Recent events: High spreads in debt markets August 07 to October 08. S&P500 near all time high in August 2008.

Q4 1998: Similar pattern

Narrative: intermediaries get in trouble, drive up required risk premium in intermediated asset.
Two distinguishing features of our analysis

(1) Relative to macro literature:
 - Model captures non-linearities in crises.
 - We solve for a stochastic steady state and study behavior near the tails.
 - Much of macro literature (e.g., Kiyotaki and Moore, 1997) log-linearizes around a non-stochastic steady-state.

(2) Relative to finance literature:
 - We model constraint on raising equity capital.
 - Much of literature studies constraint on raising debt.
 - Margin-constraints models (Gromb-Vayanos, Brunnermeier-Pedersen, Adrian-Shin, Geanokoplos-Fostel)
Outline

- The Model;
- Calibration;
- Crisis episode;
 - Crisis risk premia and flight to quality;
 - Crisis recovery;
- Policy experiments.
Model Structure

- **Households**
 - OLG structure
 - Labor income
 - Consume
 - Save (portfolio choice) to leave bequest
 - Wealth = W_t^h
 - Minimum of λW_t^h in bond

- **Specialists/Intermediaries**
 - Portfolio choice for intermediary
 - Wealth = W_t
 - Capital constraint

- **Risky Asset Market**
 - Risky asset

- **Riskless Debt**
 - Intermediary repo
Model Structure

2. **Households:**
 - Limited participation in risky asset market

3. **Specialists** run intermediaries subject to an intermediation constraint;
 - Household’s investment cannot exceed a capacity, which is increasing in intermediary’s (specialist’s) capital;

Households:
- Limited participation in risky asset market

Specialists run intermediaries subject to an intermediation constraint;
- Household’s investment cannot exceed a capacity, which is increasing in intermediary’s (specialist’s) capital;

Risky asset and riskless asset:
- Risky asset is *illiquid* in the sense of market participation; riskless debt is *liquid*.

Intermediaries, not households, are marginal in setting the price of the risky asset.
Assets

- Continuous time, infinite horizon.
- Risky asset (unit supply) with dividend

\[\frac{dD_t}{D_t} = gdt + \sigma dZ_t; \]

- Riskless short-term debt in zero net supply;
- Risky asset price \(P_t \) and interest rate \(r_t \) are determined in equilibrium.
Long-lived specialists can invest in the risky and riskless assets with no constraints.

\[\int_{0}^{\infty} e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt \]

Households can invest in the risky asset \textit{indirectly} via intermediaries.
Long-lived specialists can invest in the risky and riskless assets with no constraints.

\[
\int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma}}{1-\gamma} dt
\]

Households can invest in the risky asset \emph{indirectly} via intermediaries.

Match one specialist with one household to form “intermediary.”

Short-term intermediation relation \((dt)\):

- Specialist contributes all of his wealth \(w_t\), and household chooses contribution \(H_t \leq w_t^h\)
- The intermediary then invests in risky/riskless asset markets;
- Both parties share in the fund’s return based on equity contributions.
Intermediary Equity Capital Constraint

- *Intermediation constraint*: households’ investment

 \[H_t \leq mw_t \]

- Intermediation capacity \(mw_t \) is increasing in the specialist’s contribution.
Intermediary Equity Capital Constraint

- **Intermediation constraint**: households’ investment
 \[H_t \leq mw_t \]

- Intermediation capacity \(mw_t \) is increasing in the specialist’s contribution.

- How to interpret \(m \)?

 1. Intermediary capital requirement: outside/inside contribution ratio;
 - Officers/directors holdings of financial industry \(\approx 18\% \) (Holderness, Kroszner, Sheehan 1999).
 - Set \(\frac{1}{1+m} = 0.18 \) gives \(m = 4.55 \).

 2. Incentive contract — the performance share of hedge fund managers:
 - Hedge fund manager receives \(\frac{1}{1+m} \) of return of fund. The 20 in "2 and 20", gives \(m = 4 \).

