Inefficient Investment Waves

Zhiguo He
University of Chicago, NBER

Péter Kondor
Central European University, CEPR

September 6, 2012
Investment Waves

- supply of financing tend to be procyclical
- in booms: more projects are financed \Rightarrow high investment, low returns
- in recessions: less projects are financed \Rightarrow low investment, high returns
Aggregate Investment Waves: Corporate loans/bonds
Industry Investment Waves: Low Profitability after Booms

- Hoberg-Phillips (JF, 2010):
 \textit{In competitive industries, we find that high industry-level stock market valuation, investment, and financing are followed by sharply lower operating cash flows}

- suggesting the role of pecuniary externality
Inefficient Investment Waves

- do investment waves arise by simple financing frictions (without persistent shocks in technology)?
- are these investment waves (constrained) inefficient with pecuniary externalities?
- if yes, too much investment in booms, too little investment in recessions or both?
- should the government intervene in booms/recessions or both?
Main Results

- tractable dynamic model of trade and investment:
 - aggregate cash constraint \Rightarrow (constrained) efficient investment waves
Main Results

- tractable dynamic model of trade and investment:
 - aggregate cash constraint \Rightarrow (constrained) efficient investment waves
 - unverifiable idiosyncratic investment-opportunities \Rightarrow (often) two-sided inefficiency
 - in booms: too much investment, too little cash holding
 - in recessions: too little investment, too much liquidity hoarding

- applications: (1) housing cycle, (2) industry cycles, (3) financial development and growth
Main Results

• tractable dynamic model of trade and investment:
 • aggregate cash constraint \Rightarrow (constrained) efficient investment waves
 • unverifiable idiosyncratic investment-opportunities \Rightarrow (often) two-sided inefficiency
 • in booms: too much investment, too little cash holding
 • in recessions: too little investment, too much liquidity hoarding
• were government intervene only in the recession
 • makes over investment in booms worse
 • even if effective, might make everyone worse off
• applications: (1) housing cycle, (2) industry cycles, (3) financial development and growth
A Simplified 2-Period Example: Setting

- ex ante identical agents with 1 **capital** \((K)\), c **cash** \((C)\)
 - in this example ”capital” and ”cash” are symmetric
- period 0, **investment**: either convert 2 units of cash to a unit of capital, or 2 units of capital to a unit of cash
- period 1: **skill shocks** and **trade**
 - half agents can obtain 3 units of consumption from each unit of capital in period 2
 - other half can obtain 3 units of consumption from each unit of cash (via new investment opportunity) in period 2
 - before final production but after idiosyncratic skill shocks, agents can **trade** capital among each other at price \(p\)
- period 2: **produce** and **consume**
• individual’s problem at period 0

$$\max_{K^i, C^i} \frac{1}{2} \left(K^i + \frac{C^i}{p} \right) 3 + \frac{1}{2} \left(K^i p + C^i \right) 3$$

subject to the investment technology $F(K^i, C^i) = 0$

• period 1 market clearing price

$$p = \frac{0.5C}{0.5K} = \frac{C}{K}$$

ex post efficient allocation
A Simplified 2-Period Example: Technology

\[C', C \]

\[|\text{slope}| = 1/2 \]

\[1 \]

\[|\text{slope}| = 2 \]
A Simplified 2-Period Example: Social Optimum

\[
\max_{K,C} \frac{3}{2} \left(K + \frac{C}{C/K} \right) + \frac{3}{2} \left(C + \frac{K}{C} \right) = 3(K + C)
\]
A Simplified 2-Period Example: Market Solution I.

Motivation

Examples and Intuition

Model

Externalities

Applications

Alternative Spec.

Conclusion

\[\max_{K,C} \frac{3}{2} \left(K + \frac{C}{C/K} \right) + \frac{3}{2} \left(C + \frac{K}{K} \right) = 3(K + C) \]

\[\max_{K^i,C^i} \frac{3}{2} \left(K^i + \frac{C^i}{p} \right) + \frac{3}{2} \left(C^i + K^i p \right) \]

\[MRS^i = \frac{(1/2)(3+p^3)}{(1/2)((1/p)^3+3)} = p \]

\[|\text{slope}| = 2 \]

\[MRS^i = p = C/K = c > 2 \]
A Simplified 2-Period Example: Market Solution II.

