Endogenous Liquidity and Defaultable Bonds

Zhiguo He (Chicago Booth and NBER)
Konstantin Milbradt (MIT Sloan)

London Business School
March 2013
Motivation: Default vs Liquidity

- Default and liquidity are interconnected as evident from recent financial crisis
 - Liquidity: funding liquidity, price impact, transaction costs, etc

- Prevalent in theoretical literature: one-way linkages
 1. Liquidity \rightarrow default or 2. Default \rightarrow liquidity

- Today’s paper: liquidity \leftrightarrow default, two-way feedback
 Endogenous liquidity solved jointly with default decision
Motivation: Default vs Liquidity

- Default and liquidity are interconnected as evident from recent financial crisis
 - Liquidity: funding liquidity, price impact, transaction costs, etc

- Prevalent in theoretical literature: one-way linkages
 1. Liquidity → default or 2. Default → liquidity

- Today’s paper: liquidity ⇌ default, two-way feedback
 Endogenous liquidity solved jointly with default decision

- Important in understanding the liquidity and default premia for corporate bond credit spreads
 - Barclays Capital report (2009) shows high correlation between default and liquidity spreads, both in time-series and cross-section
 - Dick-Nielsen, Feldhütter, and Lando (2012), and Friewald, Jankowitsch, and Subrahmanyam (2012)
 - Yet state-of-art empirical literature additively decomposes spreads into independent liquidity and default premium
Motivation: Corporate Bonds

Source: Huang, Huang '03
Motivation: Corporate Bonds

Source: Edward, Harris, Piwowar ’06 (EHP; BA at median trade size)
Mechanism and Results

Building blocks for interaction between fundamental and liquidity:

- How does bond illiquidity arise, and how is it affected by the state of the firm?
 - Over-the-counter market with search friction à la Duffie et al (2005)
- How do corporate decisions interact with secondary market liquidity?
 - Endogenous default and rollover channel à la Leland Toft (1996)

Main results:
- Closed-form solution for bond values and bid-ask spreads, equity values, and default boundary
- Endogenous liquidity allows us to match the cross-sectional pattern of bid-ask spreads and credit spreads
- Liquidity-default spiral and novel default-liquidity decomposition (applied to financial crisis)
Mechanism and Results

Building blocks for interaction between fundamental and liquidity:

- How does bond illiquidity arise, and how is it affected by the state of the firm?
 - Over-the-counter market with search friction à la Duffie et al (2005)
- How do corporate decisions interact with secondary market liquidity?
 - Endogenous default and rollover channel à la Leland Toft (1996)

Main results:

- Closed-form solution for bond values and bid-ask spreads, equity values, and default boundary
- Endogenous liquidity allows us to match the cross-sectional pattern of bid-ask spreads and credit spreads
- Liquidity-default spiral and novel default-liquidity decomposition (applied to financial crisis)
Related Literature

Search in asset markets:
- Duffie, Garleanu, Pedersen ’05 (DGP), ’07
 OTC search market with simplified 'derivative' security

Capital structure models:
- Leland, Toft ’96 (LT)
 Rollover increases exposure of equity holders to fundamental risk
- He, Xiong ’12
 Exogenously given secondary market liquidity affects default decision

Empirical literature:
- Bao, Pan, Wang ’11; Edwards, Harris, Piwowar ’07; Hong, Warga ’00; Hong, Warga, Schultz ’01; Harris, Piwowar ’06; Feldhütter ’11

Feedback models:
- Many many more papers...
Above analysis outside default
Schematic Representation: The Primary Market

Above analysis outside default
Schematic Representation: The Secondary Market

Above analysis outside default
Model: The Firm

Preferences: Everyone risk-neutral with common discount rate r

Cash flows:
- Cash-flow rate δ_t, $d\delta_t = \mu \delta_t dt + \sigma \delta_t dZ^Q_t$
Model: The Firm

Preferences: Everyone risk-neutral with common discount rate \(r \)

Cash flows:
- Cash-flow rate \(\delta_t \),
 \[
 d\delta_t = \mu \delta_t dt + \sigma \delta_t dZ_t^Q
 \]

Debt structure:
- Debt in place with aggregate face value \(p \) and coupon \(c \)
- Stationary principal & staggered maturity (as in LT):
 - Uniform maturity structure \(\Rightarrow \) Mass \(1/T \) matures every instant
 - Maturing bonds reissued with identical contract terms \((c, p, T) \)
Model: The Firm