 3. Mutual funds’ flow-performance sensitivity. Specialist’s \(w_t \) tracks his past gains and losses (Shleifer-Vishny, JF)

 4. He-Krishnamurthy, “Model of Capital and Crises” derives this optimal contract and asset market equilibrium.
Equity capital restriction

<table>
<thead>
<tr>
<th>Sector</th>
<th>Q4 2007</th>
<th>Q1 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedge fund equity capital</td>
<td>$1,975bn</td>
<td>$1,002bn</td>
</tr>
<tr>
<td>Top 19 Commercial bank equity capital</td>
<td>827bn</td>
<td>285 bn</td>
</tr>
<tr>
<td>Top 19 Commercial bank debt liabilities</td>
<td>6,360bn</td>
<td>6,845bn</td>
</tr>
<tr>
<td>Top 19 Commercial bank leverage</td>
<td>7.7</td>
<td>24</td>
</tr>
</tbody>
</table>

Notes:

- Hedge fund capital: 600 bn due to losses, 400bn due to investor redemptions.
- Commercial bank capital falls mostly due to losses.
- (In fact, capital injection from government of 174bn)
- Commercial bank debt liabilities: 900bn increase in deposits.
• $m = 1$. Say $w_t^h = 80$.

• *Unconstrained Region*: $w_t = 100$. Then $H_t = 80$;
 - Fund’s total equity 180. Risky asset price $P_t = 180$ (sum of w_t and w_t^h)
 - Fund invests 100% in risky asset. No leverage.
Intermediation Constraint: An Example

- $m = 1$. Say $w^h_t = 80$.
- **Unconstrained Region:** $w_t = 100$. Then $H_t = 80$;
 - Fund’s total equity 180. Risky asset price $P_t = 180$ (sum of w_t and w^h_t)
 - Fund invests 100% in risky asset. No leverage.
- **Constrained Region:** $w_t = 50$. Then $H_t = 50$;
 - Fund’s total equity is $50 + 50 = 100$. But $P_t = 130$.
 - In equilibrium, the intermediary borrows 30 from the debt market;
 - Supplied by households: $w^h_t - H_t = 30$.
Intermediation Constraint: An Example

- \(m = 1 \). Say \(w_t^h = 80 \).

- **Unconstrained Region:** \(w_t = 100 \). Then \(H_t = 80 \);
 - Fund’s total equity 180. Risky asset price \(P_t = 180 \) (sum of \(w_t \) and \(w_t^h \))
 - Fund invests 100% in risky asset. No leverage.

- **Constrained Region:** \(w_t = 50 \). Then \(H_t = 50 \);
 - Fund’s total equity is 50 + 50 = 100. But \(P_t = 130 \).
 - In equilibrium, the intermediary borrows 30 from the debt market;
 - Supplied by households: \(w_t^h - H_t = 30 \).
 - Specialist and household have equal shares in the intermediary;
 - Specialist’s leveraged position in risky asset: \(\alpha' = \frac{50+15}{50} = 130\% \).
 - Risk premium has to adjust to make this portfolio choice optimal for the specialist.
Model Structure

Specialists
(1) Portfolio choice for intermediary
(2) Wealth = W_t
(3) Capital constraint

HOUSEHOLDS

SPECIALISTS/INTERMEDIARIES

RISKY ASSET MARKET

RISKLESS DEBT
(intermediary repo)

OLG structure
(1) Labor income
(2) Consume
(3) Save (portfolio choice) to leave bequest
(4) Wealth = W_t^n
(5) Minimum of λW_t^n in bond

H_t
EQUITY

DEBT
Households

- Overlapping generations: Generation t born at t lives until $t + \delta$ ($\delta \to dt$).
- Born with wealth w_t, and receives labor income flow of $l_t = lD_t$.
- Utility:
 \[\rho \delta \ln c_t^h + e^{-\rho \delta} E_t[v(w_{t+\delta})]. \]
 $v(\cdot)$ is bequest function. Assume that $v(w) = \ln w$.
- $c_t^h = \rho w_t^h$ is optimal consumption policy for log utility.