Market solution:
Overinvestment in K

$|\text{slope}| = 2$

$\text{MRS}_i = p = C/K = 2$
A Simplified 2-Period Example: Market Solution III.

\[\text{MRS}_i = p = \frac{C}{K} = c < \frac{1}{2} \]

\[|\text{slope}| = \frac{1}{2} \]
A Simplified 2-Period Example: Market Solution III.

Market solution: Overinvestment in C.

|slope| = 1/2
How Does Price Affect Rent Distribution?

- form social perspective: each unit of C or K produces 3 units of utils, independent of idiosyncratic skills
- individual agent in addition cares about **rent distribution** due to trade after realization of idiosyncratic skills
 - each unit of capital will deliver either 3 (if K type, no trading), or $3p$ (if C type, selling capital, taking new opportunities)
 - if $p > 1$, how does capital generate $3(p - 1)$ more than its social value when selling?
 - because the trading partner suffers relative to the social value
 - the capital buyer spends p amount of cash to get 3 utils, thus a return of $3/p$. So he loses $3 - 3/p$ of rent
Market Frictions in Background

• in general, the economy suffers from missing market problem

1. the final period 2 output not fully pledgeable (e.g. stealing)
 • otherwise C-person could hire K-person to operate capital

2. no contract allowed on period 1 individual skill shocks (e.g. misreporting)
 • otherwise Arrow-Debreu securities will help (though, there is no aggregate uncertainty)
Market Frictions in Background

- in general, the economy suffers from missing market problem

1. the final period 2 output not fully pledgeable (e.g. stealing)
 - otherwise C-person could hire K-person to operate capital

2. no contract allowed on period 1 individual skill shocks (e.g. misreporting)
 - otherwise Arrow-Debreu securities will help (though, there is no aggregate uncertainty)

3. investing before knowing the shocks
 - ex post heterogeneity (idiosyncratic skill shocks) is important for rent distribution. otherwise, constrained efficient
from Static Insight to Dynamic Model

- ex post trading and price ensures efficient allocation, but distorts ex ante investment incentives
 - higher (lower) price, more rent goes to capital (cash)
 - a form of **pecuniary externality**
from Static Insight to Dynamic Model

- ex post trading and price ensures efficient allocation, but distorts ex ante investment incentives
 - higher (lower) price, more rent goes to capital (cash)
 - a form of **pecuniary externality**
- sign of distortion depends on relative supply, overinvest in scarce one
 - relative scarcity may fluctuate with business cycle
from Static Insight to Dynamic Model

- ex post trading and price ensures efficient allocation, but distorts ex ante investment incentives
 - higher (lower) price, more rent goes to capital (cash)
 - a form of pecuniary externality
- sign of distortion depends on relative supply, overinvest in scarce one
 - relative scarcity may fluctuate with business cycle
- the formal dynamic model: capital produces cash stochastically, solve for interim prices and investment, generalize the two-sided inefficiencies
 - ”boom”: past good cashflow shocks drive up current cash-to-capital ratio, leading to investment in capital
Model I

- consumption good and capital good: cash C_t, capital K_t
- final date τ, with intensity ξ: capital produces R
- before it arrives, generate positive or negative cash (AK technology, non-persistent cashflow shocks) $dC_t = K_t \sigma dZ_t$
 - if negative, capital needs maintenance
 - cash-to-capital ratio $c_t \equiv \frac{C_t}{K_t}$, so that $dc_t = \sigma dZ_t$
- market populated by long-lived risk neutral firms who can:
 - invest: build new capital for h
 - disinvest: dismantle capital for $l (< h)$
 - trade capital for market price (in terms of cash) p_t
- zero discount rate, storage technology available
Model II

