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This paper studies the optimal compensation problem between shareholders and the

agent in the Leland (1994) capital structure model, and finds that the debt-overhang

effect on the endogenous managerial incentives lowers the optimal leverage. Consistent

with data, our model delivers a negative relation between pay-performance sensitivity

and firm size, and the interaction between debt-overhang and agency issue leads

smaller firms to take less leverage relative to their larger peers. During financial

distress, a firm’s cash flow becomes more sensitive to underlying performance shocks

due to debt-overhang. The implications on credit spreads and debt covenants are also

considered.

Published by Elsevier B.V.

1. Introduction

This paper embeds optimal contracting between the
agent (manager) and shareholders into the cash flow
framework commonly used in the literature of structural
models of capital structure (Leland, 1994). By connecting
these two literatures, I provide a general framework to
study the impact of agency characteristics on firm valua-
tion and capital structure. Moreover, the dynamic nature
of this framework allows me to calibrate my model and,
in turn, quantitatively assess the agency impact on the
firm’s leverage decision.

I characterize the optimal contract between share-
holders and the agent explicitly. In determining the
leverage level, debt bears an additional ‘‘debt-overhang’’
cost relative to the bankruptcy cost in standard models
(a la Leland, 1994): By interpreting the agent’s effort as a
form of investment, shareholders implement diminishing
effort (as cut back investment) during financial distress.
As a result, the agency problem reduces the optimal
leverage from 63.2% based on Leland (1994, with my
calibration) to as low as 39.5%. Consistent with the data,
my model predicts that small firms take less leverage
relative to their large peers. The debt-overhang problem
also implies that the firm’s cash flow is more sensitive
to underlying shocks, reinforcing the standard leverage
effect.

Section 2 starts by offering a general analysis in solving
the optimal contracting problem. The analysis hinges on
the agent’s constant absolute risk aversion (CARA, or
exponential) preference. In contrast to Holmstrom and
Milgrom (1987), in which the lump-sum compensation is
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considered, the agent in my model has intermediate
consumption flows and can privately save. To solve for
the optimal contract, I employ the approach in Sannikov
(2008) and take the agent’s continuation value (continua-
tion payoff or promised utility) as one state variable. The
absence of wealth effect under CARA preference allows
me to characterize the optimal contract by an ordinary
differential equation (ODE) in Section 2.3. I derive the
(second-best) firm value and the agent’s pay-performance
sensitivity (PPS, the dollar-to-dollar measure as in Jensen
and Murphy, 1990) based on the optimal contracting. I
also characterize the condition that ensures the empirical
regularity of an inverse relation between the agent’s pay-
performance sensitivity and firm size.

Section 3 applies the optimal contracting result to the
framework in Leland (1994). There, the firm growth is
endogenously affected by the agent’s effort, and in the
optimal contract both the pay-performance sensitivity and
the firm growth are decreasing in firm size. To investigate
the impact of agency issues on capital structure, Section
3.3 introduces debt into the baseline model. For better
comparison with Leland (1994) and other related work,
I leave the debt contract to take the same form as in Leland
(1994). Specifically, only consol bond is considered, and
shareholders have the option to default when the firm
profitability deteriorates. On the contracting side, I bond
the agent and shareholders together through an optimal
contract solved in Section 2.1 Furthermore, shareholders
and the agent can revise the compensation contract
dynamically, so that the compensation contract is a best
response to the capital structure.2 Essentially, these sim-
plifying assumptions capture the key notion that, in
United States corporations, managers are responsible only
to shareholders (e.g., Brealey, Myers, and Allen, 2006).

I then solve for the optimal capital structure and the
optimal employment contract in Section 3.3. Compared
with Leland (1994), my model features a debt-overhang
problem. Specifically, in my endogenous firm growth
framework in which the firm growth is controlled by
the manager or shareholders or both, when close to
bankruptcy shareholders assign diminishing incentives
to the agent. This result is due to debt-overhang, i.e.,
reducing the positive net present value (NPV) effort
investment in financially distressed firms. In other words,
beyond the standard bankruptcy cost, debt bears another
form of cost, as debt-overhang interferes with agency
issues. As a result, my model produces lower optimal
leverage ratios relative to the Leland (1994) benchmark.

The debt-overhang generates a negative relation
between leverage and agent’s working incentives, a predic-
tion opposite to Cadenillas, Cvitanic, and Zapatero (2004),

in which the debt level and agent’s incentives are positively
related. In that paper, they study a dynamic compensation
and capital structure model in which the agent controls
both the drift (effort) and the volatility (project selection) of
the firm value. There, the agent’s compensation space is
restricted to equity shares, and shareholders commit to this
static compensation scheme. Setting a higher leverage
directly reduces the value of the agent’s equity compensa-
tion. Under their assumption of the agent having log utility,
this induces a higher sensitivity of the agent’s value to his
performance and, therefore, stronger working incentives. In
contrast, I show that in a dynamic model, if shareholders
and the agent can revise the compensation contract ex
post,3 then there is an opposite effect in addition to these
channels, and it is an empirical question of which force
prevails under various economic circumstances.

Further, the interaction between agency issue and debt-
overhang predicts that smaller firms take less leverage,
which is consistent with empirical regularity. In my model,
shareholders in small firms implement a higher effort (or,
higher investment) without debt, which matches the empiri-
cally observed negative relation between pay-performance
sensitivities and firm sizes. Because the presence of debt cuts
back effort investment, debt-overhang becomes more severe
in small firms. Taking this higher debt-overhang cost into
account, small firms choose a lower optimal leverage. In my
calibrations for small firms, the predicted optimal leverage
ratios, with or without the agency issue, can have a sizeable
difference (63.2% versus 39.5%).

In the literature, several attempts have been made to
incorporate other important agency issues into the cor-
porate security pricing setting. For instance, Leland (1998)
studies the risk-shifting issue due to the endogenous
choice of firm’s volatility; there, the agent and share-
holders are treated as one party. This paper focuses on
debt-overhang.4 Moreover, this paper distinguishes itself
from the above mentioned literature in that I study the
agency impact based on the optimal dynamic contracting
approach. Even though it seems appealing to restrict the
compensation contract space within commonly observed
forms as in Cadenillas, Cvitanic, and Zapatero (2004), one
might wonder whether the derived impact of agency
problems is sensitive to specific contract forms.5 The
optimal contracting approach is free of this issue.

1 In my model, the agent, once bonded with shareholders by an

optimal contract, has perfectly aligned interest with shareholders when

dealing with debt holders. As a result, the default policy is independent

of whether shareholders or the agent control the bankruptcy decision.

This is different from Morellec (2004), in which the agent tends to keep

the firm alive longer for more private benefit.
2 This assumption can be justified by the fact that, under this CARA

framework, the long-term contract is renegotiation-proof and can be

implemented by a sequence of short-term contracts (see Fudenberg,

Holmstrom, and Milgrom, 1990).

3 This assumption is consistent with both the practice of resetting

the strike price of stock options, and the empirical results in Bryan,

Hwang, and Lilien (2000) who investigate the stock-based compensa-

tions in a panel of firms (see footnote 29 for more details).
4 Based on the free cash flow problem, Morellec (2004) introduces a

tension between the agent and shareholders, and the empire-building

agent tends to set a lower leverage ratio for rent-maximizing

purposes. Cadenillas, Cvitanic, and Zapatero (2004) study a different

version of agency problem, in which they restrict the compensation

contract space to be equity. Because the equity payoff ties to the debt

face value, in their model the capital structure becomes a direct

compensation scheme. In contrast, in my model the impact of leverage

decision on the compensation contract is indirect.
5 Technically speaking, in the aforementioned papers, either the

volatility choice in Leland (1998) which is observable in Brownian setting,

or the over-investment (observable) decision in Morellec (2004), can be

easily resolved by optimal contracting. These extreme examples illustrate

the sensitivity of agency costs to the contracting space.
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This paper is also related to the ongoing continuous-time
contracting literature. Sannikov (2008) studies a general
dynamic agency problem without private savings. Williams
(2006) focuses on the general hidden-state problem and
solves an example with CARA preference. My paper, based
on the continuation value approach advocated in Sannikov
(2008), analyzes the general cash flow setup and focuses on
the applications to corporate finance. DeMarzo and Fishman
(2007), DeMarzo and Sannikov (2006), and Biais, Mariotti,
Plantin, and Rochet (2007) solve a dynamic contracting
problem with a risk-neutral agent, in which the limited
liability restriction is imposed.6 In contrast, this paper takes
the Holmstrom and Milgrom (1987) framework, which not
only allows for a risk-averse agent, but also easily accom-
modates a second state variable to capture the firm’s time-
varying profitability.7 Compared with Holmstrom and
Milgrom (1987), I allow for the agent’s intermediate con-
sumption, and therefore their approach is no longer
applicable.

The rest of this paper is organized as follows. Section 2
derives an ODE that characterizes the optimal contrac-
ting, and Section 3 applies the contracting result to
Leland (1994). Section 4 concludes. All proofs are in the
Appendix.

2. General model and optimal contracting

In this section, I first study the optimal contracting
problem in a model with general cash flow process. Then
based on the implementation of the optimal contract, I
discuss its implications on pay-performance sensitivities
(PPS) in executive compensation.

2.1. General model

I study an infinite-horizon, continuous-time agency
problem. The firm (shareholders) hires an agent to oper-
ate the business. The firm produces cash flows dt per unit
of time, where dt follows the stochastic process

ddt ¼ mðdt ,atÞ dtþsðdtÞ dZt : ð1Þ

I also interpret dt as firm size in this paper. Through
unobservable effort at 2 ½0,a�, the agent controls the cash
flow growth rate mðdt ,atÞ, where maðd,aÞ � @mðd,aÞ=@a40
and maaðd,aÞ � @2mðd,aÞ=@a2r0. The performances fdtg are
contractible.

Shareholders (the principal) are risk-neutral, and
they discount future cash flows at the constant market
interest rate r. To focus on the optimal contracting,

throughout Section 2 the firm is unlevered. I will intro-
duce debt holders in Section 3.