Preferences: Everyone risk-neutral with common discount rate r

Cash flows:
- Cash-flow rate δ_t, $d\delta_t = \mu\delta_t dt + \sigma\delta_t dZ_t^Q$

Debt structure:
- Debt in place with aggregate face value p and coupon c
- Stationary principal & staggered maturity (as in LT):
 - Uniform maturity structure \Rightarrow Mass $1/T$ matures every instant
 - Maturing bonds reissued with identical contract terms (c, p, T)

Rollover:
- Primary market with transaction costs κ, debt reissued at D_H

$$Net\text{CashFlow}_t = \delta_t - (1 - \pi) c + \frac{1}{T} \left[(1 - \kappa) D_H (\delta_t, T) - p \right]$$

Endogenous default:
- Equity defaults at δ_b when absorbing further losses unprofitable
Model: The Firm

Preferences: Everyone risk-neutral with common discount rate \(r \)

Cash flows:

- Cash-flow rate \(\delta_t \), \(d\delta_t = \mu\delta_t dt + \sigma\delta_t dZ_t^Q \)

Debt structure:

- Debt in place with aggregate face value \(p \) and coupon \(c \)
- Stationary principal & staggered maturity (as in LT):
 - Uniform maturity structure \(\Rightarrow \) Mass \(1/T \) matures every instant
 - Maturing bonds reissued with identical contract terms \((c, p, T) \)

Rollover:

- Primary market with transaction costs \(\kappa \), debt reissued at \(D_H \)

\[
NetCashFlow_t = \delta_t \underbrace{\text{CF}}_{\text{CF}} - (1 - \pi) \underbrace{c}_{\text{Coupon}} + \underbrace{\frac{1}{T} \left[(1 - \kappa) D_H (\delta_t, T) - p \right]}_{\text{Rollover gain/loss}}
\]

Endogenous default:

- Equity defaults at \(\delta_b \) when absorbing further losses unprofitable
Idiosyncratic liquidity shock to bond investors:

- Asset holding restriction \(\{0, 1\} \) as in DGP '05
- Uninsurable i.i.d. liquidity shock results in two types of agents:
 - **H type**: subject to liq shock with intensity \(\xi \) before default, \(\xi_b > \xi \) after default
 - **L type**: currently in liquidity shock state, holding cost \(\chi \) pre-default \((\chi_b r - \mu) \) post-default) until asset sold.

- Type dependent bankruptcy value \(D_i (\delta_b, \tau) = \alpha_i \frac{\delta_b}{r - \mu}, i \in \{H, L\} \)
 where \(\alpha_i \) determined by frictions in post-bankruptcy market
- Simplifying assumption: No recovery from liq shock, \(L \) types exit market after sale. [Assumption for expositional purposes only]
Model: Investors, Liquidity Shocks & Search

Idiosyncratic liquidity shock to bond investors:

- Asset holding restriction \{0, 1\} as in DGP '05
- Uninsurable i.i.d. liquidity shock results in two types of agents:
 - **H type**: subject to liq shock with intensity \(\xi \) before default, \(\xi_b > \xi \) after default
 - **L type**: currently in liquidity shock state, holding cost \(\chi \) pre-default \((\chi_b \frac{\delta b}{r-\mu} \) post-default) until asset sold.
- Type dependent bankruptcy value \(D_i(\delta_b, \tau) = \alpha_i \frac{\delta_b}{r-\mu}, i \in \{ H, L \} \) where \(\alpha_i \) determined by frictions in post-bankruptcy market
- Simplifying assumption: No recovery from liq shock, L types exit market after sale. [Assumption for expositional purposes only]

Trade & search friction:

- \(L \) sellers, \(H \) buyers, all meet OTC dealers with intensity \(\lambda \)
- Competitive interdealer market, no inventory, transaction price \(M \)
- Agents have bargaining power \(\beta \) vis-a-vis a dealer
Model: Secondary Market - A Seller’s Market

Seller’s market Assumption:
Mass sellers μ_L smaller than mass buyers μ_H, i.e., $\mu_L < \mu_H$
Model: Secondary Market - Bid and Ask

