get the reward pi,

or transition according to the transition probabilities of the Markov chain. Moreover, there is an

absorbing state 0 with price p0 = 0. Algorithm 3 for the unconstrained assortment optimization

problem gives an alternative strongly polynomial time algorithm for the optimal stopping problem.

Blanchet et al. (2016) prove that the MNL choice model is a special case of the Markov chain

based choice model. Therefore, by analyzing Algorithm 3 to solve the assortment optimization over

the MNL model, we can recover the structure of the optimal assortment being nested by prices, i.e.,

the optimal assortment consists of the ` top-priced items for some `. We give an explicit expression

for our local ratio updates when the underlying choice model is MNL in Appendix E.

5. Cardinality Constrained Assortment Optimization for General Case

In this section, we present a (1/2− ε)-approximation for the cardinality constrained assortment

optimization under the Markov chain model, for any fixed ε > 0. Following the local-ratio framework

described in Section 4, our algorithm for the cardinality constrained case also selects a state with

high adjusted price in each step from an appropriate consideration set. The consideration set is

defined to avoid picking states that have a high adjusted price but capture very little demand. In

particular, the consideration set includes only items whose incremental revenue is at least a certain

threshold.
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The Algorithm. Our algorithm is iterative and selects a single item in each step. Let St be the

set of selected items by the end of step t, starting with S0 = ∅. We use σt to denote the item picked

in step t, meaning that St = {σ1, . . . , σt}. At every step t≥ 1, we select the highest adjusted price

item (with respect to pSt−1 , breaking ties arbitrarily) among items in the following consideration

set:

Ct =

{

i∈N\St−1 :R
St−1({i})≥ α

R(S∗)

k

}

,

where S∗ is the optimal solution, k is the cardinality bound, and α ∈ (0,1) is a parameter whose

value will be optimized later. Note that Ct is defined at the beginning of step t, whereas St is

defined at the end of step t, and includes the item selected in this step. Once the item σt is selected,

we recompute the adjusted prices via the local ratio update described in Figure 3, and update the

consideration set to get Ct+1. The algorithm terminates when either k items have already been

picked (i.e., upon the completion of step k), or when the consideration set Ct becomes empty.

Guessing the value of R(S∗). Since the optimal revenue R(S∗) is not known a-priori, we need to

describe how the value of R(S∗) is approximately guessed to complete the algorithm’s description.

A natural upper bound for R(S∗) is R(U∗), when U∗ is the optimal unconstrained solution. From

Lemma 4, we know that R(S∗)≥ k
|U∗|

R(U∗). Now, given an accuracy parameter 0< ε< 1, let

Bj =
k

|U∗|
R(U∗)(1+ ε)j, j = 1, . . . , J

J =min{j ∈N : Bj ≥R(U∗)} .

(2)

Note that J = O( 1
ε
logk). For each guess Bj for the true value of R(S∗), we run the algorithm,

and eventually return the best solution found over all runs. Algorithm 4 describes the resulting

procedure for a particular choice of Bj and threshold α for the consideration set. Algorithm 5

describes the full procedure for any given ε > 0.

Algorithm 4 Algorithm with guess Bj and threshold α

1: Let S be the set of states picked so far, starting with S = ∅.

2: For all S, let C(S) = {i∈N\S :RS({i})≥
α·Bj

k
}.

3: While |S|< k and C(S) 6= ∅,

(a) Let i∗ be the item of C(S) for which pSi is maximized, breaking ties arbitrarily.

(b) Add i∗ to S.

4: Return S.
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Algorithm 5 Local-ratio Algorithm for Cardinality-Assort with threshold α

1: Given any ε > 0, let J and Bj, j ∈ [J ] be as defined in (2).

2: For all j ∈ [J ], let Sj be the solution returned by Algorithm 4 with guess Bj and threshold α

3: Return argmaxj∈[J]R(Sj).

5.1. Technical Lemmas

Prior to analyzing the performance guarantee of our algorithm, we present two technical lemmas.

We start by arguing that the revenue function is sublinear for general item prices.

Lemma 9. For all S1, S2 ⊆N consisting only of non-negative priced items, R(S1 ∪ S2)≤R(S1) +

R(S2).

Proof. We have that

R(S1 ∪S2) =
∑

j∈S1

P(j ≺ (S1 ∪S2)+ \ {j}) · pj +
∑

j∈S2\S1

P(j ≺ (S1 ∪S2)+ \ {j}) · pj

≤
∑

j∈S1

P(j ≺ (S1)+ \ {j}) · pj +
∑

j∈S2

P(j ≺ (S2)+ \ {j}) · pj

=R(S1)+R(S2),

where the first inequality follows as for any j ∈ Si (i = 1,2), P(j ≺ (S1 ∪ S2)+ \ {j}) ≤ P(j ≺

(Si)+ \ {j}). �

Next, we establish a technical lemma that allows us to compare the revenue of the optimal

solution R(S∗) with the revenue of the set returned by our algorithm, R(St). First, note that the

consideration sets along different steps are nested (i.e., C1 ⊇ C2 ⊇ · · · ). Therefore, once an item

disappears from the consideration set, it never reappears. This allows us to partition the items of

S∗ according to the moment they disappear from the consideration set (since either their adjusted

revenue becomes too small or they get picked by the algorithm). More precisely, let Z0 = S∗ and

for all t≥ 1, we define the following sets:

• Zt = S∗ ∩Ct denotes the items of S∗ which are in the consideration set Ct.