Investment restriction and heterogeneity:

- λ fraction of households can only invest in bonds.
- $1 - \lambda$ fraction can invest with an intermediary. $\alpha_t^h \in [0, 1]$ is share of wealth given to intermediary

We will calibrate l, and λ.
The specialist chooses his consumption rate c_t, and the holding of the risky asset α_t^I (for the intermediary):

$$\max_{\{c_t, \alpha_t^I\}} E \left[\int_0^\infty e^{-\rho t} u(c_t) \, dt \right] \quad \text{s.t.} \quad dw_t = -c_t \, dt + w_t \tilde{d}R_t \left(\alpha_t^I \right)$$ (1)

Where,

$$\tilde{d}R_t = \alpha_t^I (dR_t - r_t \, dt) + r_t \, dt.$$ (2)
An *equilibrium* is a set progressively measurable price processes \(\{P_t\} \) and \(\{r_t\} \), and decisions \(\{c_t, c^h_t, \alpha^l_t, H_t \equiv \alpha^h_t w^h_t\} \) such that,

1. Given the price processes, decisions solve the consumption-savings problems of the households and the specialists;
2. Decisions satisfy the intermediation constraint;
3. The risky asset market clears:
 \[
 \frac{\alpha^l_t (w_t + H_t)}{P_t} = 1;
 \]
4. The goods market clears:
 \[
 c_t + c^h_t = D_t (1 + l).
 \]
The wealth distribution matters in our economy.

State variables: dividend D, and the specialist’s wealth w.

- Scale invariance. One dimensional state variable w/D.

Specialist is always marginal in this economy (unconstrained portfolio choice problem). We use his Euler equation to derive an ODE.

Boundary condition as $w \rightarrow 0$. Reflecting barrier. Solved on MATLAB.
Solutions Steps

- Specialist is marginal investor. Faces no constraints. Portfolio choice must be an optimal choice for him.
- Thus, his Euler equation is always valid. Household is always constrained.
- Log household means $c^h_t = \rho w^h_t$.
- Goods market clearing then gives $c_t = (1 + l)D_t - c^h_t$.
- Equilibrium specialist consumption into Euler equation \Rightarrow ODE for $F(y)$.
- Close the loop: We can write dynamics of w^h_t as a function of returns (innovations in $F(y)D$), and household portfolio share α^h_t.
<table>
<thead>
<tr>
<th>Group</th>
<th>Assets b</th>
<th>Debt</th>
<th>Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial banks</td>
<td>11,800</td>
<td>10,401</td>
<td>0.88</td>
</tr>
<tr>
<td>S&L and Credit Unions</td>
<td>2,574</td>
<td>2,337</td>
<td>0.91</td>
</tr>
<tr>
<td>Property & Casualty Insurance</td>
<td>1,381</td>
<td>832</td>
<td>0.60</td>
</tr>
<tr>
<td>Life Insurance</td>
<td>4,950</td>
<td>4,662</td>
<td>0.94</td>
</tr>
<tr>
<td>Private Pensions</td>
<td>6,391</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>State & Local Ret Funds</td>
<td>3,216</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Federal Ret Funds</td>
<td>1,197</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Mutual Funds (excluding Money Funds)</td>
<td>7,829</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Broker/Dealers</td>
<td>2,519</td>
<td>2,418</td>
<td>0.96</td>
</tr>
<tr>
<td>Hedge Funds</td>
<td>6,913</td>
<td>4,937</td>
<td>0.71</td>
</tr>
</tbody>
</table>

- Intermediaries account for over 60% of financial wealth.
- Calibration: we try to represent the entire heterogeneous intermediary sector into the intermediaries of our model.
Mapping model to reality

Model constrained region:

- Negative shock \Rightarrow households withdraw \Rightarrow identical intermediaries lever up to clear market and earn risk premium

Reality: Leverage and functional heterogeneity

- Funds: Negative asset shock \Rightarrow households withdraw \Rightarrow sell assets/downsize

- Insurance, Small Commercial Banks: Negative asset shock + leverage \Rightarrow bigger shocks \Rightarrow withdrawal, downsize

- Bank traders: If others are downsizing \Rightarrow raise equity or lever up to clear market and earn risk premium
In the constrained region, in both model and world, a leverage player like a trading desk at a bank is marginal.