The agent, with a CARA instantaneous utility and a
time discounting factor r, maximizes his expected life
time utility

E

Z 1
0
�

1

g e�gðct�gðdt ,at ÞÞ�rt dt

� �
,

where ct 2 R is the agent’s consumption rate and gðd,aÞ is
the agent’s monetary effort cost with gaðd,aÞ ¼ @gðd,aÞ
=@a40 and gaaðd,aÞ ¼ @2gðd,aÞ=@a240. To ensure that
pay-performance sensitivity is falling with firm size in
the optimal contract, later in Section 2.4.2 I impose
restrictions on the dependence of mðd,aÞ and gðd,aÞ on
firm size d.

I allow for the agent’s private (unobservable) savings.
The agent can borrow and save at the risk-free rate r in his
personal savings account. The account balance, as well as
the agent’s actual consumption, is unobservable to share-
holders. It is the agent’s intermediate consumption, asso-
ciated with the possibility of private savings, that
distinguishes my analysis from the classic Holmstrom
and Milgrom (1987).

2.2. Contracting problem

I distinguish the policies recommended by the con-
tract, from the agent’s actual policies. The latter is
indicated by a ‘‘hat’’ on top of the relevant symbols.

The employment contract P¼ fc; ag specifies the
agent’s recommended consumption process c and the
recommended effort process fag. The process fcg can also
be interpreted as the wage process. Both elements are
adapted to the filtration generated by fdg. In other words,
they are functions of the agent’s performance history. To
simplify the analysis, unless otherwise stated, in this
subsection I assume that the effort process fag takes
interior solutions.

For simplicity I assume that the agent’s initial wealth is 0.8

Given P¼ fc; ag, the agent’s problem is

V0ðPÞ ¼max
fĉ t ,â tg

E

Z 1
0
�

1

g e�gðĉ t�gðdt ,â t ÞÞ�rt dt

� �
ð2Þ

s:t: dSt ¼ rSt dtþct dt�ĉ t dt, S0 ¼ 0,

ddt ¼ mðdt ,âtÞ dtþsðdtÞ dZt ,

where V0ðPÞ denotes the agent’s time-0 value derived from
the contract P, fStg denotes the balance in the agent’s savings

6 For extensions, e.g., He (2009) studies the optimal executive com-

pensation in a geometric Brownian cash flow setting, and Piskorski and

Tchistyi (2010) study the optimal mortgage design by considering the

exogenous regime switching in the investors’ discount rate.
7 For another example among various extensions of Holmstrom and

Milgrom (1987), Schattler and Sung (1993) offer a general treatment for

the continuous-time contracting with CARA preference, but under the

original Holmstrom and Milgrom (1987) setting, i.e., a finite time

horizon with a lump-sum compensation. Because the lump-sum com-

pensation (consumption) occurs at the end of employment period, as

opposed to flows studied in this paper, there is no issue of private

savings in Schattler and Sung (1993).

8 This assumption is innocuous given the CARA preference. If the

agent’s initial wealth W0 is observable, then the contract could ask the

agent to hand over his wealth to the principal (shareholders), who can

plan for the agent subsequently through the contract. Even if the initial

wealth W0 is the agent’s private information, the absence of wealth

effect implies that, facing any contract, the agent takes the same effort

policy as another hypothetical agent with 0 initial wealth (except

consuming rW0 more each period). For details, see the argument

in Section 2.3.2 and Lemma 3. Therefore, the principal can easily design

an optimal scheme to induce truth-telling, in that the contract promises

the agent rW0 more per period if at t¼ 0 the agent hands over W0 to the

principal.
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account, and transversality condition limT-1E½e
�rT ST � ¼ 0 is

imposed for all feasible policies. Both the consumption policy
fcg and effort policy fag are ‘‘recommended’’ only. For
instance, the first constraint states that, the change of the
agent’s savings dSt is the interest accrual rStdt plus the wage
deposit ctdt and minus the consumption withdrawal ĉ tdt. To
save, the agent can set his consumption ĉ t strictly below the
wage ct.

Suppose that the agent has a time-0 outside option v0.
Shareholders solve the following problem

max
P

EdðPÞ
Z 1

0
e�rtðdt�ctÞ dt

� �
s:t: V0ðPÞZv0,

where EdðPÞ½�� indicates the dependence of probability
measure (over fdg) on the employment contract P when
the agent solves his problem (2). The second line is the
agent’s participation constraint. As in Holmstrom and
Milgrom (1987), under this CARA framework without
limited liability, the participation constraint always binds,
and the outside option v0 affects only the optimal contract
by a constant transfer between these two parties.

I define the class of incentive-compatible and no-
savings contracts as follows.

Definition 1. A contract P¼ fc; ag is incentive-compati-
ble and no-savings if the solution to the agent’s pro-
blem (2) is fc; ag.

That is, a contract P is incentive-compatible and no-
savings if the agent, once facing the contract P, finds it
optimal to exert the recommended effort (i.e., incentive-
compatible) and follow the recommended consumption
plans (i.e., no-savings).

Because shareholders have the same saving technology
(with rate r) as the agent, Lemma 2 allows me to focus on
incentive-compatible and no-savings contracts only, a
result similar to the ‘‘Revelation Principle.’’ Essentially,
when shareholders can fully commit, they can save for the
agent on his behalf.

Lemma 2. It is without loss of generality to focus on the

incentive-compatible and no-savings contracts.

2.3. Model solution

2.3.1. Agent’s continuation value

Following the literature, in solving the optimal con-
tract, I take the agent’s continuation value (continuation
payoff, or promised utility) as the state variable. Formally,
given the contract P¼ fc; ag, the agent’s continuation
value is defined as

VtðP,dtÞ ¼ Et

Z 1
t
�

1

g e�gðcs�gðds ,asÞÞ�rðs�tÞ ds

� �
: ð3Þ

This payoff is a function of the compensation contract P
and the current cash flow level dt . To be specific, it is the
agent’s payoff (given dt) obtained under the policies
specified by P: The agent exerts effort policy fas : sZtg

recommended by P and consumes exactly his future
wages fcs : sZtg. In Section 2.3.3, I shall invoke the

important fact that these recommended policies have to
be optimal among all policies in the agent’s problem (2).

By the martingale representation theorem (e.g., Sannikov,
2008), Eq. (3) implies that the agent’s continuation value
evolves as

dVt ¼ rVt dt�uðct ,atÞ dtþbtð�grVtÞ½ddt�mðdt ,atÞ dt�, ð4Þ

where the agent’s instantaneous utility uðct ,atÞ is

uðct ,atÞ ¼ �e�gðct�gðdt ,at ÞÞ=g,

and fbg is a progressively measurable process. Here,
�grVt 40 [note that Vt o0 in (3)] is a scaling factor that
facilitates the economic interpretation of bt later in Section
2.3.3.

To read the evolution of the continuation value in
Eq. (4), the agent’s expected total value change is

Et½dVtþuðct ,atÞ dt� ¼ rVt dt,

which is the required return for the agent. The key
element in Eq. (4) lies in the volatility part. It is the
volatility of the agent’s continuation value that controls
the agent’s working incentives. Intuitively, as clear from
reading Eq. (4), the volatility part btð�grVtÞ½ddt�mðdt ,
atÞ dt� directly links to the observable performance ddt ,
and btð�grVtÞ measures the punishing or rewarding
extent in the employment contract. As a result, in Section
2.3.3 I connect btð�grVtÞ, which is the incentive imposed
by the contract, to the implemented effort at.

2.3.2. Absence of wealth effect

The CARA preference plays a key role in solving for
the optimal contract. In essence, the absence of wealth
effect allows me to derive the agent’s deviation value
(when he deviates to other off-equilibrium nonzero sav-
ings) based only on the agent’s equilibrium value V

without savings.

Lemma 3. At any time tZ0, consider a deviating agent

with savings S who faces the contract P, and denote by

VtðS;P,dtÞ his deviation continuation value. Then

VtðS;P,dtÞ ¼ Vtð0;P,dtÞ � e
�grS ¼ Vt � e

�grS, ð5Þ

where Vtð0;P,dtÞ is the agent’s continuation value Vt along

the no-savings path defined in Eq. (3).

The intuition is simple. For a CARA agent without
wealth effect, given the extra savings S, his new optimal
policy is to take the optimal consumption-effort policy
without savings but to consume an extra rS more for all
future dates sZt. Because

uðcsþrS,asÞ ¼ e�grSuðcs,asÞ,

this explains the factor e�grS in Eq. (5). Essentially, for
CARA preference, the agent’s problem is translation-
invariant to his underlying wealth level. Without CARA
preference, the agent’s working incentives is wealth-
dependent, and the deviation value representations, as
simple as Eq. (5), are no longer available.

2.3.3. Equilibrium evolution of V

For incentive-compatible and no-savings contracts, the
recommended consumption-effort policies specified in P

Z. He / Journal of Financial Economics 100 (2011) 351–366354
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have to be optimal among all policies. Based on this
requirement, I now derive the necessary and sufficient
conditions for the equilibrium evolution of Vt in Eq. (4).

No Savings. Fix the effort policy first. By the optimality
of the agent’s consumption-savings policy in problem (2),
his marginal utility from consumption must equal his
marginal value of wealth:

ucðct ,atÞ ¼
@

@S
Vtð0;P,dtÞ:

Therefore, the necessary condition for P to rule out
private savings is

ucðct ,atÞ ¼ e�gðct�gðdt ,at ÞÞ ¼
@

@S
Vtð0;P,dtÞ ¼�grVt

) uðct ,atÞ ¼ rVt , ð6Þ

where the third equation uses the functional form of
VtðS;P,dtÞ in Eq. (5). Plugging this result into Eq. (4), one
observes that u(ct,at) just offsets rVt, and Eq. (4) becomes

dVt ¼ btð�grVtÞ½ddt�mðdt ,atÞ dt�: ð7Þ

Therefore, the agent’s continuation value Vt follows a
martingale.

Two points are noteworthy. First, because uðct ,atÞ ¼

�e�gðct�gðdt ,at ÞÞ=g, the relation uðct ,atÞ ¼ rVt implies that the
equilibrium consumption (or the agent’s wage) is

ct ¼ gðdt ,atÞ�
lngr

g
�

1

g
lnð�VtÞ: ð8Þ

Second, because ucðct ,atÞ ¼ �grVt as shown in Eq. (6), the
agent’s marginal utility also follows a martingale. Natu-
rally, this is a consequence of the agent’s optimal con-
sumption-savings policy, which is in direct contrast to the
optimal contracting with observable savings as studied
in Rogerson (1985) and Sannikov (2008). There, the
principal can dictate the agent’s consumption plan that
is suboptimal from the agent’s view.