• Yt =Zt−1\Zt denotes the items of S∗ which disappear from the consideration set during step

t− 1.

• Y +
t = {i ∈ Yt : p

St−1

i ≥ 0} denotes the items of Yt which have a non-negative adjusted price at

step t.

Note that these sets are all defined at the beginning of step t. The following lemma relates the

adjusted revenue of items in Zt−1 and Zt in terms of the marginal change in revenue, R(St) −

R(St−1).

Lemma 10. For all t≥ 1, R(St)−R(St−1)≥RSt−1(Zt)− (RSt(Zt+1)+RSt(Y +
t+1)).
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Proof. Recall that, by definition, Zt contains the items of S∗ that are in the consideration set

at the beginning of step t. Since our algorithm picks the highest adjusted price item, σt, in the

consideration set Ct, we have p
St−1
σt ≥ p

St−1

i ≥ 0 for all items i∈Zt. Therefore, by Lemma 8,

RSt−1(Zt)≤RSt−1(Zt ∪{σt}). (3)

We now consider two cases, depending on whether the item σt appears in the optimal solution S∗

or not.

Case (a): σt /∈ S
∗. From Lemma 7, RSt−1(Zt∪{σt}) =RSt−1({σt})+R

St(Zt). Consequently, from

inequality (3), we have

RSt−1(Zt)≤RSt−1({σt})+RSt(Zt)

=RSt−1({σt})+RSt(Zt+1 ∪Yt+1)

≤RSt−1({σt})+RSt(Zt+1 ∪Y
+
t+1)

≤RSt−1({σt})+RSt(Zt+1)+RSt(Y +
t+1),

where the second inequality holds since removing all negative adjusted price items can only increase

net revenue, and the last inequality follows from Lemma 9. Adding R(St−1) on both sides of the

inequality yields the desired inequality by Lemma 5.

Case (b): σt ∈ S
∗. From Lemma 7, RSt−1(Zt) =RSt−1({σt})+R

St(Zt\{σt}). Then, similar to the

previous case, we have

RSt(Zt\{σt})≤RSt((Zt+1 ∪Y
+
t+1)\{σt})≤RSt(Zt+1)+RSt(Y +

t+1\{σt}).

Note that RSt(Y +
t+1\{σt}) =RSt(Y +

t+1) since p
St
σt
= 0 and σt is an absorbing state in M(St). Adding

R(St−1) on both sides of the inequality concludes the proof. �

From the above result, we obtain the following claim.

Lemma 11. For all t≥ 0, we have R(St)≥R(S∗)− (RSt(Zt+1)+
∑t+1

j=1R
Sj−1(Y +

j )).

Proof. By summing the inequality stated in Lemma 10 over j = 1, . . . , t, we obtain a telescopic

sum which yields

R(St)≥R(Z1)−

(

RSt(Zt+1)+
t+1∑

j=2

RSj−1(Y +
j )

)

.

Since every item in S∗ must have non-negative price and S∗ = Z1 ∪ Y1 by definition, we have

R(S∗)≤R(Z1) +R(Y1) by sublinearity of the revenue function (see Lemma 9). Combining these

two inequalities concludes the proof. �
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5.2. Analysis of the Local-Ratio Algorithm

We show that the local-ratio algorithm gives a (1/2− ε)-approximation for Cardinality-Assort for

any fixed ε > 0. In particular, we have the following theorem.

Theorem 5. For any fixed ε > 0, Algorithm 5 gives a (1/2 − ε/2)-approximation for

Cardinality-Assort. Moreover, the running time is polynomial in the input size and 1/ε.

Proof. For a fixed ε > 0, let j∗ be such that R(S∗)

1+ε
≤Bj∗ ≤R(S∗). Let B =Bj∗ and consider the

solution returned by Algorithm 4 with guess B and threshold α. We consider two cases based on

the condition by which the algorithm terminates.

Case 1. If the algorithm stops after completing step k, then by linearity of the revenue when

using the local ratio updates (Lemmas 5 and 6), the resulting solution Sk has a revenue of

R(Sk) =
k∑

t=1

RSt−1({σt})≥ αB ≥
α

1+ ε
·R(S∗)≥ (1− ε)αR(S∗),

where the above inequality holds since the item σt belongs to the consideration set Ct, and therefore

RSt−1({σt})≥ αB/k.

Case 2. Now, suppose the algorithm stops at the end of step k′ < k, after discovering that

Ck′+1 = ∅. From Lemma 11, we get

R(Sk′)+RSk′ (Zk′+1)≥R(S∗)−
k′+1∑

j=1

RSj−1(Y +
j ).