- $m = 4$: Traders in hedge fund get paid 20%, outside investors get 80%. Sharing rule: $\frac{1}{1+m} = 20\%$.
- $m = 4$: Officers/directors in financial industry hold 18% of equity stake in firms (Holderness, Kroszner and Sheehan (1999))
In the constrained region, in both model and world, a leverage player like a trading desk at a bank is marginal.

- $m = 4$: Traders in hedge fund get paid 20%, outside investors get 80%. Sharing rule: $\frac{1}{1+m} = 20%$.
- $m = 4$: Officers/directors in financial industry hold 18% of equity stake in firms (Holderness, Kroszner and Sheehan (1999))

m controls how fast leverage rises in constrained region.

m has no effect on unconstrained region ... but clearly institutions carry leverage in unconstrained region;

Relevant for liquidations, shock transmission, transit from constrained to unconstrained regions.
\(\lambda \) fraction of households only demand debt (no intermediary investment)

Since intermediaries supply debt, \(\lambda \) controls leverage of intermediary in unconstrained region.

We choose \(\lambda = 0.6 \) to match unconstrained average leverage of 0.52 – which is the weighted average leverage from Table 1.
Calibration: Parameters

Baseline Parameters

<table>
<thead>
<tr>
<th>Panel A: Intermediation</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
</tr>
<tr>
<td>λ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Preferences and Cashflows</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
</tr>
<tr>
<td>σ</td>
</tr>
<tr>
<td>ρ</td>
</tr>
<tr>
<td>γ</td>
</tr>
<tr>
<td>l</td>
</tr>
</tbody>
</table>

1. g from stock market, not critical
2. $\sigma = 9\%$ is critical. It produces equilibrium return volatility between 9 and 9.5%.
Baseline Parameters

<table>
<thead>
<tr>
<th>Panel A: Intermediation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(m) Intermediation Multiplier</td>
<td>4, 6</td>
</tr>
<tr>
<td>(\lambda) Fraction of Debt Investors</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Cashflows and Preferences</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(g) Dividend Growth</td>
<td>1.84%</td>
</tr>
<tr>
<td>(\sigma) Dividend Volatility</td>
<td>12%</td>
</tr>
<tr>
<td>(\rho) Time Discount Rate</td>
<td>8%</td>
</tr>
<tr>
<td>(\gamma) RRA of Specialists</td>
<td>2</td>
</tr>
<tr>
<td>(\iota) Households Labor Income</td>
<td>1</td>
</tr>
</tbody>
</table>

1. \(\rho \) to match average riskless interest rate around 0.5%
2. \(\gamma = 2 \) matches avg. return on agency MBS portfolio of near 3%
3. \(\iota \) chosen to match \(E[(CapitalIncome)/(TotalIncome)] = 0.337 \) from Parker-Vissing-Jorgensen.
Constraint binds when $mw_t < (1 - \lambda)w_t^h$
Intermediary's Position in Risky Asset (α^I)
Commercial Bank Leverage

<table>
<thead>
<tr>
<th></th>
<th>Q1 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Assets</td>
<td>7608</td>
</tr>
<tr>
<td>Total Liabilities</td>
<td>6845</td>
</tr>
<tr>
<td>Equity Capital</td>
<td>763</td>
</tr>
<tr>
<td>Preferred Stock (including TARP) raised in 2008</td>
<td>233</td>
</tr>
<tr>
<td>“True” Capital</td>
<td>530</td>
</tr>
<tr>
<td>Leverage at 763 of Equity Capital</td>
<td>10.0</td>
</tr>
<tr>
<td>Leverage in Q4 2007</td>
<td>10.4</td>
</tr>
<tr>
<td>Leverage at 530 of Equity Capital</td>
<td>14.4</td>
</tr>
<tr>
<td>Leverage if true Assets are lower by 150</td>
<td>19.6</td>
</tr>
<tr>
<td>Leverage if true Assets are lower by 300</td>
<td>31.8</td>
</tr>
</tbody>
</table>

- IMF loss estimates as of Oct 2008: >$1.5tn (banks say $500bn)
- Level 3 assets (a subset of securities carried at fair value): $225bn
Steady state distribution