Incentive compatibility. Now I turn to incentive provi-
sion to pinpoint the diffusion loading bt . In Eq. (7),
btð�grVtÞ measures the agent’s continuation utility sensi-
tivity with respect to the unexpected performance
ddt�mðdt ,atÞ dt. Now the role of the scaling factor �grVt

becomes clear: Because �grVt is the agent’s marginal
utility uc as shown in (6), by transforming ‘‘utilities’’ to
‘‘dollars,’’ bt directly measures the (monetary) compensa-
tion sensitivity with respect to his performance.

Consider the agent’s effort decision. On the one hand,
choosing ât affects the agent’s instantaneous utility
uðct ,âtÞ. On the other hand, ât sets the drift of his
performance ddt , which affects his expected continuation
payoff Et½dVtðâtÞ� in Eq. (7) via bt � uc � mðdt ,âtÞ. By balan-
cing the impacts on his instantaneous utility and con-
tinuation payoff, the agent is solving

max
â t

uðct ,âtÞþbt � uc � mðdt ,âtÞ:

Because uðct ,âtÞ ¼ uðct�gðâtÞÞ, I have ua ¼ uc � ð�gaðdt ,atÞÞ.
Therefore, implementing ât ¼ at requires that

�gaðdt ,atÞþbtmaðdt ,atÞ ¼ 0) bt ¼
gaðdt ,atÞ

maðdt ,atÞ
, ð9Þ

and it is easy to check that this first-order condition is
also sufficient.9

Eq. (9) gives an equilibrium relation between the
recommended effort at and the incentive loading bt .
Intuitively, maðdt ,atÞ is the agent’s effort impact on the
instantaneous performance, and btmaðdt ,atÞ gives the
agent’s monetary marginal benefit of his effort. To be
incentive-compatible, the marginal benefit must equal
the agent’s monetary marginal effort cost gaðdt ,atÞ. And,
because g (or m) is convex (or concave) in a, one can show
that the required incentive loading bt is increasing in at. In
other words, implementing a higher level of effort needs
greater incentives.

In sum, for P to be incentive-compatible and no-
savings, it must be that [recall Eq. (7)]

dVt ¼
gaðdt ,atÞ

maðdt ,atÞ
grð�VtÞsðdtÞ dZt , ð10Þ

where the innovation term in (7) is replaced by sðdtÞ dZt

due to Eq. (1).
So far, I have used the agent’s first-order conditions

(FOCs) regarding the recommended consumption and
effort to derive necessary conditions for the dynamics of
Vt. It is well known that with private savings, FOCs cannot
guarantee the global optimality of the recommended
policies (e.g., Kocherlakota, 2004, and He, 2010). However,
for the case of CARA preference without wealth effect,
FOCs are both necessary and sufficient, a result that I
verify in the working paper version of this paper.10

2.3.4. Optimal contracting

Given the state variables d and V, the shareholders’
value function is

Jðd,VÞ ¼max E

Z 1
t

e�rðs�tÞðds�csÞ ds

����dt ¼ d
� �

ð11Þ

s:t: VtðP,dÞ ¼ V :

The absence of wealth effect, thanks to the CARA pre-
ference, leads to the guess of

Jðd,VÞ ¼ f ðdÞ�
�1

gr
lnð�grVÞ,

where �1=grlnð�grVÞ40 is the agent’s certainty-equiva-
lent given his continuation value V. I refer to the agent’s
certainty-equivalent as the agent’s inside stake in later
discussions.

9 The main driving force underlying Eq. (9) is the monetary effort

cost specification, i.e., uðct ,at Þ ¼ uðct�gðatÞÞ, not the CARA preference. To

see this, if I write dVt ¼ rVt dt�uðct ,at Þ dtþbt � uc � ½ddt�mðdt ,atÞ dt� in

Eq. (4), then bt is still the monetary incentive loading measured in

dollars, and the same argument gives the result in Eq. (9). However, as

shown in Eq. (6), the CARA preference implies a convenient result that

uc ¼�grVt , which makes the evolution of the agent’s continuation value

dependent on V itself (not consumption c).
10 It is available at http://faculty.chicagobooth.edu/zhiguo.he/

research/06132009newversionname.pdf.
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Using Eqs. (1) and (10), the Hamilton-Jacobi-Bellman
(HJB) equation for the shareholders’ problem in (11) is

rJðd,VÞ ¼ max
a2½0,a �

d�cða,d,VÞþ Jd � mðd,aÞþ
1

2
JddsðdÞ2

JdV
gaðdt ,atÞ

maðdt ,atÞ
grð�VtÞsðdtÞ

2
þ

1

2
JVVg2r2V2 gaðdt ,atÞsðdtÞ

maðdt ,atÞ

� �2

8>>><
>>>:

9>>>=
>>>;

,

ð12Þ

where cða,d,VÞ takes the form in Eq. (8). Plugging Eq. (8)
into Eq. (12), and noting that Jd ¼ f uðdÞ, Jdd ¼ f

00

ðdÞ,
JVV ¼�ð1=grÞ1=V2, and JdV ¼ 0, the following ODE is
obtained for f ð�Þ:

rf ðdÞ ¼ max
a2½0,a �

dþ f uðdÞmðd,aÞþ
1

2
f
00

ðdÞsðdÞ2�gðd,aÞ�
1

2
gr

gaðd,aÞsðdÞ
maðd,aÞ

� �2
( )

:

ð13Þ

Here, d is cash inflow, the second and third terms capture
the expected instantaneous change of f ðdÞ due to d, and
the last two terms are the effort-related costs. The
optimal effort a� is characterized by

argmax
a2½0,a �

f uðdÞmðd,aÞ�gðd,aÞ�
1

2
gr

gaðd,aÞsðdÞ
maðd,aÞ

� �2
( )

ð14Þ

Similar to Holmstrom and Milgrom (1987), in Eq. (13)
there are two kinds of costs in implementing effort a. The
first is the direct monetary effort cost gðd,aÞ, and the
second is the risk-compensation term for the risk-averse
agent to bear incentives:

1

2
gr

gaðdt ,atÞsðdtÞ

maðdt ,atÞ

� �2

: ð15Þ

This additional agency-related cost, as in Holmstrom and
Milgrom (1987), captures the key trade-off between incen-
tive provision and risk-sharing in the optimal contract.

The solution to Eq. (13), combined with Eqs. (8) and (10),
and certain problem-specific boundary conditions, charac-
terizes the optimal contracting. In the working paper version
of this paper, I provide a detailed verification argument to
show rigorously that the derived contract is optimal.

2.4. Model implications

2.4.1. Firm value and agent’s deferred compensation: an

implementation

I interpret f ðdtÞ as the firm value. From the derivation
in Section 2.3.4, maximizing shareholders’ value Jðdt ,VtÞ is
equivalent to maximizing the firm value f ðdtÞ in this
model, as both aim to minimize the agency cost.

The agency cost under the CARA setup has one parti-
cular feature. Given the promised continuation value Vt to
the agent, the cost of delivering Vt, from the shareholders’
view, is its certainty equivalent ð�1=grÞlnð�grVtÞ, plus
some additional agency cost due to inefficient incentive-
risk allocation. Under the CARA setup, this additional
agency cost is independent of the agent’s continuation
value Vt.

11 In other words, the severity of agency pro-
blems are reflected only in the functional form of f ð�Þ as a

solution to the ODE Eq. (13), not the agent’s continuation
value per se.

From the view of implementation, the firm value f ðdtÞ

is the sum of the (common) shareholders’ value Jðdt ,VtÞ,
plus the agent’s inside stake, which is measured by his
certainty equivalent �ð1=grÞlnð�grVtÞ. Specifically, in
implementing the optimal contract, shareholders set up
a deferred-compensation fund inside the firm with a
balance

Wt ¼�
1

gr
lnð�grVtÞ, ð16Þ

and shareholders adjust this balance continuously
according to the evolution of Vt in Eq. (10).12 By keeping
the agent’s stake inside the firm, the firm (market)
value becomes the total value enjoyed by both the
agent and shareholders. To the extent that in practice
the agent’s non-marketable rent (e.g., future wages) is
small relative to the firm value, this treatment is a close
approximation.13

Under the optimal employment contract, the deferred
compensation fund Wt follows:

dWt ¼
gaðdt ,atÞ

maðdt ,atÞ
sðdtÞ dZtþ

1

2
gr

gaðdt ,atÞsðdtÞ

maðdt ,atÞ

� �2

dt: ð17Þ

Here, the first diffusion term provides incentives, and the
second drift term captures risk compensation. Interest-
ingly, under the optimal contract, the agent’s consump-
tion ct cancels with the interest rWt earned by the
deferred-compensation fund and the effort cost reimbur-
sement gt [check Eq. (8)].

2.4.2. Pay-performance sensitivity and size dependence

By interpreting the deferred-compensation balance Wt

as the agent’s financial wealth, I can derive the agent’s
pay-performance sensitivity in this model. In the litera-
ture, the executive’s (dollar-to-dollar) pay-performance
sensitivity (PPS) has received great attention since Jensen
and Murphy (1990). The central question, whose answer
is just PPS, is that: ‘‘how much does the executive’s
wealth change when the firm value changes by one
dollar?’’

In the current continuous-time framework, the agent’s
pay-performance sensitivity can be measured by the
response of the balance of Wt, to a unit shock of the firm

11 This is different from other dynamic agency models with ineffi-

cient termination (e.g., DeMarzo and Fishman, 2007) in which the

agency cost is linked to the agent’s continuation value directly. There,

(footnote continued)

the lower the agent’s continuation value, the more likely the agent is

terminated and, therefore, the higher the agency cost.
12 When I introduce bankruptcy in Section 3, it is important to

ensure that this deferred compensation has priority over debt in the

event of default. As in Westerfield (2006), this balance can also be

interpreted as the committed separation payment if either party wants

to renege in the future. Theoretically, the CARA framework cannot rule

out the possibility of Wt o0. I interpret this case as the agent to take a

personal debt, and the debt is netted out in calculating the total firm

value.
13 In this implementation shareholders conduct all the savings for

the agent, as his wealth is kept inside the firm. Another equivalent

implementation is to put Wt into the agent’s personal account but allow

for two-way transfers between the agent and shareholders according to

Eq. (10). This corresponds to the case in which the agent’s entire rent is

non-marketable, and the firm’s market value becomes Jðd,VÞ.