Now, since Ck′+1 = ∅, this implies that Zk′+1 = ∅. Moreover, from Lemma 9, we also have

RSj−1(Y +
j )< |Y +

j | ·α ·B/k for all j = 1, . . . , k′ +1. Therefore,

k′+1∑

j=1

RSj−1(Y +
j )≤ α ·

B

k
·
k′+1∑

j=1

|Y +
j | ≤ αB ≤ αR(S∗),

where the second inequality holds since
∑k′+1

j=1 |Y +
j | ≤ k and the last inequality holds as B ≤R(S∗).

Therefore,

R(Sk′)≥R(S∗)−αR(S∗) = (1−α) ·R(S∗).

This shows that the approximation ratio attained by our algorithm is

min{(1− ε)α, 1−α} .

Picking α= 1/2 we obtain a (1/2− ε/2)-approximation for Cardinality-Assort.

Running time. Algorithm 5 considers J =O( 1
ε
logn) guesses for R(S∗). For any given guess Bj,

the running time of Algorithm 4 is polynomial in the input size. Therefore, the overall running

time of Algorithm 5 is polynomial in the input size and 1/ε. �
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Tight example. We show that Algorithm 5 is tight in the following sense: consider Algorithm 4

with input guess as the true value of R(S∗) and threshold α = 1/2, then there are instances for

which the approximation ratio is 1/2. In particular, we consider an instance with 3 items. The

Markov chain has 4 states N+ = {s,1,2,0}. The prices are: ps = 1, p1 = p2 = 2. The arrival rate

for state s is λs = 1 and all other states have an arrival rate of zero. The transition probabilities

are given in Figure 4. Consider the cardinality constrained assortment problem with cardinality

bound, k= 1. The optimal assortment is S∗ = {s} with R(S∗) = 1. With guess R(S∗) and α= 1/2,

the consideration set in the first step is {s,1,2}, and therefore Algorithm 4 picks either 1 or 2,

obtaining a revenue of R(S∗)/2.

We would like to note that our algorithm runs Algorithm 4 for different guesses Bj, j = 1, . . . , J

and returns the best solution across all runs. Therefore, the performance bound of our algorithm

is at least (1/2−O(ε)) and possibly better. In fact, in our computational study, we observe that

the empirical performance of our algorithm is significantly better than the theoretical bound of

(1/2−O(ε)). We describe the computational study in Section 7. It is an interesting open question

to provide a tighter analysis of the approximation bound for Algorithm 5 that returns the best

solution among several guesses of R(S∗).

λs = 1

ps = 1

1/4
1

2

pi = 2

0s

1/4

1/2

Figure 4 A tight example for Algorithm 5.

6. Capacity Constrained Assortment Optimization for General Case

In this section, we show how to approximate the capacity constrained problem under the Markov

chain model within factor 1/3− ε, for any fixed ε > 0. Recall that, unlike the simpler cardinality

case, now each item i has an arbitrary weight wi, and we have an upper bound W on the available

capacity. We assume without loss of generality that each item individually satisfies the capacity

constraint, i.e., wi ≤W for all i∈N .
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The Algorithm. We describe a local-ratio based algorithm, similar in spirit to the one for the

cardinality constrained problem, by suitably adapting the way consideration sets are defined. For

this purpose, instead of considering items whose incremental absorption revenue exceeds a certain

threshold, we only consider items whose incremental absorption revenue per unit of weight exceeds

a certain threshold.

Again, our algorithm selects a single item in each step. Let St be the set of selected items by the

end of step t, starting with S0 = ∅. We use σt to denote the item picked in step t, meaning that

St = {σ1, . . . , σt}. At every step t ≥ 1, we select the highest adjusted price item (with respect to

pSt−1 , breaking ties arbitrarily) among items in the following consideration set:

Ct =

{

i∈N\St−1 :
RSt−1({i})

wi

≥ α
R(S∗)

W

}

,

where S∗ is the optimal solution, W is the capacity bound, and α ∈ (0,1) is a parameter whose

value will be optimized later. Once the item σt is selected, we recompute the adjusted prices via the

local ratio update described in Figure 3. This selection and update process is repeated in every step

until either the consideration set becomes empty or adding the current item violates the capacity

constraint. Let t′ be such a step. In the former case, we stop and return St′−1. In the latter case,

we take either St′−1 or {σt′}, depending on which of these sets has a larger total revenue.

Guessing R(S∗). As in the case of cardinality constraints, since the value of R(S∗) is unknown,

we need to approximately guess the value R(S∗). We will use a procedure similar to the one given

in Section 5, with the exception of utilizing 1
|U∗|

R(U∗) as a lower bound (see proof of Lemma 2

in Appendix B), where U∗ is the optimal unconstrained solution. In particular, we consider the

following guesses for R(S∗).

Bj =
1

|U∗|
R(U∗)(1+ ε)j, j = 1, . . . , J

J =min{j ∈N : Bj ≥R(U∗)} .
(4)

Note that J =O( 1
ε
logn). Algorithm 6 provides a description of our approximation algorithm for

Capacity-Assort, given a particular guess Bj for R(S
∗) and threshold α, while Algorithm 7 describes

the complete procedure.