Nash-bargaining:
- Let Π be generic surplus. Then Nash-bargaining splits it
 $\beta \Pi \rightarrow Investor$ \hspace{1cm} $(1 - \beta) \Pi \rightarrow Dealer$
Model: Secondary Market - Bid and Ask

Nash-bargaining:
- Let Π be generic surplus. Then Nash-bargaining splits it
 $\beta \Pi \rightarrow \text{Investor} \quad (1 - \beta) \Pi \rightarrow \text{Dealer}$

Pre-default market:
- L-dealer (seller) surplus Π_L, H-dealer (buyer) surplus Π_H
- Bertrand competition in interdealer market erodes H-dealer surplus
 - Why? Any positive surplus would be outbid as there is more potential buyers than sellers
- Ask price A (H is buying at), bid price B (L is selling at)
 - Buy side: $A = D_H - \beta \Pi_H = M = D_H$ and $\Pi_H = 0$
 - Sell side: $B = D_L + \beta \Pi_L$ and $\Pi \equiv \Pi_L = D_H - D_L > 0$
- Key tractability from $D_{L0} = 0$ (by previous assumption) and $D_{H0} = 0$ (as no surplus to buyers in a seller’s market)
Model: Secondary Market - Bid and Ask

Nash-bargaining:
- Let Π be generic surplus. Then Nash-bargaining splits it
 $\beta \Pi \rightarrow \text{Investor}$ \quad (1 − β) $\Pi \rightarrow \text{Dealer}$

Pre-default market:
- L-dealer (seller) surplus Π_L, H-dealer (buyer) surplus Π_H
- Bertrand competition in interdealer market erodes H-dealer surplus
 - Why? Any positive surplus would be outbid as there is more potential buyers than sellers
- Ask price A (H is buying at), bid price B (L is selling at)
 - Buy side: $A = D_H - \beta \Pi_H = M = D_H$ and $\Pi_H = 0$
 - Sell side: $B = D_L + \beta \Pi_L$ and $\Pi = \Pi_L = D_H - D_L > 0$
- Key tractability from $D_{L0} = 0$ (by previous assumption) and $D_{H0} = 0$ (as no surplus to buyers in a seller’s market)

Endogenous liquidity:
- Bid-ask spread $A - B = (1 - \beta) (D_H - D_L)$ proportional to valuation wedge
As surplus from buying is zero, H-investors indifferent between buying on primary market, secondary market and being on sideline.
Model: Valuation Equations

Debt: Boundary conditions $D_{i}(\delta, 0) = p$, $D_{i}(\delta_b, \tau) = \alpha_{i} \frac{\delta_b}{r-\mu}$

$$rD_{H}(\delta, \tau) = \underbrace{A^{\delta} D_{H}(\delta, \tau)}_{CF \ dynamics} - \underbrace{\frac{\partial D_{H}}{\partial \tau}(\delta, \tau)}_{Maturity} \underbrace{(\delta, \tau) + c + \zeta \left[D_{L}(\delta, \tau) - D_{H}(\delta, \tau)\right]}_{Liquidity \ shock}$$

$$rD_{L}(\delta, \tau) = \underbrace{A^{\delta} D_{L}(\delta, \tau)}_{CF \ dynamics} - \underbrace{\frac{\partial D_{L}}{\partial \tau}(\delta, \tau)}_{Maturity} \underbrace{(\delta, \tau) + c - \chi + \lambda \left[B(\delta, \tau) - D_{L}(\delta, \tau)\right]}_{Secondary \ market}$$
Model: Valuation Equations

Debt: Boundary conditions \(D_i (\delta, 0) = p, \) \(D_i (\delta_b, \tau) = \alpha_i \frac{\delta_b}{r-\mu} \)

\[
\begin{align*}
 rD_H (\delta, \tau) &= A^\delta D_H (\delta, \tau) - \alpha H \frac{D_H}{\partial \tau} (\delta, \tau) + c + \frac{\delta_b}{r-\mu} \left[D_L (\delta, \tau) - D_H (\delta, \tau) \right] \\
 rD_L (\delta, \tau) &= A^\delta D_L (\delta, \tau) - \alpha H \frac{D_L}{\partial \tau} (\delta, \tau) + c - \frac{\delta_b}{r-\mu} \left[D_L (\delta, \tau) - D_H (\delta, \tau) \right]
\end{align*}
\]

Observational equivalence:

- As \(\lambda [B - D_L] = \lambda \beta [D_H - D_L] \), pricing equivalent to world with exogenous \(H \leftrightarrow L \) switching intensities \(\zeta \) and \(\lambda \beta \).
Model: Valuation Equations

Debt: Boundary conditions $D_i (\delta, 0) = p$, $D_i (\delta_b, \tau) = \alpha_i \frac{\delta_b}{r - \mu}$

\[
\begin{align*}
rd_H (\delta, \tau) &= A^\delta D_H (\delta, \tau) - \frac{\partial D_H}{\partial \tau} (\delta, \tau) + c + \xi [D_L (\delta, \tau) - D_H (\delta, \tau)] \\
rd_L (\delta, \tau) &= A^\delta D_L (\delta, \tau) - \frac{\partial D_L}{\partial \tau} (\delta, \tau) + c - \chi + \lambda [B (\delta, \tau) - D_L (\delta, \tau)]
\end{align*}
\]

Observational equivalence:

- As $\lambda [B - D_L] = \lambda \beta [D_H - D_L]$, pricing equivalent to world with exogenous $H \leftrightarrow L$ switching intensities ξ and $\lambda \beta$

Equity: Boundary condition $E (\delta_b) = 0$, optimality condition $E' (\delta_b) = 0$

\[
rE = \delta - (1 - \pi) c + A^\delta E (\delta) + \frac{1}{T} [(1 - \kappa) D_H (\delta, T) - p]
\]
Analytic Solutions and Comparative Statics

Closed form solutions:

- Closed form solutions for debt $D_{H/L}$ (mix of two LT solutions), equity E and optimal default boundary δ_b
- Consequently, closed form solutions for absolute and proportional bid-ask spread, $A - B = (1 - \beta) \Pi_L$ and $\Delta = \frac{A - B}{\frac{1}{2}A + \frac{1}{2}B}$, respectively
Analytic Solutions and Comparative Statics

Closed form solutions:
- Closed form solutions for debt $D_{H/L}$ (mix of two LT solutions), equity E and optimal default boundary δ_b
- Consequently, closed form solutions for absolute and proportional bid-ask spread, $A - B = (1 - \beta) \Pi_L$ and $\Delta = \frac{A-B}{\frac{1}{2}A + \frac{1}{2}B}$, respectively

Analytic comparative statics:
1. If wedge at default, $\Pi = (\alpha_H - \alpha_L) \frac{\delta_b}{\mu - r}$, greater than wedge at $(\delta, \tau) \to (\infty, \infty)$, $\Pi = \frac{\lambda}{r + \xi + \lambda \beta}$, then $\partial_\delta (A - B) < 0$.
2. If additionally $\partial_\delta D_H > 0$ (condition provided), then also $\partial_\delta \Delta < 0$.
3. If $\alpha_H > \alpha_L$, then $\partial_\tau (A - B) > 0$.

Interpretation:
1. + 2. Controlling for time-to-maturity, both abs and prop bid-ask spreads decreasing in δ (pro-cyclical liquidity)
3. Controlling for dist-to-default, abs bid-ask spread is increasing in τ.
Liquidity and Default: Full Feedback Loop

Counterfactual: Fixed illiquidity / transaction cost

- Fixed transaction cost k (bid-ask spread of $\frac{k}{1-k/2}$) with immediate sale after shock (as in Amihud Mendelson '86, He Xiong '12)
- Suppose investors believe they are in this counterfactual world
Liquidity and Default: Full Feedback Loop

Counterfactual: Fixed illiquidity / transaction cost

- Fixed transaction cost k (bid-ask spread of $\frac{k}{1-k/2}$) with immediate sale after shock (as in Amihud Mendelson ’86, He Xiong ’12)
- Suppose investors believe they are in this counterfactual world

Thought Experiment:

- When δ shrinks, to investors, transaction costs 'unexpectedly' rise
- Higher transaction costs mean investors value the bond less
- Rollover $\frac{1}{T} \left[(1 - \kappa) D_H (\delta, T) - p \right]$ more costly for each δ
- Costlier rollover implies earlier default δ_b
Liquidity and Default: Full Feedback Loop

Equilibrium feedback loop:

- Cash-flow δ declines
- Liquidity decreases
- Debt values decline
- Equity holders default earlier
- Debt rollover more expensive