Z. He / Journal of Financial Economics 100 (2011) 351–366356



Author's personal copy

value.14 Specifically, by neglecting all drift terms, I have
[recall that btðdt ,atÞ ¼ gaðdt ,atÞ=maðdt ,atÞ in Eq. (9)]

PPS¼
dWt

df ðdtÞ
¼

btðdt ,a�t ÞsðdtÞdZt

f uðdtÞsðdtÞdZt
¼

btðdt ,a�t Þ

f uðdtÞ
¼

gaðdt ,a�t Þ

maðdt ,a�t Þ

1

f uðdtÞ
:

ð18Þ

Intuitively, PPS is the ratio between bt , which is the
agent’s dollar incentive, and f uðdtÞ, which captures the
value change (in dollars) of the firm. The optimal effort at

n

in Eq. (18) is endogenously determined by the optimiza-
tion problem in Eq. (14).

The result in Eq. (18) implies that the agent’s pay-
performance sensitivity depends on firm size dt . My later
calibration aims to replicate the well-known empirical
regularity that PPS is negatively related to firm size
(e.g., Murphy, 1999).15 To this end, I now impose some
structure on my model to study the general pattern of
relation between PPS and firm size.

When does PPS decrease with firm size? Suppose that

mðdt ,atÞ ¼ m0ðdtÞþatd
m1
t , sðdtÞ ¼ sds1

t ,

and gðdt ,atÞ ¼ g0ðdtÞþ
y
2

a2
t d

g1
t ,

which imply that

maðdt ,atÞ ¼ dm1
t and gaðdt ,atÞ ¼ yatd

g1
t , ð19Þ

Here, m1, s1, y, and g1 are constants. This general speci-
fication encompasses Baker and Hall (2004), who argue
that the effort impact on the firm growth (which I refer to
as effort benefit) might be size-dependent, i.e., m140. I
focus on m1, g1 and s1 which characterize the dependence
of the agent’s effort benefit, direct monetary effort cost,
and indirect risk-compensation cost on firm size,
respectively.

Given this structure, the first-order condition for
Eq. (14) (assuming an interior solution a�t ) is

f uðdÞdm1
t �ya�t d

g1
t �grs2y2a�t d

2ðg1þs1�m1Þ

t ¼ 0,

which implies the optimal effort as

a�t ¼
f uðdÞdm1

t

ydg1
t þgrs2y2d2ðg1þs1�m1Þ

t

: ð20Þ

Plugging Eqs. (19) and (20) into Eq. (18), one can show
that f uðdÞ cancels, and

PPS¼
1

1þygrs2dg1þ2s1�2m1
t

: ð21Þ

Therefore, the necessary and sufficient condition for a
negative relation between PPS and firm size dt is

g1þ2s1�2m140: ð22Þ

In other words, when the size-dependence of the effort
cost (either direct cost part g1 or indirect cost part s1) is
sufficiently large, or the size-dependence of effort benefit
is sufficiently small, the firm should design an incentive
contract whose power is decreasing in firm size.

When I apply the optimal contracting results to the
Leland framework in Section 3, I set

mðd,aÞ ¼ ðfþaÞd, sðdÞ ¼ sd, and gðd,aÞ ¼
y
2

a2d:

Here, g1 ¼ s1 ¼ m1 ¼ 1, and g1þ2s1�2m1 ¼ 1. Therefore
the PPS in the optimal contract is

PPS¼
1

1þygrs2dt
,

which is falling with firm size.
Several attempts are made in the literature to estimate

these parameters. It is well known (as the leverage effect)
that the large firm has a greater dollar variance but a
smaller return variance, i.e., s1 2 ð0,1Þ. Cheung and Ng
(1992) fit an EGARCH (exponential general autoregressive
conditional heteroskedasticity) model with CEV (constant
elasticity of variance) specification to a large sample of
individual stocks (as opposed to certain stock index,
which is common in this literature) and find that s1 falls
in the range of 0.84 (in the 1960s) and 0.94 (in the
1980s).16 This estimation is subject to the caveat that dt

is being approximated by the firm’s stock price. For m1

and g1, Baker and Hall (2004) assume that the agent’s
effort cost is independent of firm size (i.e., g1 ¼ 0) and find
that m1 ¼ 0:4. If I instead set g1 ¼ 1, then one can show
that the effort benefit measure that Baker and Hall (2004)
are estimating is effectively m1�0:5. Therefore, the esti-
mate for m1 in my model (with g1 ¼ 1) is approximately
0.9 (close to the choice of m1 ¼ 1 in Section 3). The bottom
line is, the condition Eq. (22) that guarantees a negative
relation between PPS and firm size holds for these
estimates, which extends indirect support to my model.

CRRA (power) preference. My entire analysis hinges on
the assumption of CARA (constant-absolute-risk-aversion,
exponential) preference, which implies that the agent’s
risk absorbing capacity is independent of his wealth
level. As an important ingredient for PPS, the risk absorb-
ing capacity directly determines the risk compensation
cost in Eq. (15), which in turn pins down the size-
dependence of PPS in Eq. (21). What can we say if instead

14 Strictly speaking, in the executive compensation literature, the

pay-performance sensitivity is with respect to the shareholders’ value,

which should exclude the agent’s non-marketable stake. There are two

reasons that this treatment is inessential: (1) the magnitude of PPS is

small (125%), and (2) empirically, the executive’s PPS mainly comes

from his or her inside holdings, which are marketable. For other

definitions of performance sensitivities (e.g., pay-performance elastici-

ties) and an agency model distinct from the Holmstrom and Milgrom

(1987) framework, see Edmans, Gabaix, and Landier (2009).
15 Typically, the PPS in executive compensation literature considers

only the chief executive officer’s incentive holdings. My model takes this

interpretation as well, so that the agent is the single top manager of the

firm. Readers can also interpret the manager here as a team of top

managers, and the relevant PPS measure becomes the inside holdings of

the firm’s officers and directors. Even though it is theoretically possible that

a larger firm might have more top managers who, as a team, hold more

inside shares, empirically the opposite holds. For instance, Holderness,

Kroszner, and Sheehan (1999) show a negative relation between the total

ownership of officers and directors and firm size.

16 One important determination of s1 is the correlation among the

projects taken by the firm. Conditional on firm size, s1 tends to be lower

for conglomerate firms (so the projects have diversified activities) than

specialized firms (so the projects are highly correlated), which suggests

different implications for PPS across these two types of firms. I thank the

referee Hayne Leland for this excellent point.
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the agent has a CRRA (constant relative risk aversion,
power) preference?

Unfortunately, the wealth effect in the CRRA prefer-
ence complicates the optimal contracting significantly,
and not much is known about the solution to that
problem.17 In the literature, several attempts are made
to accommodate this question. For example, Baker and
Hall (2004) solve a static optimal contracting problem as
if the agent has an exponential utility. However, they
specify the agent’s absolute risk aversion parameter
gðWtÞ ¼ g0=Wt (where g0 is a positive constant) to be
proportional to the inverse of his wealth 1/Wt, as if the
agent has a power utility. Here I take this simple approach
as well.

It is important to note that the agent’s wealth Wt is not
necessarily proportional to firm size dt . Ideally I would
like to derive the path of Wt endogenously from the
model, but it is not available in CARA setting.18 Because
the question at hand is a calibration question, I resort help
from data. Empirically, it is well known that, managers in
larger firms, although get higher pay in terms of dollar
amounts, have lower inside stakes (Murphy, 1999). Most
of literature (e.g., Baker and Hall, 2004) use the manager’s
total compensation Compt to approximate his wealth Wt.
In fact, Gabaix and Landier (2008) calibrate that
Comptpd1=3

t , i.e., the elasticity between pay level and
firm size is 1/3. Given this result, I set the agent’s absolute
risk aversion parameter to be

gðWtÞ ¼ ĝ0d
�1=3
t ,

where ĝ0 is another positive constant potentially different
from g0. Plugging this result into Eq. (21) yields

PPS¼
1

1þyĝ0rs2dg1þ2s1�2m1�1=3
t

:

Therefore, under the CRRA preference, the necessary and
sufficient condition that ensures a negative relation
between PPS and firm size dt becomes

g1þ2s1�2m14
1
3: ð23Þ

This condition holds for the case g1 ¼ s1 ¼ m1 ¼ 1 that is
studied in Section 3, as well as for the empirical estimates
of fg1,s1,m1g discussed in the previous subsection. Thus,
even taking into account the fact that the agent might
have a risk-aversion decreasing with his wealth (as
implied by CRRA preferences), my model has qualitatively
similar predictions under reasonable parameterizations.

3. Revisiting Leland, 1994: optimal capital structure

This section applies the optimal contracting results
derived in Section 2 to Leland (1994) with debt holders,
and studies the interaction between dynamic compensa-
tion and capital structure.

3.1. Model specification

Following Leland (1994), I consider the case that

ddt ¼ ðfþatÞdt dtþsdt dZt ,

where f and s are constants. In the language of Eq. (1),
mðd,aÞ ¼ ðfþaÞd and sðdÞ ¼ sd. Here, f is the baseline
growth level, and by exerting effort the agent can accel-
erate the firm growth. The agent’s effort cost takes the
form gðd,aÞ ¼ ðy=2Þa2d, which is quadratic in a and linear
in size d.

Recall that in Section 2.1 I restrict the agent’s action
space to a bounded interval ½0,a�, and the calibration in
the unlevered firm might call for a binding effort at ¼ a in
the optimal contract. In fact, under the parametrization
considered later, the first-best solution has aFB

t ¼ a. To
characterize the first-best solution, I simply set g¼ 0 in
Eq. (13) (so there is no agency problem), and, as a result,

rf FB
ðdÞ ¼ max

a2½0,a �
dþ f FBuðdÞðfþaÞdþ

1

2
f FB00 ðdÞs2d2

�
y
2

a2d
� �

,

ð24Þ

where f FBðdÞ is the first-best firm value without agency
problems. Because all model elements are proportional to
d, I guess that f FBðdÞ ¼ AFBd, where AFB is a constant to be
solved. Plugging into Eq. (24) yields

rAFB
¼ max

a2½0,a �
1þAFBðfþaÞ�

y
2

a2

� �
,

which jointly determines aFB and AFB. In the Appendix
(Section A.3) I give the exact condition under which aFB

binds at a.
Independent of whether aFB binds at a or not, the scale-

invariance of this model implies that, in the first-best case,
the firm’s cash flow – as well as the firm value – follows a
geometric Brownian motion. Due to its analytical conveni-
ence, this setup has become the workhorse in the literature
of structural models of capital structure (e.g., Leland,
1994; Goldstein, Ju, and Leland, 2001).