6.1. Analysis

To analyze the above algorithm, it is convenient to have a technical lemma similar to Lemma 11.

By defining the same sets Yt and Zt with respect to the optimal assortment S∗ to Capacity-Assort

and the adapted consideration sets Ct, the exact same lemma holds. We therefore do not restate

this claim and its proof, as these are identical to those of Lemma 11. The following theorem shows

that the local-ratio algorithm gives a (1/3− ε)-approximation for Cardinality-Assort for any fixed

ε > 0.
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Algorithm 6 Algorithm with guess Bj and threshold α

1: Let S be the set of states picked so far, starting with S = ∅.

2: For all S, let C(S) = {i∈N : RS({i})
wi

≥ α ·
Bj

W
}.

3: While
∑

i∈S wi <W and C(S) 6= ∅,

(a) Let i∗ be the item of C(S) for which pSi is maximized, breaking ties arbitrarily.

(b) If
∑

i∈S∪{i∗}wi <W , add i∗ to S.

(c) Else return the highest revenue set among {i∗} and S.

4: Return S.

Algorithm 7 Local-ratio Algorithm for Capacity-Assort with threshold α

1: Given any ε > 0, let J and Bj, j ∈ [J ] be as defined in (4).

2: For all j ∈ [J ], let Sj be the solution returned by Algorithm 6 with guess Bj and threshold α

3: Return argmaxj∈[J]R(Sj).

Theorem 6. For any fixed ε > 0, Algorithm 7 gives a (1/3 − ε/3)-approximation for

Capacity-Assort. Moreover, the running time is polynomial in the input size and 1/ε.

Proof. For a fixed ε > 0, let j∗ be such that R(S∗)

1+ε
≤ Bj∗ ≤ R(S∗). Let B = Bj∗ and consider

the solution returned by Algorithm 6 with guess B and threshold α. We consider two cases based

on the condition by which the algorithm terminates. Let t′ be the step at which the algorithm

terminates.

Case 1. Suppose we stop the algorithm since adding the item σt′ violates the capacity constraint,

that is,
∑t′

t=1wσt
>W . In this case, we return either St′−1 or {σt′}, depending on which of these

sets has a larger revenue. We argue that this choice guarantees a revenue of at least αR(S∗)/2,

since

max{R(St′−1),R({σt′})} ≥ max







t′−1∑

t=1

RSt({σt}),R
St′−1({σt′})







≥ max






α
B

W

t′−1∑

t=1

wσt
, α

B

W
wσt′







= α
B

W
·max







t′−1∑

t=1

wσt
,wσt′







≥ α
B

2

≥ α ·
R(S∗)

2(1+ ε)

≥ (1− ε)α ·
R(S∗)

2
,
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where the third to last inequality holds since max{
∑t′−1

t=1 wσt
,wσt′

} ≥W/2 and the second to last

inequality follows as B ≥R(S∗)/(1+ ε).

Case 2. On the other hand, suppose the algorithm terminates since Ct′+1 = ∅. Using Lemma 11

adapted to the capacitated case, we have

R(St′)+RSt′ (Zt′+1)≥R(S∗)−
t′+1∑

j=1

RSj−1(Y +
j ).

Since Ct′+1 = ∅, this implies that Zt′+1 = ∅. Moreover, from Lemma 9, for all j = 1, . . . , t′ + 1, we

have

RSj−1(Y +
j )<αB ·

∑

i∈Y +

j
wi

W
.

Since our algorithm stopped prior to reaching the capacity constraint, we have
∑t′+1

j=1

∑

i∈Y +

j
wi ≤

W . Consequently,
∑t′+1

j=1 R
Sj−1(Y +

j )<αB ≤ αR(S∗), and therefore,

R(St′)≥R(S∗)−αR(S∗) = (1−α)R(S∗).

As a result, the approximation ratio attained by our algorithm is

min
{

(1− ε)
α

2
, 1−α

}

.

By setting α= 2/3, we obtain an approximation factor of (1/3− ε/3).

Running Time . Algorithm 7 considers J =O( 1
ε
logn) guesses of R(S∗). Each run of Algorithm 6

for a given guess is polynomial time. Therefore, the overall running time of Algorithm 7 is polyno-

mial in the input size and 1/ε. �

Tight example. Our analysis is tight in the following sense. When Algorithm 7 is run with the

true value of R(S∗), there are instances for which the approximation ratio is 1/3. For example,

consider the instance given in Figure 5. For a capacity bound of W = 1, the optimal assortment

is S∗ = {b, c}. Initially, all the items are in the consideration set and the algorithm picks item a,

the highest price item. In the next step, no item can be added to the assortment. The algorithm

therefore returns S = {a} since R({a})>R({d}) and yields a revenue of R(S∗)/3+O(ε). When ε

goes to 0, the approximation ratio goes to 1/3.