- no outside cash
- unverifiable idiosyncratic shock: in final date firms learn that they differ in their skills
 - half "hit by skill-shock" : can invest in new technologies \(u > 1 \), but cannot use capital (produce 0)
 - half "are not hit": cannot invest in new technologies, but experience productivity hike on capital (produce \(R \) per unit)
- a last round of trade at \(\tilde{p}_\tau = c_\tau \) before production or investing into new technologies
Model II

- no outside cash
- unverifiable idiosyncratic shock: in final date firms learn that they differ in their skills
 - half "hit by skill-shock": can invest in new technologies $u > 1$, but cannot use capital (produce 0)
 - half "are not hit": cannot invest in new technologies, but experience productivity hike on capital (produce R per unit)
- a last round of trade at $\hat{p}_\tau = c_\tau$ before production or investing into new technologies
- cash vs capital: cash is safe asset, ready to consume, and fungible to be used in any alternative new technologies
Motivation

Examples and Intuition

Model

Externalities

Applications

Alternative Spec.

Conclusion

Timeline

Ex ante

Skill shocks realized

Ex post

Firms trade capital for \(\hat{p}_\tau = c_\tau \)

Firms produce \((R)\), invest in new opportunity \((u)\) and consume proceeds

Every instant: firms build, liquidate and trade capital, choose \(d\alpha^i_t, dK^i_t, K^i_t, C^i_t \), interim shock \(dC_t \) is realized, price \(p_t \) is set

\[
\max \left\{ d\alpha^i \geq 0, K^i \geq 0, C^i \geq 0, dK^i \right\}
\]

\[
\mathbb{E} \left\{ \int_0^{\infty} \xi e^{-\xi \tau} \left(\int_0^\tau d\alpha^i_t + \left[\frac{1}{2} \left(K^i_t + \frac{C^i_t}{\hat{p}_\tau} \right) R + \frac{1}{2} \left(K^i_t \hat{p}_\tau + C^i_t \right) u \right] \right) d\tau \right\}
\]

s.t. \(w^i_t \equiv p_t K^i_t + C^i_t \geq 0 \), \(dw^i_t = -d\alpha^i_t - (1_{dK^i_t > 0} h + 1_{dK^i_t < 0} l) dK^i_t + K^i_t (dp_t + \sigma dZ_t) \)
Solving for the Equilibrium

- looking for standard symmetric Walrasian equilibrium
- scale invariant, uni-dimensional state variable cash-to-capital ratio: \(c_t \equiv \frac{C_t}{K_t} \)
- value function is separable in capital \(K^i_t \) and cash \(C^i_t \)

\[
J \left(C, K, K^i_t, C^i_t \right) = K^i_t v(c) + C^i_t q(c).
\]

- value of cash \(q \) always greater than 1, never consume ex ante
- closed form general solutions for \(v(c) \) and \(q(c) \)
• pricing by indifference:

\[p(c) = \frac{v(c)}{q(c)} \]

• linear technology, each firm builds capital when \(p = h \) (\(c_t \) hits investment threshold \(c_h^* \)), and liquidate capital when \(p = l \) (\(c_t \) hits disinvestment threshold \(c_l^* \))

• aggregate liquidity \(c_t \) fluctuates between reflective barriers \(c_h^*, c_l^* \) so that

\[p(c_h^*) = h, p(c_l^*) = l \]
Motivation

Examples and Intuition

Model

Externalities

Applications

Alternative Spec.

Conclusion

Price of capital

aggregate cash-to-capital ratio, $c = \frac{C}{K}$

Value of cash

aggregate cash-to-capital ratio, $c = \frac{C}{K}$

Value of capital

aggregate cash-to-capital ratio, $c = \frac{C}{K}$
Constrained Efficient Benchmarks

- **constrained efficient benchmark**: social planner regulates investment/disinvestment policies \(c_l^P, c_h^P \)
 - not affect ex-post allocation which needs private information
Constrained Efficient Benchmarks

- **constrained efficient benchmark**: social planner regulates investment/disinvestment policies c_l^P, c_h^P
 - not affect ex-post allocation which needs private information
- recall: market solution has efficient ex post allocation, but inefficient ex ante investment
- consider the **complete market benchmark**: either idiosyncratic shocks are verifiable or R, u are pledgeable
- both benchmarks lead to same ex-ante value and same thresholds: c_l^P, c_h^P, in general different from market policies c_l^*, c_h^*
Motivation

Examples and Intuition

Model

Externalities

Applications

Alternative Spec.