3.2. Optimal contracting in an unlevered firm

Before introducing debt into this framework, I apply
the optimal contracting results obtained in Section 2 to an
unlevered firm. To implement effort at, Eq. (9) implies that
the agent’s incentive slope bt ¼ yat . Then Eq. (13)
becomes

rf ðdÞ ¼ max
a2½0,a �

dþ f uðdtÞ � ðfþaÞdþ
1

2
f
00

ðdtÞs2d2
�
y
2

a2d
�

�
1

2
gry2a2s2d2

�
: ð25Þ

17 Edmans, Gabaix, Sadzik, and Sannikov (2009) consider a multi-

plicative effort cost model and impose some modification on the timing

structure to make the linear contract optimal in every instant. They

solve a long-term optimal contracting problem in closed-form if the

optimal contract aims to implement a maximum target effort (exogen-

ously given). In the optimal contract, the implemented effort is the

constant target effort level, and the return PPS (i.e., the log change of

manager’s compensation to the log change of firm value) is also a

constant independent of firm size.
18 In the theoretical result with CARA preference, Wt in Eq. (17) can

be negative, which is inappropriate to define gðWtÞ ¼ g0=Wt .
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Simple calculation yields the optimal effort as (the opti-
mal effort might bind at a along the optimal path)19:

a�t ¼min
f uðdtÞ

yð1þygrs2dtÞ
,a

� �
: ð26Þ

As discussed in Section 2.4.2, when the optimal effort
level is interior, PPS is decreasing in firm size dt as

PPS¼
1

1þygrs2dt
, ð27Þ

Fundamentally, this result is due to the fact that, as the
firm grows, the quadratic risk-compensation cost
1
2 gry2a2s2d2

t is in the order of d2
t , while the incentive

benefit is in the order of dt [check Eq. (25); in the
Appendix (Section A.5) I show that when dt-1,
f uðdtÞ-1=ðr�fÞ]. This exactly reflects the common wis-
dom that managers in larger firms have lower powered
incentive schemes due to risk considerations.20

Another appealing feature, which is closely related to
the pattern of PPS falling in firm size, is that the endo-
genous firm growth rate fþa�t is decreasing in firm size dt

as well (see Section 3.4.3 for a numerical example). The
negative relation between firm size and growth is studied
in, for instance, Cooley and Quadrini (2001). In this model,
because incentivizing the agent is more costly in larger
firms, the optimal contract implements a lower effort in
larger firms, leading to a lower growth.

3.3. Optimal employment contract and leverage

3.3.1. Additional assumptions

Suppose that the firm issues debt to take advantage of
tax shields. Relative to the standard bilateral contracting
framework between investors (the principal) and the
agent, now I have heterogenous investors—shareholders
and debt holders. To abstract from complicated contract-
ing issues among three parties, I make the following
assumptions. First, the debt contract takes the form
studied in Leland (1994), i.e., only the consol bond (with
a constant coupon rate C) is considered, and shareholders
(with their perfectly aligned agent when they are dealing
with debt holders) can endogenously default when the
firm’s financial status deteriorates. Second, shareholders

can fulfill the promise of the agent’s continuation value at
bankruptcy as a part of employment contract. In other
words, when bankruptcy occurs, the agent is guaranteed
with the deferred-compensation fund W defined in Eq. (16).
This assumption is commented upon in Section 3.4.2.

Another important timing assumption is that, in this
model, shareholders design the employment contract as
an optimal response to the leverage decision. Theoreti-
cally, this is consistent with the fact that, in this CARA
framework, a long-term optimal contract can be imple-
mented by a sequence of short-term contracts (Fudenberg,
Holmstrom, and Milgrom, 1990). Essentially, in the CARA
framework studied here, shareholders and the agent can
revise the contract (as long as both parties agree to do so)
once the debt is issued, which generates the debt-over-
hang problem analyzed in Section 3.4.2.21

These assumptions represent a minimum, but essen-
tial, departure from Leland (1994). They reflect the key
economic rationale regarding the manager’s objective in
corporations in United States: Managers are supposed to
be responsible to shareholders only (Brealey, Myers, and
Allen, 2006).

3.3.2. Equity value and endogenous default

Similar to the case of unlevered firms, the share-
holders’ value function is JEðd,VÞ ¼ f EðdÞþð1=grÞlnð�grVÞ.
The separability between d and V hinges on the assump-
tion that in the leveraged firm the shareholders can
always keep the promise of delivering the continuation
payoff V to the agent, even when the firm goes bankrupt
at d¼ dB. In the implementation, the promise is guaran-
teed by the deferred-compensation fund, which has
priority over debt in the event of bankruptcy.

As in Section 2.3.4, by writing down the HJB equation
for JEðd,VÞ, the following ODE is reached for the equity
value f EðdÞ, where the control is over at and the bank-
ruptcy boundary dB:

rf E
ðdÞ ¼ max

a2½0,a �,dB

d�Cð1�tÞþ f EuðdÞ � ðfþaÞdþ
1

2
f E00 ðdÞs2d2

�

�
1

2
ya2d�

1

2
gry2a2s2d2

�
, ð28Þ

where C is the coupon rate and t is the corporate tax rate.
The equity value f EðdÞ is the sum of (common) share-
holders’ value JEðd,VÞ and the agent’s deferred-compensa-
tion fund �ð1=grÞlnð�grVÞ. Compared with Eq. (25)
without debt, Eq. (28) has an additional cash outflow
Cð1�tÞ as the after-tax coupon payment. Similar to
Eq. (26), the optimal effort policy is

a�t ¼min
f EuðdtÞ

yð1þygrs2dtÞ
,a

� �
: ð29Þ

Plugging it into Eq. (28) yields the ODE to characterize the
optimal contracting.

When dt falls to a certain level, say, dB, shareholders
refuse to serve the coupon payment by simply declaring

19 When a binds at a , the same incentive loading bt ¼ ya applies:

Investors can set a higher incentive loading, but it is costly to do so

because the agent is risk-averse. And, because firm value is increasing in

the cash flow level d, one can formally show that in this model f uðdÞ is

always positive, therefore an never binds at zero. For formal proofs, see

the Appendix (Section A.4).
20 For instance, (Murphy, 1999, p. 2531) states: ‘‘The inverse rela-

tion between company size and pay-performance sensitivities is not

surprising, since risk-averse and wealth-constrained CEOs of large firms

can feasibly own only a tiny fraction of the companyyThe result merely

underscores that increased agency problems are a cost of company size

that must weighed against the benefits of expanded scale and scope.’’ Of

course, this reasoning is precise when the manager’s risk-absorbing

capacity is independent of firm size, which holds only for CARA

preference. However, this statement is probably better interpreted as

following: Even though the managers in larger firms might have greater

risk-absorbing capacity (presumably because they receive higher pay),

their greater risk-absorbing capacity cannot offset the higher total risk in

larger firms. For a related discussion of CRRA preference, see Section

2.4.2.

21 In this CARA setting, the resulting optimal contract is renegotia-

tion-proof, as the Pareto boundary is always downward-sloping, i.e.,

JV ¼ 1=grV o0 (V is negative in this model).
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bankruptcy. This is captured by the value-matching
boundary condition

f EðdBÞ ¼ 0 ð30Þ

and the smooth-pasting condition

f EuðdBÞ ¼ 0: ð31Þ

Both conditions are standard in this literature (e.g., Leland,
1994). These conditions are a result of maximizing the
shareholders’ value JEðd,VÞ. But because these policies are
toward debt holders, it is equivalent to maximizing f EðdÞ,
i.e., the joint (ex post) surplus enjoyed by shareholders
and the agent.22

For the boundary condition on the other end, when dt

takes a sufficiently large value d-1, the bankruptcy
event is negligible. In the Appendix (Section A.5) I show
that

f EðdÞC f ðdÞ�
Cð1�tÞ

r
, ð32Þ

where f ð�Þ captures the firm value under a Gordon growth
model with a growth rate f [see Eq. (34)], and Cð1�tÞ=r is
the value for a perpetual after-tax coupon payment. Then
one can numerically solve for f Eð�Þ and dB, based on
Eq. (30)–(32). For detailed numerical methods, see the
Appendix (Section A.5).

3.3.3. Debt value and capital structure

Given the implemented effort policy a�ðdÞ in Eq. (29),
one can evaluate the consol bond with a promised coupon
rate C. Because debt holders anticipate the optimal con-
tracting between shareholders and the agent, the value of
the corporate debt, DðdÞ, satisfies

rDðdÞ ¼ CþDdðdÞ � ðfþa�ðdÞÞdþ1
2DddðdÞs2d2,

with DðdBÞ ¼ ð1�aÞf ðdBÞ, where ao1 is the percentage
bankruptcy cost and DðdÞ-C=r as d-1. Here I simply
assume that, once bankruptcy occurs, debt holders pay
the bankruptcy cost af ðdBÞ and then keep running the
project as an unlevered firm.23

Given the time-0 cash flow level d0, shareholders
choose coupon C to maximize the total levered firm value
f Eðd0;CÞþDðd0;CÞ before the debt issuance. They then
design the optimal contract with an agent who has an
outside option v0. As discussed in Section 3.3.1, this
timing assumption is equivalent to allowing shareholders
and the agent to revise the employment contract ex post
after the debt issuance.

The firm’s optimal leverage ratio is defined as

LRðd0Þ �
Dðd0;C

�ðd0ÞÞ

f Eðd0;C�ðd0ÞÞþDðd0;C�ðd0ÞÞ
:

In Leland (1994), the scale-invariance implies that the
optimal leverage ratio LR is independent of firm size d0.
However, in this model the quadratic risk-compensation
eliminates the scale invariance. In fact, in the following
calibration exercises, I mainly investigate the divergent
leverage decisions for firms with different sizes.