7. Computational Experiments

In this section, we present our results from a computational study to test the performance of

Algorithm 5 for the cardinality constrained assortment optimization for the Markov chain choice

model. In particular, we focus on testing: i) the performance of our algorithm with respect to an

optimal algorithm, and ii) the running time of this algorithm. We first present a mixed-integer

programming (MIP) formulation of Cardinality-Assort.
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Figure 5 A tight example for Algorithm 7.

7.1. A mixed-integer programming formulation

We show that the following mixed-integer program (MIP) is an exact reformulation of

Cardinality-Assort.

max
n∑

i=1

αipi

s.t. αi +βi −
n∑

j=1

ρjiβj = λi, ∀i= 1, . . . , n

yi ≥ αi, ∀i= 1, . . . , n
n∑

i=1

yi ≤ k

αi ≥ 0, βi ≥ 0, yi ∈ {0,1}, ∀i= 1, . . . , n.

(5)

Lemma 12. The mixed-integer program (5) is an exact reformulation of Cardinality-Assort.

Proof. Consider the following LP:

max
n∑

i=1

αipi

s.t. αi +βi −
n∑

j=1

ρjiβj = λi, ∀i= 1, . . . , n

αi ≥ 0, βi ≥ 0, ∀i= 1, . . . , n.

(6)

Let (α,β) be an extreme point solution to the above LP, and let S = {i : αi > 0}. Feldman and

Topaloglu (2014b) show that αi is the choice probability π(i, S) when the assortment S is offered

under the Markov chain choice model. Hence, the objective value
∑n

i=1αiri equals to R(S). By

adding the indicator variables yi, we are restricting ourselves to the subset of feasible solutions

where at most k of the αi-s are allowed to be strictly positive. Note that the extreme points

of this polytope, corresponding to the projection of the feasible space of the MIP down to the
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(α,β) coordinates, are exactly the set of assortments S with cardinality at most k. Hence, (5) is a

mixed-integer formulation of the cardinality constrained assortment optimization problem. �

7.2. Settings tested

We proceed by describing the families of random instances being tested in our computational

experiments. Here, each item’s price pi is uniformly distributed over the interval [0,1]. Note that

since we present statistics regarding approximation factors, any constant here will give identical

results, so the choice of 1 is arbitrary. In each instance, we compute the optimal unconstrained

assortment U∗ using the LP given by Blanchet et al. (2016). We then choose the cardinality

constraint k uniformly between 1 and |U∗|/2. For the transition probabilities ρij and the arrival

rates λi, we test our algorithm on three different settings:

1. We generate n2 independent random variables Xij, each picked uniformly over the interval

[0,1]. We then set ρij = Xij/
∑n

j=0Xij for all i, j such that i 6= j. Since we do not allow self-

loops (i.e. ρii = 0), the number of random variables needed is n2. For the arrival rates, we then

generate n independent random variables Yi, each picked uniformly over the interval [0,1], and set

λi = Yi/
∑n

j=1 Yj for all i 6= 0.

2. In this setting, we sparsify the transition matrix of setting 1. More precisely, we additionally

generate n2 independent random variable Zij, each following a Bernoulli distribution with param-

eter 0.2. For all i, j such that i 6= j, we set ρij = ZijXij/
∑n

j=0ZijXij, where Xij are generated as

in setting 1. This is equivalent to eliminating each transition (i, j) with probability 0.8 and then

renormalizing. The arrival rates are generated similarly to setting 1.

3. The transition matrix in this last setting is one of a random walk. More precisely, we generate

n2 independent random variable Xij, each following a Bernoulli distribution with parameter 0.5.

We then set ρij =Xij/
∑n

j=0Xij for all i, j such that i 6= j. We also generate n random variables Yi,

each following a Bernoulli distribution with parameter 0.5, and set λi = Yi/
∑n

j=1 Yj for all i 6= 0.

7.3. Results

We examine how our algorithm performs in term of both approximation and running time. Table 1

shows the approximation ratio of Algorithm 5 (with ε = 0.1) for the different settings and the

different values of n. We use the MIP formulation given in (5) to compute the optimal assortment.

As can be observed, the actual performance of our algorithm is significantly better than its worst

case theoretical guarantee. Indeed, in all settings tested, the average approximation ratio is always

above 0.97. Moreover, the worst approximation ratio over all instances is above 0.77.