- Fixed point δ_b outcome of this spiral
Calibration: Baseline Parameters

<table>
<thead>
<tr>
<th>Firm Characteristics</th>
<th>Secondary Market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Param.</td>
<td>Interpretation</td>
</tr>
<tr>
<td>σ</td>
<td>Volatility</td>
</tr>
<tr>
<td>μ</td>
<td>Drift</td>
</tr>
<tr>
<td>π</td>
<td>Tax shield</td>
</tr>
<tr>
<td>p</td>
<td>Principal</td>
</tr>
<tr>
<td>c</td>
<td>Coupon</td>
</tr>
<tr>
<td>T</td>
<td>Bond maturity</td>
</tr>
<tr>
<td>κ</td>
<td>Issuance costs</td>
</tr>
<tr>
<td>δ_0</td>
<td>Initial Cash Flow</td>
</tr>
</tbody>
</table>

- Pre-default holding costs: $\chi = \chi_p p + \chi_c c$. Pick χ_p/c targeting bid-ask spread of A/BBB-rated bonds.
- Recovery α’s derived form Moody’s Default and Recovery Database
- BA-spread at default $\approx 200\text{ bps}$ in line with EHP data for defaulted bonds for median trade size
- Map δ into quasi leverage via $QL(\delta) = \frac{p}{p + E(\delta)}$
Solid: Adjust c so issued at par (newly issued bonds); Dashed: Constant c (stale bonds)
Calibration: Liquidity

Solid: Adjust c so issued at par (newly issued bonds); Dashed: Constant c (stale bonds)
Solid: Adjust c so issued at par (newly issued bonds); Dashed: Constant c (stale bonds)
Solid: Adjust c so issued at par (newly issued bonds); Dashed: Constant c (stale bonds)
Model-Based Decomposition: Methodology

- Longstaff et al '05: CDS back out default component \hat{y}_{DEF}. How much of default component is caused by liquidity?

- Structural model allows finer decomposition of *credit spread*:

$$\hat{y} = \hat{y}_{\text{pureDEF}} + \hat{y}_{\text{LIQ} \rightarrow \text{DEF}} + \hat{y}_{\text{pureLIQ}} + \hat{y}_{\text{DEF} \rightarrow \text{LIQ}}$$

- **Pure default** \hat{y}_{pureDEF}: fully liquid secondary bond market (LT 96), default at δ_{LT}^*

- **Liquidity-driven Default** $\hat{y}_{\text{LIQ} \rightarrow \text{DEF}}$: additional default due to earlier default at $\delta_b^* > \delta_{LT}^*$ (but full liquidity in trading)

- **Pure Liquidity** \hat{y}_{pureLIQ}: riskless bond spread with illiquid secondary bond market (DGP 05)

- **Default-driven Liquidity** $\hat{y}_{\text{DEF} \rightarrow \text{LIQ}}$: additional illiquidity part due to default

- **Goal**: Separate *causes* from *consequences*
Decomposition: Application to Financial Crisis

- Set δ_0’s to target the credit spreads. Crisis: -50% shock to δ_0’s.

<table>
<thead>
<tr>
<th></th>
<th>Investment Grade</th>
<th>Speculative Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Crisis</td>
</tr>
<tr>
<td>Panel A: Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield Spread bps</td>
<td>97</td>
<td>321</td>
</tr>
<tr>
<td>Illiquidity</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Based on Friewald et al (2012)
Decomposition: Application to Financial Crisis

Set δ_0's to target the credit spreads. Crisis: -50% shock to δ_0's.

Panel A: Data based on Friewald et al (2012)

<table>
<thead>
<tr>
<th></th>
<th>Investment Grade</th>
<th>Speculative Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Crisis</td>
</tr>
<tr>
<td>Yield Spread bps</td>
<td>97</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiquidity</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Model

<table>
<thead>
<tr>
<th></th>
<th>Investment Grade</th>
<th>Speculative Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Crisis</td>
</tr>
<tr>
<td>Yield Spread bps</td>
<td>100</td>
<td>318</td>
</tr>
<tr>
<td></td>
<td>($3.2\times$)</td>
<td></td>
</tr>
<tr>
<td>BA spread bps</td>
<td>42</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>($1.2\times$)</td>
<td></td>
</tr>
</tbody>
</table>
Decomposition: Application to Financial Crisis

- Set δ_0’s to target the credit spreads. Crisis: -50% shock to δ_0’s.