3.3.4. Parameterization

Table 1 tabulates the baseline parametrization. Inter-
est rate r¼ 5%, bankruptcy cost a¼ 25%, and tax rate
t¼ 20% (considering personal tax effect) are typical in the
literature (e.g., Leland, 1998).

I also record the average growth rate in the 50-year
simulation, and this measure helps pin down f and a. In
the literature with constant coefficients, Goldstein, Ju, and
Leland (2001) calibrate a slightly negative m, and Leland
(1998) chooses the growth rate m¼ 1%. Under the choice
of f¼�0:5% and a ¼ 5% (a is irrelevant for levered firms
as the optimal effort fa�g never binds at 5%; see Fig. 2), the
simulated average growth rates fit these numbers
squarely across various firm sizes (see Table 2).

Because in my calibration the optimal effort never binds
at a in levered firms, the pay-performance sensitivity is
1=1þygrs2dt as in Eq. (27).24 Based on this result, I choose
the agency-related parameters [risk aversion g¼ 5 which is
the median value used in Haubrich (1994), and effort cost
y¼ 35] and the starting firm size d0 to match the PPS
documented in the empirical literature. Jensen and Murphy
(1990) report a PPS of 0:3% in their sample (1969–1983),
while Hall and Liebman (1998) document a higher PPS with
mean 2.5%. Aggarwal and Samwick (1999) control for the
firm risk and report a mean PPS of 6.94% from the ordinary
least square regression. For the size-dependence pattern of
PPS, Murphy (1999) finds that for Standard & Poors 500
firms, the PPS is approximately 1% for large firms, 1.5% for
Midcap firms, and 3% for small firms. Hall and Liebman
(1998) find a mean PPS around 2.5%, and in page 676 they

Table 1
Baseline parameters.

Model parameters Parameter values

Risk aversion (g) 5

Effort cost (y) 35

Lower bound growth (f) �0.5%

Upper bound effort (a) 5%

Volatility (s) 25%

Interest rate (r) 5%

Bankruptcy cost (a) 25%

Marginal tax rate (t) 20%

I take volatility s¼ 25%, interest rate r¼ 5%, bankruptcy cost a¼ 25%,

and tax rate t¼ 20% from Leland (1998). I set g¼ 5 which is the median

value used in Haubrich (1994). The firm growth parameters f¼�0:5%

and a ¼ 5% are chosen to match the average firm growth rate used in the

literature. The effort cost y¼ 35 is set to (roughly) match the PPS

documented in the empirical literature.

22 This result implies that, despite the agency conflicts between the

agent and shareholders, under the optimal contract they have perfectly

aligned interests with respect to the policy toward debt holders. In other

words, the default policy does not depend on whether shareholders or

the agent is in charge of the bankruptcy decision. This differs

from Morellec (2004), in which the agent tends to keep the firm alive

longer for more private benefits.
23 Also, the new agent’s outside option is v0 ¼�1=gr, so W0 ¼ 0. The

results in the paper are insensitive to the treatment of unlevered firm

after the bankruptcy.

24 The presence of debt does not affect the expression of PPS in

Eq. (27). To see this, the agent’s performance is measured as the change

of equity value f EðdÞ. However, f EuðdÞ cancels in Eq. (27) when the

optimal effort a�ðdÞ takes an interior solution [check the derivation in

Eq. (21)].

Z. He / Journal of Financial Economics 100 (2011) 351–366360



Author's personal copy

note that ‘‘the largest firms in our sample (market value
over $10 billion) have a median Jensen and Murphy statistic
(PPS) that is more than an order of magnitude smaller than
the smallest firms in our sample (market value less than
$500 million).’’

3.4. Results and discussions

3.4.1. Optimal leverage ratio

Because debt-overhang adversely affects the firm’s
endogenous growth, relative to Leland (1994) firms take

less leverage for their optimal capital structure in this
model. Fig. 1 shows the optimal leverage ratio (the solid
line) for firms with different sizes. For better comparison,
Fig. 1 also provides two benchmark optimal leverage
ratios predicted by the Leland (1994) model, with exo-
genous constant growth. The dashed line with circles
(63.21%) is the first-best case, in which the cash flow
growth rate is aþf¼ 4:5%. However, as in Section 3.2,
the agency problem alone reduces the firm growth, which
would lead to a lower leverage ratio even without debt-
overhang. To address this issue, I take the results of

Table 2
optimal capital structure for firms with different sizes.

Initial cash flow level (firm size) d0

50 100 150 200 250

Panel A: Optimal debt policies

Optimal coupon Cn 24.50 61.35 106.00 147.62 203.15

Default boundary dB 7.97 22.79 40.58 57.28 79.98

Scaled default boundary dB=d0 (percent) 15.95 22.79 27.05 28.64 31.99

Panel B: Valuation and leverage

Debt value Dðd0Þ 446.05 997.44 1640.02 2267.70 3090.52

Leverage ratio
Dðd0Þ

Dðd0Þþ f Eðd0Þ
(percent)

39.35 47.70 53.57 56.10 61.32

Credit spreads (basis points) 49.22 115.12 146.34 150.98 157.34

Panel C: Simulation results

Average growth (percent) 1.95 0.50 0.12 �0.05 �0.17

Average volatility (percent) 25.04 24.98 25.04 25.03 25.01

Pay-performance sensitivity (percent) 5.33 2.52 1.69 1.29 0.99

The parameters are r¼ 5%, s¼ 25%, y¼ 35, g¼ 5, f¼�0:5%, a ¼ 5%, a¼ 25%, and t¼ 20%. Credit spreads are calculated as ðC=D�rÞ � 10,000. I simulate

the model for 50 years to obtain the average growth rate and volatility for dd=d, given the initial d0. I also calculate the agent’s average pay-performance

sensitivity based on Eq. (27).

50 100 150 200 250
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Inital cashflow level (firm size) δ0

Optimal leverage ratio

with agency and debt-overhang
Leland (1994): first-best coefficients
Leland (1994): (simulated) coefficients without debt

Fig. 1. Optimal leverage ratio as a function of initial cash flow level (firm size). I plot the two benchmark leverage ratios under Leland (1994). The first

one is based on the first-best coefficients (m¼ 4:5% and s¼ 25%), which gives a leverage ratio 63.21% plotted in the dashed line with circles. The second

one is based on the time series averages in simulating the unlevered firm in Section 3.2 (m¼ 3:31% and s¼ 25:02%; for simulation details, see Footnote

25). This case yields a leverage ratio 61.59% plotted in the dotted line with asterisks. The parameters are r¼ 5%, s¼ 25%, y¼ 35, g¼ 5, f¼�0:5%,

a ¼ 5%, a¼ 25%, and t¼ 20%.
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unlevered firms from Section 3.2, simulate the model, and
obtain time series averages of the cash flow growth and
volatility.25 I then use these estimates as inputs to
calculate the Leland leverage ratio, which is graphed in
the dotted line with asterisks (61.59%) in Fig. 1.

The optimal leverage ratios are reported in Table 2
along with other measures. For each initial cash flow level
d0, I calculate the sample mean of growth and volatility of
dd=d over one hundred years in five hundred simulations
(see Panel C in Table 1). I also report the sample average of
pay-performance sensitivity based on Eq. (27); these
numbers fit the empirical estimates discussed in Sec-
tion 3.3.4 squarely. For small firms (d0 ¼ 50), the optimal
leverage ratio falls from 61:59% (or 63.21% in the first-best
case) to 39.35%.26 In contrast, the optimal leverage ratio
for large firms is close to the result under Leland (1994).
I will come back to this cross-sectional result shortly.

3.4.2. Debt-overhang

In Fig. 1, the optimal leverage ratio is lower relative
to Leland (1994). The reason is debt-overhang, where I
interpret the agent’s effort as a form of investment;
see Hennessy (2004) for a similar mechanism. In my
model, shareholders design an employment contract to
maximize the ex post equity value, and the smooth-
pasting condition Eq. (31) implies that f EuðdÞ goes to zero
as d approaches the default boundary dB. It implies that,
once the firm is close to bankruptcy, shareholders gain
almost nothing by improving the firm’s performance.
Then, according to Eq. (29) which says that the optimal
effort an is proportional to f EuðdÞ, shareholders implement
diminishing effort (through providing diminishing incen-
tives) during financial distress. As a result, in addition to
the traditional bankruptcy cost, in this model the debt
bears another form of cost due to debt-overhang.

This mechanism is illustrated in Fig. 2. The left panel
plots the implemented effort investment an in solid line as a
function of firm’s financial status d for small firms (d0 ¼ 50).
As explained shortly, the debt-overhang problem is more
severe for small firms. I also plot the optimal effort policy
without debt-overhang (the dashed line), which corre-
sponds to the case of unlevered firms studied in Section 3.2.

Relative to the effort policy without debt-overhang
plotted in the dotted line, an abrupt drop of implemented
effort is evident when the firm is in the verge of bank-
ruptcy (d-dB ¼ 7:97). From the view of social welfare, in
this situation a higher effort is desirable, because it helps
avoid the costly bankruptcy once d hits dB. However, it is
not in the shareholders’ interest to ask the agent to work
hard. When the firm approaches bankruptcy, share-
holders obtain zero marginal value from improving d.
Consequently, they implement diminishing effort, a
typical symptom of debt-overhang.

It is worth emphasizing that the driving forces of the
debt-overhang result are the endogenous nature of firm
growth, and the smooth-pasting condition of the share-
holders’ value; both ingredients are generic in practice.

10 20 30 40 50 60
-0.01

0

0.01

0.02

0.03

0.04

0.05

Cash flow level (firm size) δ

Implemented effort a* for δ0 =50 (small firms)

100 150 200 250 300
-0.01

0

0.01

0.02

0.03

0.04

0.05

Cash flow level (firm size) δ

Implemented effort a* for δ0 =250 (large firms)

With debt-overhang
Without debt-overhang

With debt-overhang
Without debt-overhang

δ
B
=7.97 with δ

0
=50 δB=79.98 with δ0=250

Fig. 2. Implemented effort policies with debt-overhang for small (d0 ¼ 50) and large (d0 ¼ 250) firms under optimal leverage decisions. The optimal effort

policy a�ðdÞ with debt-overhang is shown in the solid line, and the optimal effort policy in an unlevered firm without debt-overhang is shown in dashed

line. I also mark the optimal endogenous default boundary, where shareholders optimally (ex post) default and implement a zero effort. The parameters

are r¼ 5%, s¼ 25%, y¼ 35, g¼ 5, f¼�0:5%, a ¼ 5%, a¼ 25%, and t¼ 20%.