The running time of our algorithm also scales nicely. Table 2 shows the performance of Algo-

rithm 5 in terms of running time for setting 2. The running times are very similar for the other
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Setting n
Approximation Ratio # instances within x% of OPT

# instances
Average Minimum 2% 5% 10% 20%

1 30 0.9783 0.7771 664 812 972 998 1,000
2 30 0.9784 0.7734 662 858 956 995 1,000
3 30 0.9830 0.7693 708 884 976 998 1,000
1 60 0.9803 0.8671 622 838 997 1,000 1,000
2 60 0.9796 0.8094 621 888 982 1,000 1,000
3 60 0.9854 0.8885 693 941 998 1,000 1,000
1 100 0.9763 0.9132 52 79 100 100 100
2 100 0.9782 0.8882 59 91 99 100 100
3 100 0.9848 0.9142 70 97 100 100 100

Table 1 Performance of Algorithm 5 for Cardinality-Assort.

settings. On the other hand, while the MIP running time can be competitive in some cases, it blows

up when the number of products n gets large (see Table 2). Note that for n= 100, 12 out of the 100

n
Average Running Time Maximum Running Time

# instances
Algorithm 5 MIP Algorithm 5 MIP

30 0.18 0.17 0.67 0.25 1,000
60 0.74 0.67 1.25 29.34 1,000
100 3.18 278.20 9.16 10,226.98 100
200 31.98 ** 47.38 ** 20

Table 2 Running time of Algorithm 5 and the MIP for setting 2. ** Denotes the cases when we set a time limit

of 2 hours.

instances had a running time of at least 30 minutes. For n= 200, we set a time limit of 2 hours for

the MIP. Out of the 20 random instances generated, 16 reached the time limit without terminating.

These numerical experiments suggest that Algorithm 5 is computationally efficient and that its

numerical performance is significantly better than the theoretical worst-case guarantee.

We also compare the performance of Algorithm 5 with the best solution found by the MIP

solver within a time limit that is equal to the running time for Algorithm 5 for the corresponding

instance. Table 3 shows the ratio between the performance of Algorithm 5 and that of the best

feasible solution found by the MIP within the allowed time limit as well as the duality gaps

for the best feasible solution. We observe that although the solver might not even terminate, it

finds good solutions within the time limit allowed. On average, the best MIP solution computed

within the time limit is slightly better than the solution computed by Algorithm 5. Although, for

several instances, Algorithm 5 outperforms the best MIP solution within the time limit (about 20%

instances for n= 30 and 10% for n= 60). Therefore, the MIP solver spends a significant fraction

of the time in reducing the duality gap and proving optimality for large instances. It is interesting

open question to find a stronger LP formulation for the problem.
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n
Algorithm 5/(Best MIP Solution) # instances with

ratio > 1
Duality gap

# instances
Average Maximum Average Maximum

30 0.9800 1.0851 200 2.64 % 34.85 % 1,000
60 0.9805 1.0108 101 10.42 % 69.68 % 1,000
100 0.9787 1.0100 6 15.21 % 52.18 % 100
200 0.9821 1.0029 4 19.06 % 99.60 % 100

Table 3 Comparison of Algorithm 5 with the best MIP solution when we allow the solver the same time limit.
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Appendix A: Proofs of Theorems 1 and 2

Proof of Theorem 1. Consider an instance I of VCC, consisting of a cubic graph G= (V,E) on

n vertices V = {v1, . . . , vn}. We can assume that k > |E|/3, or otherwise, the distinction between

the two cases above is easy. We construct an instance M(I) of Cardinality-Assort as follows. Each

vertex vi ∈ V corresponds to an item i of N . In addition, we also have the no-purchase item 0.
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For each vertex v ∈ V , let N(v) denote the neighborhood of v in G, i.e., N(v) = {u : (u, v) ∈ E},

consisting of exactly 3 vertices. Now, for all (i, j)∈N ×N+ the transition probabilities are defined

as

ρij =

{
1/4 if vj ∈N(vi) or j = 0
0 otherwise.

Finally, for all items i ∈N , we have an arrival rate of λi = 1/n and a price of pi = 1. Out of these

items, at most k can be selected.

The goal in VCC is to choose a minimum-cardinality set of vertices such that every edge is

incident to at least one of the chosen vertices. Let U∗ ⊆ V be a minimum vertex cover in G. We

show that the instance M(I) satisfies the following properties:

(a) |U∗| ≤ k ⇒ R(S∗)≥
3

4
+

k

4n
,

(b) |U∗| ≥ (1+α)k ⇒ R(S∗)≤
3

4
+

k

4n
−
α

16
,

where S∗ is the optimal assortment forM(I). This implies that Cardinality-Assort cannot be approx-

imated within factor larger than 1− α
16
, unless P = NP. To see this, note that the ratio between

3
4
+ k

4n
− α

16
and 3

4
+ k

4n
is monotone-increasing in k, meaning that the maximum value attained is

1− α
16
.

Case (a): |U∗| ≤ k. In this case, we can augment U∗ with k − |U∗| additional vertices chosen

arbitrarily from V \U∗, and obtain a (not-necessarily minimum) vertex cover U with |U |= k. Now,

consider the assortment S = {i : vi ∈ U}, which is indeed a feasible solution. Since all prices are

equal to 1, we can write the expected revenue of this set as

R(S) = P(S ≺ 0) =
∑

i∈S

λi +
∑

i/∈S

λiPi(S ≺ 0) =
k

n
+

1

n

∑

i/∈S

Pi(S ≺ 0). (7)

When starting at any state i /∈ S, the Markov chain moves to 0 with probability 1/4 and gets

absorbed. With probability 3/4, the Markov chain moves from i to one of the vertices in N(i).