<table>
<thead>
<tr>
<th></th>
<th>Investment Grade</th>
<th>Speculative Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Crisis</td>
</tr>
<tr>
<td>Panel A: Data based on Friewald et al (2012)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield Spread bps</td>
<td>97</td>
<td>321</td>
</tr>
<tr>
<td>Illiquidity</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Panel B: Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yield Spread bps</td>
<td>100</td>
<td>318</td>
</tr>
<tr>
<td>BA spread bps</td>
<td>42</td>
<td>51</td>
</tr>
<tr>
<td>Panel C: Decomposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure Default</td>
<td>32</td>
<td>168</td>
</tr>
<tr>
<td>Liquidity-driven Def</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Pure Liquidity</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>Default-driven Liq</td>
<td>19</td>
<td>89</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>318</td>
</tr>
</tbody>
</table>

Microfoundation of Bankruptcy Wedge

Bankruptcy payout delay:

- Bankruptcy recovery $\alpha < 1$ of unlevered firm value $\frac{\delta_b}{r-\mu}$
- Recovery payout at exponential (θ) time due to legal delay
Microfoundation of Bankruptcy Wedge

Bankruptcy payout delay:
- Bankruptcy recovery $\alpha < 1$ of unlevered firm value $\frac{\delta_b}{r-\mu}$
- Recovery payout at exponential (θ) time due to legal delay

Post-default market:
- Search market characterized by $(\theta, \xi_b, \lambda_b, \chi_b, \beta_b, \delta_b)$
- Ask price $A^b = D^b_H$, bid price $B^b = D^b_L + (1 - \beta) \Pi^b_L$
- *Seller’s market* assumption: Competitive interdealer price M^b erodes all surplus of buyers
Microfoundation of Bankruptcy Wedge

Bankruptcy payout delay:
- Bankruptcy recovery $\alpha < 1$ of unlevered firm value $\frac{\delta_b}{r-\mu}$
- Recovery payout at exponential (θ) time due to legal delay

Post-default market:
- Search market characterized by $(\theta, \xi_b, \lambda_b, \chi_b, \beta_b, \delta_b)$
- Ask price $A_b = D^b_H$, bid price $B_b = D^b_L + (1 - \beta) \Pi^b_L$
- Seller’s market assumption: Competitive interdealer price M^b erodes all surplus of buyers

Effective bankruptcy recovery for H and L investors:
- Closed form $D^b_H = \alpha_H \frac{\delta_b}{r-\mu} > D^b_L = \alpha_L \frac{\delta_b}{r-\mu}$
 \Rightarrow Pre-default liquidity, via δ_b, affects post-default liquidity
- Interpretation of default as firm-wide liquidity event that is endogenously triggered
Calibration of Bankruptcy Wedge

Other data sources:

- EHP: Bid-ask spread right before default ≈ 200 bps
- Chen 2011: Bankruptcy recovery from trading price at default $\alpha_L = 50\%$

Moody’s default and recovery database:

- Avg time to emergence: 501 days $\Rightarrow \theta = 0.73$
- Annual buy-and-hold return: 36\% (relative to S&P benchmark) \Rightarrow Eventual recovery $\alpha = \alpha_L \times 1.52 = 0.75$
- Benchmark perfect liquidity model has $\alpha_{LT} = \frac{\theta}{r+\theta} \alpha$

Parameters that give α’s:

- Data only allows identification of two deeper structural parameters
- Assuming (β_b, λ_b) unchanged, $(\chi_b, \xi_b) = (0.1855, 16.5)$
Optimal Maturity: Rollover Risk vs Liquidity

Negative: Short-term debt leads to earlier default
- Higher rollover frequency increases equity’s exposure to δ

\[
Rollover\ gain/loss_t = \frac{1}{T} \times \left[(1 - \kappa) D_H(\delta_t, T) - p \right]
\]

- Higher exposure to δ leads to higher default boundary δ_B

Positive: Short-term debt provides liquidity
- Short maturity improves bargaining outcome between seller & dealer
- Issuing to H types more frequently improves allocative efficiency as it 'recycles' L types to H types quicker

⇒ Finite maturity $T^* < \infty$ optimal if moderate initial leverage; T^* lower the less liquid secondary market (i.e. the lower λ)
Optimal Maturity: Rollover Risk vs Liquidity