Conclusion

Price of capital

\[
p(c), \ p_{cm}(c)
\]

Value of cash

\[
q(c), \ q_{cm}(c)
\]

Value of capital

\[
v(c), \ v_{cm}(c)
\]
Externalities and Business Cycle

- missing market to trade the state of skill-shock ⇒ distorted ex-post price ⇒ distorted relative liquidity change incentives to store wealth in cash/capital ⇒ distorted ex-ante price ⇒ distorted investment thresholds

- contribution: price distortion changes sign with business cycle!
Application I: One-sided interventions

- suppose government realizes only the inefficiency in recessions
- when p gets close to l intervene:
 - one-sided intervention: tax cash / subsidize capital, keep a balanced budget, stop whenever price is high enough
- if two-sided inefficiency: one-sided intervention makes over investment in booms worse
- adverse effect in booms can be so bad that ex-ante welfare goes down everywhere, even in recession
Application II: Industry Booms and Busts

- Hoberg-Phillips (JF, 2010)
- only in **competitive** industries: high valuation, investment, financing predicts low profitability
- their story: signal extraction problem from return shocks
- our story: no contracts on future investment opportunities
 \[\Rightarrow\] pecuniary externality
 - would not occur in a non-competitive setting where agents take into account their price effect
 - (we show this formally for the two-period version)
Application III: Inefficient Construction Waves

• consider a real-estate developer who faces different investment opportunities each time (i.e., Donald Trump)
• has to decide how to store his capital for future opportunities
• our model: relative liquidity of capital and consumption good varies over the cycle
 • bad times: real estate can be sold only with a deep discount, prefers to hoard cash, push price even further, disinvestment
 • good times: real estate can be sold for high price, liquid store of value, push price higher, developer builds more
• "Reverse fire-sale" pattern in Japan:

It took most Japanese banks years to whittle down the tens of billions of dollars in unrecoverable loans left on their books after the collapse of a real estate bubble [...] *But analysts criticize most banks for failing to find new, more profitable – and less risky – ways of doing business. Instead, analysts say many have gone back to lending heavily to real estate development companies and investment funds, as the rebounding economy has touched off a construction boom in Tokyo. "If the economy stalled, Japanese banks would have a bad loan problem all over again,” said Naoko Nemoto, an analyst for Standard & Poor’s in Tokyo. (The New York Times, January 17, 2006)
Application IV: Financial Development and Growth

- Aghion et al. (2010): less financially developed countries → more volatile, more procyclical investment in riskier/more productive projects
 - market incompleteness: less financial development
 - investment in capital dK_t: investment in riskier/more productive projects
Alternative Specification

- coincident timing of u shock and R shock is not important
- more natural but less tractable. In each instant:
 - with intensity ϕ capital matures as in the main model
 - during $[t, t + dt]$, ξdt fraction of agents are hit by new opportunities, sell capital and invest outside for u
- instead of ex-ante price and ex-post price, just price to serve both (conflicting) roles
 - determines terms of transfer for exit (thus the flow to new investment opportunities)
 - drives investment decisions of capital
- the first role regarding rent distribution fluctuates with cycles, distorts the second role (and investment)
Literature

 - Investment with inaction region: Abel and Eberly (1994)
Conclusion

- constraint on aggregate capital: investment waves, can be constrained efficient
- unverifiable idiosyncratic shock for relative value of productive assets and cash: inefficiency
 - ex post cash-in-the-market price ensures efficient allocation, but distorts ex ante incentives
 - a form of pecuniary externality
 - the sign of distortion depends on relative supply
- dynamic model:
 - relative supply is given by the state of the cycle
 - policy experiments with agents appreciating the eternal fluctuation
- cool framework: fully dynamic model with analytical tractability, useful for other questions