Since U is a vertex cover, it follows that N(i)⊆ S. Therefore, Pi(S ≺ 0) = 3/4 for all i /∈ S. Based

on these observations for the optimal assortment S∗, we have

R(S∗)≥R(S) =
k

n
+

3(n− k)

4n
=

3

4
+

k

4n
.

Case (b): |U∗| ≥ (1 + α)k. Let S be some assortment consisting of k items. In this case, equa-

tion (7) is still a valid decomposition of R(S), and we need to consider two cases for items i /∈ S. If

N(i)⊆ S, then Pi(S ≺ 0) = 3/4 as in case (a). However, when N(i)* S, there exists j ∈N(i) such

that j /∈ S. Therefore, there is a probability of 1/16 that starting from i the Markov chain moves

to j and from there to 0. Consequently, for such items, Pi(S ≺ 0)≤ 3
4
− |N(i)\S|

16
. Therefore,

R(S) =
k

n
+

1

n

∑

i/∈S,N(i)⊆S

3

4
+

1

n

∑

i/∈S,N(i)*S

Pi(S ≺ 0)

≤
3

4
+

k

4n
−

1

16n

∑

i/∈S,N(i)*S

|N(i)\S|.
(8)
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To upper bound the latter term, let V (S) be the set of vertices of V corresponding to S, i.e.,

V (S) = {vi : i ∈ S}. Let Ē(S) be the set of edges that are not covered by V (S). We have (2 ·

|Ē(S)|) =
∑

i/∈S,N(i)*S |N(i)\S|. The important observation is that |Ē(S)| ≥ αk. Otherwise, V (S)

can be augmented to a vertex cover via the addition of fewer than αk vertices, contradicting

|U∗| ≥ (1+α)k. Now,

|Ē(S)| ≥ αk≥
α

3
· |E|=

αn

2
,

where the second inequality follows from k > |E|/3, and the last equality holds since |E|= 3n/2,

as G is cubic. By inequality (8), we have

R(S)≤
3

4
+

k

4n
−

|Ē(S)|

8n
≤

3

4
+

k

4n
−
α

16
.

Since the above upper bound on R(S) holds for any assortment S of k items, this must also be

true for the maximum-revenue one, S∗. �

Proof of Theorem 2. Aouad et al. (2015) show that unconstrained assortment optimization over

the distribution over permutations model is hard to approximate within factor O(n1−ε) for any

fixed ε > 0 even for the case where the number of preference lists is equal to the number of items,

i.e., K = n.

We consider an instance I of the assortment optimization problem over distribution over permu-

tations model with n preference lists: L1, . . . ,Ln. We construct a corresponding instance M(I) of

the assortment optimization under the Markov chain model as follows. Each of the original items

in N has a separate copy as a state in M(I) for every list that contains it. More precisely, for every

list Li and for every 1≤ j ≤ |Li|, we have a state (j, i) corresponding to the j-th most preferred

item in Li. In addition, there is a state 0 corresponding to the no-purchase option. Therefore, the

set of states is:

S = {0}∪ {(j, i) : i= 1, . . . , n, j = 1, . . . , |Li|}.

The transition probabilities between these states are given by:

ρ((j,i),s) =







1 if j < |Li| and s= (j+1, i)
1 else if j = |Li| and s= 0
0 otherwise.

In other words, for each list there is a directed path (with transition probabilities 1) over its

corresponding states in decreasing order of preference, ending at the no-purchase option. This is

illustrated in Figure 6. Finally, the arrival rates are defined by

λ(j,i) =

{
ψi if j = 1
0 otherwise,
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λ(1,1) = ψ1

λ(1,2) = ψ2

λ(1,4) = ψ4

1, 1 2, 1 3, 1 4, 1

1, 2 2, 2

1, 4

1, 3

2, 4

2, 3

3, 2

3, 4

0

λ(1,3) = ψ3

Figure 6 Sketch of our construction for an instance on 4 items, where L1 = (1 � 2 � 3 � 4), L2 = (1 � 3 � 4),

L3 = (2� 3), and L4 = (1� 2� 4). Note, for example, that the state (2,2) corresponds to the second

item of L2, but actually corresponds to item 3.

where ψi is the probability of list Li. With this construction, each row corresponds to a list, and

each column correspond to an item.

In order to obtain a one-to-one correspondence between the solutions to I and M(I), it remains

to ensure that, when item i is offered in I, all of its corresponding copies (appearing in the same

column) are offered in M(I), and vice versa. This restriction can be captured by the constraints

x(j,i) = x(k,`), for every i, ` ∈ {1, . . . , n} such that j ≤ |Li|, k ≤ |L`| and such that the jth item in

Li is the kth item in L`. This way, we guarantee that each column is either completely picked or

completely unpicked in the instance M(I). The resulting set of inequalities specifies a constraint

matrix with a single appearance of +1 and −1 in each row, where all other entries are 0. Such

matrices are well-known to be totally-unimodular (see, for example, Schrijver (1986)).