Negative: Short-term debt leads to earlier default

- Higher rollover frequency increases equity’s exposure to δ

$$\text{Rollover gain/loss}_t = \frac{1}{T} \times \left[(1 - \kappa) D_H (\delta_t, T) - p \right]$$

- Higher exposure to δ leads to higher default boundary δ_B

\Rightarrow LT, He and Xiong ’12: Infinite maturity debt *always* optimal ex-ante
Optimal Maturity: Rollover Risk vs Liquidity

Negative: Short-term debt leads to earlier default

- Higher rollover frequency increases equity’s exposure to δ

\[
Rollover \, gain/\, loss_t = \frac{1}{T} \times [(1 - \kappa) D_H (\delta_t, T) - p]
\]

- Higher exposure to δ leads to higher default boundary δ_B

\Rightarrow LT, He and Xiong ’12: Infinite maturity debt *always* optimal ex-ante

Positive: Short-term debt provides liquidity

- Short maturity improves bargaining outcome between seller & dealer
- Issuing to H types more frequently improves allocative efficiency as it ‘recycles’ L types to H types quicker
Optimal Maturity: Rollover Risk vs Liquidity

Negative: Short-term debt leads to earlier default

- Higher rollover frequency increases equity’s exposure to δ

\[
\text{Rollover gain/loss}_t = \frac{1}{T} \times \left[(1 - \kappa) D_H(\delta_t, T) - p \right]
\]

- Higher exposure to δ leads to higher default boundary δ_B

\Rightarrow LT, He and Xiong ’12: Infinite maturity debt *always* optimal ex-ante

Positive: Short-term debt provides liquidity

- Short maturity improves bargaining outcome between seller & dealer
- Issuing to H types more frequently improves allocative efficiency as it ‘recycles’ L types to H types quicker

\Rightarrow Finite maturity $T^* < \infty$ optimal if moderate initial leverage; T^* lower the less liquid secondary market (i.e. the lower λ)
{Recall: Orders \textit{batched}, i.e. intermediation intensity λ constant across τ}

\textbf{Steady-state Distribution:}

- Let $p_H(\tau) / p_L(\tau)$ be the proportion of H/L types of maturity τ that hold the bond. Then

$$p_H(T) = 1 \quad \& \quad \frac{\partial p_H(\tau)}{\partial \tau} = \lambda p_L(\tau) - \xi p_H(\tau)$$

$$\Rightarrow p_H(\tau) = \frac{\lambda + \xi e^{(\tau-T)(\lambda+\xi)}}{\lambda + \xi}$$
Trading Volume

{Recall: Orders \textit{batched}, i.e. intermediation intensity λ constant across τ}

\textbf{Steady-state Distribution:}

- Let $p_H(\tau) / p_L(\tau)$ be the proportion of H/L types of maturity τ that hold the bond. Then

 $$p_H(T) = 1 \quad \& \quad \frac{\partial p_H(\tau)}{\partial \tau} = \lambda p_L(\tau) - \xi p_H(\tau)$$

 $$\Rightarrow p_H(\tau) = \frac{\lambda + \xi e^{(\tau-T)(\lambda+\xi)}}{\lambda + \xi}$$

\textbf{Empirical implication:}

- Trade volume decreasing in τ: $V(\tau) = \frac{\lambda \xi}{T(\lambda + \xi)} \left[1 - \xi e^{(\tau-T)(\lambda+\xi)} \right]$

- Results driven by
 - Placement tech. ('recycling' maturing L types to H types)
 - Constant intermediation intensity λ across maturities
A Full Equilibrium Search Market

Recovery:
- Introduce recovery shock ξ_{LH} that hits agents of type L.
- Effective recovery rate for pricing $\xi_{LH}^{\text{effective}} \equiv (\lambda \beta + \xi_{LH})$.

Accounting:
- Total mass μ of agents: $\mu = \mu_{H0} + \mu_{H1} + \mu_{L0} + \mu_{L1}$.
- Type-only distributions, μ_{H} and μ_{L}, are independent of trading.
- Let $\lim_{t \to \infty} \mu_{H}(t) = \mu_{ss}$.

From ODE $\dot{\mu}_{H} = \xi_{LH} \mu_{L} - \xi_{HL} \mu_{H} = \xi_{LH} \mu - (\xi_{HL} + \xi_{LH}) \mu_{H}$, we know μ_{H} monotone and $\mu_{ss} = \xi_{LH} \mu_{x}$.