25 Specifically, to match the relevant range for d in levered firms, I

set the initial d0 ¼ 250 and stop the process once d reaches 7.97 (which

is the lowest default boundary in the calibration). Also, the simulation

length is 50 years to mitigate the impact of initial condition. I then

average the time series mean of growth rate and volatility across five

hundred simulations, which gives an average growth rate (volatility) as

3.31% (25.02%). Other treatment gives similar results.
26 This reduction is comparable to other modifications of the Leland

(1994) benchmark. For instance, by combining both the ‘‘callable’’ feature

of the debt and upward capital restructuring together, Goldstein, Ju, and

Leland (2001) reduce the optimal leverage from 49.8% to 37.1% in their

baseline case.

It is not easy to accommodate the dynamic capital restructuring into

my framework, as this model does not have the convenient scale-

invariance property. Certainly, as in Goldstein, Ju, and Leland (2001),

the possibility of raising leverage in the future should reduce the firm’s

initial leverage. In fact, dynamic capital restructuring would have an

interesting impact to this model if the restructuring was downward, i.e.,

reducing debt when the firm’s cash flow level drops. This is because in

this model almost all the action is on the downside where debt overhang

cuts down the efficient effort. If I only allow for upward restructuring as

in Goldstein, Ju, and Leland (2001), the interaction effect should be small.

Z. He / Journal of Financial Economics 100 (2011) 351–366362



Author's personal copy

Therefore, if in reality the management gives place to
existing shareholders (such as the board) during financial
distress, then debt-overhang is still present without the
intermediate link of diminishing management incentives.

Leverage versus management incentives. The debt-over-
hang generates a negative relation between leverage and
agent’s working incentives. This result contrasts to
Cadenillas, Cvitanic, and Zapatero (2004), in which the
log agent’s compensation space is restricted to equity
shares, and shareholders commit to this compensation
scheme. In comparison, in this optimal dynamic contract-
ing setup, I do not place any restriction on the contracting
space, and I allow for dynamically revising the employ-
ment contract between the agent and shareholders.
Finally, as discussed in Section 3.3.1, part of the imple-
mentation of the optimal contract requires the firm to set
the agent’s deferred compensation aside as cash. This
way, shareholders commit to fully insulate the agent’s
compensation from bankruptcy. I now discuss these
assumptions by relating them to ‘‘inside debt’’ investi-
gated in Sundaram and Yermack (2007).

Inside debt. Several interesting remarks can be made
regarding the above assumptions, which point to the
robustness of the debt-overhang result. First, in reality,
although there are certain revising activities such as reset-
ting the strike price of executives’ previously awarded
options, modifying compensation contract is not friction-
less. For instance, managers’ pensions – as a form of
deferred compensation – are calculated according to certain
prespecified formulae. More importantly, these pensions
represent unsecured, unfunded debt claims against firm
assets (inside debt as advocated in Sundaram and Yermack,
2007, and Edmans and Liu, 2011),27 which is not a senior
claim against a cash-based deferred compensation fund as
in my implementation. As a result, this portion of compen-
sation scheme can potentially alleviate the debt-overhang
problem in this paper and the risk-shifting problem
in Edmans and Liu (2011).28

Nevertheless, for inside debt to work, one also needs
shareholders’ and the agent’s commitment on other com-
pensation schemes to prohibit undoing the inside debt. The
important point is that, to rule out ex post revising, share-
holders and the agent need commitment with debt holders
on all compensation schemes, not on one or some schemes.
Put differently, as long as shareholders can modify the
residual compensation freely, they can still undo the inside
debt, and theoretically return to the optimal contract without

commitment. This implies that my theoretical results are
robust to the practice of inside debt. In addition, some
indirect empirical evidence (Bryan, Hwang, and Lilien,
2000) is consistent with this view of ‘‘undoing’’ or ‘‘dynami-
cally revising’’ the employment contract, which can be a
potential topic for future empirical studies.29

3.4.3. Size-heterogeneity

My model offers another explanation why small firms
take less leverage relative to their large peers, a stylized
fact documented in the literature (e.g., Frank and Goyal,
2005). The mechanism here is rooted in divergent seve-
rities of the aforementioned debt-overhang problem for
different size firms. In this model, to be consistent with
the inverse relation between PPS and firm size, larger
firms implement lower effort. This implies that, for larger
firms, debt-overhang – which reduces the profitable effort
investment – is less of concern. Consequently, larger firms
issue more debt to maximize the ex ante firm value.

This point is illustrated in the right panel in Fig. 2,
where effort policies are plotted with and without debt-
overhang for large firms (d0 ¼ 250). For better compar-
ison, the right panel adopts the same scale as the left
panel where small firms are considered. Debt-overhang is
moderate for large firms. As shown, at their relatively
high default boundary dB ¼ 79:98, the optimal effort even
without debt-overhang is low (only about 1.14%). There-
fore, the drop of at

n
when larger firms approach bank-

ruptcy – the exact force of debt-overhang – is less
dramatic compared with smaller firms (the left panel).
In sum, in smaller firms the debt-overhang cost is greater,
leading to a lower predicted leverage ratio.

It is important to add that this result is not driven by
CARA preference. Instead, CARA preference is used only as
the analytical tool to match the empirical pattern of pay-
performance sensitivity, and it is the negative relationship
between PPS and firm size that implies lower debt-over-
hang costs in large firms.

3.4.4. Default policy and credit spreads

Table 2 also reports the endogenous default policies.
The scaled default boundary dB=d0 are lower (so share-
holders default later) than the Leland (1994) bench-
mark.30 The intuition for shareholders to postpone
bankruptcy is as follows. In this model, a firm with recent

27 This means that when the firm becomes insolvent, pension

beneficiaries have the same priority as other unsecured creditors.

However, footnote 10 in Sundaram and Yermack (2007) gives an

example of the ‘‘secular’’ trust fund, which secures an executive’s

pension in a bankruptcy-proof form.
28 These papers are closely related to the early theoretical work

by John and John (1993) who consider a risk-shifting problem. Essen-

tially, for the agent to maximize the firm’s value, the compensation

should be less aligned with shareholders when the leverage is higher,

which predicts a negative relation between leverage and PPS. There,

commitment is also essential, even though it appears not so in a two-

period model. In contrast, in this model, the agent is always perfectly

aligned with shareholders in terms of incentives thanks to potential

revising.

29 Bryan, Hwang, and Lilien (2000) analyze the Incentive-Intensity

(the change in the value of annual stock-based compensation per change

in equity value) and Mix (ratio of the value of annual stock-based

compensation to cash compensation) measures, which are based on the

annual stock-based grants only (as opposed to cumulative inside

holdings that relate to the agent’s wealth). They find that both Incen-

tive-Intensity and Mix decrease with firm leverage. Under the debt-

overhang framework studied in this paper, to the extent that working

incentives generated by inside debt is increasing with leverage, these

empirical results are consistent with the dynamic revising activity. Also,

decreasing Mix with leverage implies that financially troubled firms pay

the agent more cash compensation, a result consistent with my model if

the juniority of pensions force the firm to start paying out deferred

compensation to the agent by cash.
30 For the Leland (1994) exogenous growth model, dB=d0 ¼ 39:73%

in the first-best parametrization, and dB=d0 ¼ 37:24% in the unlevered

firm parametrization.
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unsatisfactory performances has a lower cash flow level,
or smaller size. But given a smaller risk-compensation,
shareholders find it cheaper to motivate the agent, which
gives them more value to wait for future improvement.
Because of the delayed default, my model produces
similar, but slightly lower, credit spreads (Panel B
in Table 2) than Leland (1994), conditional on comparable
leverages.31

There are various theoretical models in which agency
problems are countercyclical (e.g., Bernanke and Gertler,
1989; Eisfeldt and Rampini, 2008, etc.). Acknowledging
that the agency issue becomes more severe in recessions
(for instance, a higher cash flow volatility or a higher
constant absolute risk aversion when the agent’s wealth is
lower), it is interesting to further explore the impact of
agency problems on credit spreads. Chen, Collin-Dufresne
and Goldstein (2009) argue that the key mechanism in
explaining the high credit spread puzzle is that firms
default more frequently in those higher risk premium
states. This countercyclical default policy might be related
to exacerbated agency issues in these bad states, because
severe agency frictions can lead to a great reduction in
shareholder’ value of keeping the firm under their control.
For instance, consider small firms d0 ¼ 50. By raising the
agent’s constant absolute risk aversion coefficient g from
5 to 10, while fixing coupon level C ¼ 24:50, the default
boundary increases from 7.97 to 8.92, and as a result the
credit spread goes up substantially (49 bps versus 85 bps).
I leave this for future research.

3.4.5. Asset volatility and leverage effect

Various empirical studies find that equity returns
become more volatile as the firm approaches bankruptcy.
This phenomenon can be explained by the so-called
leverage effect, even holding the volatility of the under-
lying asset constant.

In this model, the state variable for a firm’s financial
status is its cash flow level, and I also assume a constant
instantaneous (return) volatility in the continuous-time
setup. However, when the sampling frequency cannot be
arbitrarily high, the estimated variance differs from the
instantaneous volatility. Because of the hump-shaped
endogenous effort (see Fig. 2), this model generates
higher conditional variances (based on infrequent sam-
pling) when firms are in financial distress.

The mechanism is as follows. Due to debt-overhang,
the firm’s endogenous growth is positively correlated
with underlying performance shocks in financial distress.
To see this, consider the implemented effort policy in the
left panel in Fig. 2. When d is close to dB ¼ 7:97, a�ðdÞ is
increasing in d. Then, a positive shock to d, by reducing
debt-overhang, gives rise to a higher effort a�ðdÞ. This
further leads to a higher cash flow growth rate a�ðdÞþf
and, in turn, magnifies the positive shock. Therefore,
when sampling is infrequent, the observed return volati-
lity is higher than the constant volatility s¼ 25%. For

instance, when d¼ 15, over one year the annualized
volatility based on monthly observed data is about
25.12%. When d is far away from the bankruptcy thresh-
old, a�ðdÞ is decreasing in d, and the exact opposite force
leads to a lower volatility estimate (when d¼ 50, the
above mentioned annualized volatility is about 24.68%).