To complete the proof, note that the original instance I consists of n items and n preference

lists and therefore, the Markov chain instance M(I) has O(n2) states. Since the former problem

is NP-hard to approximate within factor O(n1−ε), for any fixed ε > 0, it follows that TU-Assort

cannot be efficiently approximated within O(n1/2−ε), unless P =NP . �

Appendix B: Proof of Lemma 2

This result is an immediate corollary of the following (more general) claim: Let Sg be the solution

returned by Algorithm 1, and let S be any subset of states. Then,

R(Sg)≥
R(S)

|S|
.
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To prove this claim, let g be the first item selected by Algorithm 1, which necessarily exists

as long as there is an item i with pi > 0. Then, by definition of the greedy algorithm, we have

R({g})≥R({i}) for every item i∈ S. Therefore,

R(Sg)≥R({g})≥
1

|S|
·
∑

i∈S

R({i})≥
R(S)

|S|
,

where the last inequality follows from the sublinearity of the revenue function (Lemma 9).

Appendix C: Proof of Lemma 4

Let Sgu be the set of states selected by Algorithm 2. Note that for every i ∈ Sgu, we have that

P(i≺ Sgu
+ \{i})≥ P(i≺U∗

+\{i}) since S
gu is a subset of U∗. Thus,

R(Sgu) =
∑

i∈Sgu

P(i≺ Sgu
+ \{i})pi

≥
∑

i∈Sgu

P(i≺U∗
+\{i})pi

≥
k

|U∗|

∑

i∈U∗

P(i≺U∗
+\{i})pi

=
k

|U∗|
R(U∗)

≥
k

|U∗|
R(S∗),

where S∗ is the optimal solution to Cardinality-Assort. Here, the second inequality holds due to

picking the top k states in terms of P(i≺U∗
+\{i}) values. The last inequality holds since the optimal

unconstrained revenue provides an upper bound on the optimal revenue in the constrained case.

Appendix D: Proof of Lemma 6

It suffices to verify that (pS1

i )S2 = pS1∪S2

i for all S1,S2 and i /∈ S1 ∪S2, as the above identity clearly

hold for the transition matrix updates. We have

(pS1

i )S2 =pS1

i −
∑

j∈S2

PS1

i (j ≺ S2+\{j})p
S1

j

=pi −
∑

l∈S1

Pi(l≺ S1+\{l})pl

︸ ︷︷ ︸

A

−
∑

j∈S2

PS1

i (j ≺ S2+\{j})p
S1

j

︸ ︷︷ ︸

B

.

Using the definition of the updated prices,

B =
∑

j∈S2

PS1

i (j ≺ S2+\{j})pj −
∑

j∈S2

PS1

i (j ≺ S2+\{j})
∑

l∈S1

Pj(l≺ S1+\{l})pl

=
∑

j∈S2

Pi(j ≺ (S2 ∪S1)+\{j})pj −
∑

j∈S2

PS1

i (j ≺ S2+\{j})
∑

l∈S1

Pj(l≺ S1+\{l})pl

︸ ︷︷ ︸

C

.
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We can now combine A and C,

A−C =
∑

l∈S1

(

Pi(l≺ S1+\{l})−
∑

j∈S2

Pi(j ≺ (S2 ∪S1)+\{j})Pj(l≺ S1+\{l})

)

pl

=
∑

l∈S1

(Pi(l≺ S1+\{l})−Pi(S2 ≺ l≺ S1+\{l}))pl

=
∑

l∈S1

Pi(l≺ (S2 ∪S1)+\{j})pl.

Putting everything together, we get

(pS1

i )S2 = pi −
∑

j∈(S2∪S1)

Pi(j ≺ (S2 ∪S1)+\{j})pj = pS1∪S2

i .

�

Appendix E: Application of Algorithm 3 to MNL

In the MNL model, we are given a collection of items, 1, . . . , n, along with the no-purchase option,

which is denoted by item 0. Each item i has a utility parameter ui and a price pi. Without loss of

generality, we can assume that
∑n

i=0 ui = 1. For any given assortment S, each item i∈ S is picked

with probability

π(i, S) =
ui

u0 +
∑

i∈S ui

,

making the expected revenue

R(S) =
∑

i∈S

ui

u0 +
∑

`∈S u`

pi.

Blanchet et al. (2016) prove that the MNL choice model is a special case of the Markov chain

model. More precisely, when ρij = uj for all j and λi = ui for all i, the choice probabilities of the

two models are identical. In this special case, our local ratio updates can be written as

pSi =







0 if i∈ S

pi −
∑

j∈S

uj

u0 +
∑

`∈S u`

pj otherwise.

Note that in the above update, the subtracted term is independent of i. Therefore, the ordering of

the prices does not change after each update. Since we are picking the highest adjusted price item

at each step, it follows that the optimal assortment is nested by price, i.e., consists of the top `

priced items, for some `. This is a well known structural property that we recover here as a direct

consequence of our algorithm. Moreover, the updated prices provide a criteria for when to stop

adding items to the assortment.