Micro-foundations of Seller's Market assumption:
- $\mu_{H0} = \mu - \mu_{H1} - \mu_{L0} - \mu_{L1} = \mu - (1 - \mu_{L1}) - \mu_{L1} = \mu_{H} - 1 + \mu_{L1}$.

Note that $\xi_{bHL} > \xi_{HL}$ implies μ_{ss}, $b_{H} < \mu_{ss}$.
- Then $\mu_{H0}(t) > \mu_{L1}(t) \iff \min\{\mu_{H}(0), \mu_{ss}, b_{H}\} > 1$.
A Full Equilibrium Search Market

Recovery:

- Introduce recovery shock ξ_{LH} that hits agents of type L
- *Effective* recovery rate for pricing $\xi^\text{effective}_{LH} \equiv (\lambda \beta + \xi_{LH})$

Accounting:

- Total mass μ of agents: $\mu = \mu_{H0} + \mu_{H1} + \mu_{L0} + \mu_{L1}$
- Type-only distributions, μ_H and μ_L, are independent of trading
- Let $\lim_{t \to \infty} \mu_H(t) = \mu_{H}^{ss}$. Then from ODE

$$\dot{\mu}_H = \xi_{LH}\mu_L - \xi_{HL}\mu_H = \xi_{LH}\mu - (\xi_{HL} + \xi_{LH})\mu_H$$

we know μ_H monotone and $\mu_{H}^{ss} = \frac{\xi_{LH}\mu}{\xi_{HL} + \xi_{LH}}$
A Full Equilibrium Search Market

Recovery:
- Introduce recovery shock ξ_{LH} that hits agents of type L
- Effective recovery rate for pricing $\xi_{LH}^{effective} \equiv (\lambda \beta + \xi_{LH})$

Accounting:
- Total mass μ of agents: $\mu = \mu_{H0} + \mu_{H1} + \mu_{L0} + \mu_{L1}$
- Type-only distributions, μ_H and μ_L, are independent of trading
- Let $\lim_{t \to \infty} \mu_H(t) = \mu_{H}^{ss}$. Then from ODE
 $$\dot{\mu}_H = \xi_{LH}\mu_L - \xi_{HL}\mu_H = \xi_{LH}\mu - (\xi_{HL} + \xi_{LH})\mu_H$$
 we know μ_H monotone and $\mu_{H}^{ss} = \frac{\xi_{LH}\mu}{\xi_{HL}+\xi_{LH}}$

Micro-foundations of Seller’s Market assumption:
- $\mu_{H0} = \mu - \mu_{H1} - \mu_{L0} - \mu_{L1} = \mu - (1 - \mu_{L1}) - \mu_L = \mu_H - 1 + \mu_{L1}$
- Note that $\xi_{HL}^b > \xi_{HL}$ implies $\mu_{H}^{ss,b} < \mu_{H}^{ss}$
- Then $\mu_{H0}(t) > \mu_{L1}(t) \iff \min \left\{ \mu_H(0), \mu_{H}^{ss,b} \right\} > 1$
Future Work: Liquidity over the Business Cycle

Aggregate shocks:
- Model so far only has aggregate shocks in δ
- Introduce (Poisson) aggregate shocks to parameters to capture macro-risks

Changes to model:
- Sacrifice deterministic maturity, use random maturity to handle shifts in aggregate state while maintaining tractability / closed-forms:
 - **Good** period with normal cash-flows and well intermediated OTC markets
 - **Bad / Crisis** period with shock to intermediation intensity (financial crisis), riskier cash-flows, and higher price of risk (Chen 2010)
Conclusion

Fully solved non-stationary dynamic search model:
- Closed form solution for debt, equity, default boundary

Liquidity-default spiral:
- Lower liquidity in secondary market lowers the distance to default, which further lowers liquidity in secondary market,...

Yield-spread decomposition:
- Focus on *causes* instead of *consequences*

What about adverse selection?
- Definitely reasonable but challenging. Probably generates similar empirical illiquidity pattern (Crotty, Back ’13)
- For understanding the role of liquidity in credit spreads, search framework (simple, easy to be integrated) delivers first-order effects

On-going empirical work:
- Incorporating macroeconomy & aggregate liquidity states, to better understand *liquidity/default interaction*