In sum, for a firm near bankruptcy, its financial status
becomes more sensitive to underlying performance
shocks. In fact, this general message does not depend on
the discrete-sampling, as in this model the firm value
(rather than the instantaneous cash flow rate) displays a
higher instantaneous volatility during financial distress.32

3.4.6. Debt covenants

A commonly observed debt covenant is that debt
holders can force shareholders to go bankrupt when
the firm’s cash flow d hits a prespecified level db

B. This
covenant is along the same line as ‘‘positive net-worth
covenants for protected debt’’ in Leland (1994) which
stipulates that the firm defaults whenever the asset value
drops to the debt face value. Under the current cash flow
framework, this can also be interpreted as a hard cove-
nant on the interest coverage ratio, which, combined with
coupon C, gives the bankruptcy threshold.33

In the standard trade-off model as in Leland (1994), a
forced earlier default always hurts firm value, because an
earlier default reduces the tax benefit and raises the
bankruptcy cost. In fact, if equity holders can fully commit
in Leland (1994), then no default is the first-best outcome.

In contrast, due to the debt-overhang problem, in my
model specifying db

B4dB might be welfare improving. The
reason is that, now around db

B, there is no longer smooth-
pasting condition as in (31), and shareholders benefit from
improving the firm performance. Then, specifying db

B4dB is
equivalent to committing to provide incentives (to the agent)
even in the deep financial distress, and it might be socially
optimal to do so. For instance, for small firms d0 ¼ 50, given
the coupon C ¼ 24:50, the optimal db

B ¼ 8:054dB ¼ 7:97,
and the firm value becomes 1133:8141133:67. Though
small magnitude, this interesting finding distinguishes this
model from Leland (1994) and its variations where the firm
growth is exogenously specified.

4. Concluding remarks

By generalizing the optimal contracting result to
widely used cash flow setups in finance, this paper offers
a more tractable framework to investigate the impact of
agency problems in various economic contexts. The
absence of wealth effect due to CARA preference simplifies
the optimal contracting problem with private savings, and

31 For instance, based on the growth and the volatility estimates

(Panel C) of medium-size firms (d0 ¼ 150), under Leland (1994) a 53.57%

of leverage ratio translates into a credit spread of 175 basis points (bps),

which is higher than 146 bps in my model.

32 The firm’s asset value, generated by future cash flows, can be

defined as XðdtÞ ¼ Et ½
R tðd ¼ dB Þ

t e�rðs�tÞds dsþ f ðdBÞ�, where tðd¼ dBÞ is the

first passage time of d hitting dB . Then, the instantaneous return

volatility of XðdtÞ is larger when dt is close to dB. The reason is that

XðdtÞ takes into account the impact on the stochastic growth m, which

positively correlates with dt during distress.
33 Because part of the coupon C can be interpreted as constant

operating cost (in other words, the leverage derived here includes

operating leverage, too), the effective interest coverage ratio can be

much higher than implied by db
B=C.
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I characterize the optimal contract by an ODE. When
applying my results to Leland (1994), I find that the
underinvestment of effort due to debt-overhang produces
a lower optimal leverage ratio, and the interesting inter-
action between agency issue and debt-overhang leads
smaller firms to take less debt in their leverage decisions.

The relatively simple structure in this paper leaves
several directions for future research. For instance, incorpor-
ating investment decisions would be desirable, as one can
explore the investment distortion and its interaction with
financing decisions under agency problems. Also, incorpor-
ating time-varying risk premia that is correlated with agency
frictions (e.g., time-varying risk-aversion) is valuable to
investigate the agency impacts on credit spreads.

Appendix A

A.1. Proof of Lemma 2

Consider any contract P¼ fc; ag that induces an opti-
mal policy fĉ; âg from the agent with a value V̂ 0. The
agent’s budget equation yields

St ¼

Z t

0
erðt�sÞðcs�ĉ sÞ ds,

which gives the agent’s optimal savings path, with the
transversality condition limT-1E½e

�rT ST � ¼ 0. The trans-
versality condition holds for all measures induced by any
feasible effort policies.

By invoking the replication argument similar to reve-
lation principle, I consider giving the agent a direct
contract P̂ ¼ fĉ; âg, and shareholders have the same cost
to deliver this contract as P¼ fc; ag. Clearly taking con-
sumption-effort policy fĉ; âg is feasible for the agent
without private savings. I need to show that fĉ; âg is
optimal for the agent. Suppose that given the contract
P̂, the agent finds that fcu; aug yields a strictly higher
payoff V0u 4 V̂ 0 in problem (2), with associated savings
path

Stu ¼

Z t

0
erðt�sÞðĉ s�csuÞ ds,

which satisfies transversality condition. However, con-
sider the following saving path

St
00 ¼ StþStu¼

Z t

0
erðt�sÞðcs�csuÞds,

which also satisfies the transversality condition. But this
implies that, given the original contract P, the saving rule
St
00 supports fcu; aug but delivering a strictly higher payoff

V0u. This contradicts with the optimality of fĉ ; âg under the
contract P.

A.2. Proof of Lemma 3

Given any savings St ¼ S and a contract P¼ fc; ag, from
time-t on the agent’s problem is [recall Eq. (2)]

max
fĉ sg,fâ sg

E

Z 1
t
�

1

g e�gðĉ s�gðds ,â sÞÞ�rðs�tÞ ds

� �
ð33Þ

s:t: dSs ¼ rSs dsþcs ds�ĉ s ds, St ¼ S, s4t

dds ¼ mðds,âsÞ dsþsðdsÞ dZs:

Denote by fĉ
�

s ,â
�

s g the solution to the above problem, and
by VtðP,SÞ the resulting agent’s value.

Now consider the problem with S¼ 0, which is the
continuation payoff along the equilibrium path:

max
fĉ sg,fâ sg

E

Z 1
t
�

1

g e�gðĉ s�gðds ,â sÞÞ�rðs�tÞ ds

� �
s:t: dSs ¼ rSs dsþcs ds�ĉ s ds, St ¼ 0, s4t

dds ¼ mðds,âsÞ dsþsðdsÞ dZs:

I claim that the solution to this problem is fĉ
�

s�rS,â
�

s g, and
therefore the value is VtðP,0Þ ¼ egrSVtðP,SÞ. There are two
steps to show this. First, this solution is feasible. Second,
suppose that there exists another policy fĉ su ,âsu g that is
superior to fĉ

�

s�rS,â
�

s g, so that the associated value
VtuðP,0Þ4e�grSVtðP,SÞ. Consider fĉ suþrS,âsu g, which is fea-
sible to the problem in (33). But under this plan the
agent’s objective is

e�grS �maxEt

Z 1
t
�

1

g
e�gðĉ su�gðds ,â su ÞÞ�rðs�tÞ ds

� �
¼ e�grSVtuðP,0Þ4VtðP,SÞ,

which contradicts with the optimality of fĉ
�

s ,â
�

s g. As a
result, VtðP,SÞ ¼ e�grSVtðP,0Þ.

A.3. Subsection 3.1

Note that rAFB
¼maxa2½0,a �f1þAFBðfþaÞ�ðy=2Þa2g, and I

am interested in characterizing the condition for the first-

best effort aFB to bind at a. When a takes an interior solution,

then a� ¼ AFB=y, and AFB ¼ 2=ðr�fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�fÞ2�2=y

q
Þ. First, I

need to ensure that ðr�fÞ242=y so that AFB is real. Other-
wise, the firm value is unbounded, resulting in an unbounded

aFB. Therefore, when ðr�fÞ2r2=y, aFB
t ¼ a. Second, even

when ðr�fÞ242=y, it is possible that the implied the first-

best effort ð1=yÞ2=ðr�fþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr�fÞ2�2=y

q
Þ4a. In this case,

the first-best effort also binds at aFB
t ¼ a. Under both scenar-

ios, AFB ¼ ð1�ðy=2Þa2
Þ=ðr�f�aÞ.

A.4. Subsection 3.2

Under the boundary conditions specified in Section
3.2, f u is always positive in Eq. (25), therefore an never
binds at zero in this problem. To see this, clearly f uð0Þ40
[notice f ð0Þ ¼ 0, and for d40, even with zero effort (so
without the agent) the value is positive]. When d-1,
using Eqs. (25) and (26) one can check that

f ðdÞC f ðdÞ �
1

r�f
dþ

1

2ðr�fÞ2y2grs2
: ð34Þ

which is increasing in d. Now suppose that there exists
d140 such that f uðd1Þ ¼ 0. Take the smallest one so that
f
00

ðd1Þo0 (i.e., f has to be concave on d1). Therefore,
rf ðd1Þ ¼ d1þ

1
2 f
00

ðd1Þs2d2
1od1. But there must exist

another point d24d1, such that f is deceasing in ½d1,d2�,
and f becomes increasing again after d2 (as f is increasing
when d is large enough). This implies f ðd2Þo f ðd1Þ,
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f uðd2Þ ¼ 0 and f
00

ðd2Þ40. However, Eq. (25) implies that
rf ðd2Þ4d24d14rf ðd1Þ, a contradiction with f ðd2Þo f ðd1Þ.

A.5. Subsection 3.3.2

When d-1, the probability of bankruptcy is negligi-
ble, and the firm value can be viewed as the unlevered
firm value minus the present value of after-tax coupon
payment. Eq. (34) gives the unlevered firm value f when
d-1, and f u approaches to 1=ðr�fÞ similar to the
standard Gordon growth model. Therefore f EðdÞC f ðdÞ�
ð1�tÞC=r when d is sufficiently large.

I use Matlab built-in solver bvp4c to solve the model,
setting the tolerance level to be 10�8. I set d ¼ 500. In
solving for the bankruptcy boundary dB, I first choose one
candidate d1

B and solve fE based on Eqs. (30)–(32) using
bvp4c. Then I evaluate f Euðd1

BÞ. If f Euðd1
BÞ4(o)0 which

means that d1
B is too low (high), I adjust d1

B upward
(downward) to, say, d2

B. I use a bisection method to search
for dB, which converges quickly.
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