Measures at Different RP

<table>
<thead>
<tr>
<th>Risk Premium π</th>
<th>3%</th>
<th>6%</th>
<th>12%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob% ($\text{RP} > \pi$)</td>
<td>93.9</td>
<td>1.58</td>
<td>0.08</td>
</tr>
<tr>
<td>Leverage Ratio (D/E) at π</td>
<td>0.8</td>
<td>4.6</td>
<td>13.3</td>
</tr>
<tr>
<td>Interest Rate% at π</td>
<td>0.96</td>
<td>-1.77</td>
<td>-8.05</td>
</tr>
</tbody>
</table>

Krishnamurthy (Northwestern) Intermediary Asset Pricing November 2010
Other Measures

Price/Dividend Ratio $F(.)$

Volatility

w/P

$m=4$

Krishnamurthy (Northwestern) Intermediary Asset Pricing November 2010 30 / 37
Crisis Spreads

The diagrams illustrate the evolution of OAS (On-Market Adjusted Spread) and Yield Spreads (bps) over time from March 1997 to March 1999. The graphs compare IO OAS, Credit, and MBS categories. The OAS spread peaks significantly during the crisis period, showing the impact of financial turmoil on asset pricing.
Fix a state \((y, D)\) corresponding to an instantaneous risk premium of 12% ("Transit from"). Simulating the model from that initial condition, we compute and report the first passage time that the state hits the risk premium corresponding to that in the "Transit to" column. Time is reported in years.

<table>
<thead>
<tr>
<th>Transit from 12</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.17</td>
</tr>
<tr>
<td>7.5</td>
<td>0.66</td>
</tr>
<tr>
<td>6</td>
<td>1.49</td>
</tr>
<tr>
<td>5</td>
<td>2.72</td>
</tr>
<tr>
<td>4</td>
<td>5.88</td>
</tr>
<tr>
<td>3.5</td>
<td>9.84</td>
</tr>
</tbody>
</table>

\(m = 4\)
1. Borrowing subsidy
2. Distressed asset purchase
3. Equity injection
Suppose we are currently in the extreme crisis state with risk premium of 12%. The government offers a loan subsidy to intermediaries on all of their borrowings, of size Δr. Households are taxed.
Table 6: Asset Purchase

s is share of risky asset that government purchases. The first row of the table reports the instantaneous jump downwards in the risk premium when the government begins its purchase.

<table>
<thead>
<tr>
<th>Transit to</th>
<th>$s = 0$</th>
<th>$s = 0.04$</th>
<th>$s = 0.08$</th>
<th>$s = 0.12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.17</td>
<td>0.17</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>7.50</td>
<td>0.66</td>
<td>0.68</td>
<td>0.63</td>
<td>0.58</td>
</tr>
<tr>
<td>6</td>
<td>1.49</td>
<td>1.47</td>
<td>1.44</td>
<td>1.40</td>
</tr>
<tr>
<td>5</td>
<td>2.72</td>
<td>2.70</td>
<td>2.64</td>
<td>2.56</td>
</tr>
<tr>
<td>4</td>
<td>5.88</td>
<td>5.87</td>
<td>5.81</td>
<td>5.63</td>
</tr>
</tbody>
</table>

Note: 4% of $15tn = $600bn. Fed + Treasury purchased around $1.8tn of assets,
Table 7: Equity Injection

Government purchases common equity capital of $38 bn, $48 bn and $58 bn, which is reversed in roughly one year. The first row of the table reports the instantaneous jump downwards in the risk premium when the government injects the equity capital.

<table>
<thead>
<tr>
<th>Transit to</th>
<th>Baseline</th>
<th>$38bn</th>
<th>$48bn</th>
<th>$58bn</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.50</td>
<td>1.09</td>
<td>0.39</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>6</td>
<td>1.49</td>
<td>1.14</td>
<td>1.05</td>
<td>0.96</td>
</tr>
<tr>
<td>5</td>
<td>2.72</td>
<td>2.33</td>
<td>2.20</td>
<td>2.10</td>
</tr>
<tr>
<td>4</td>
<td>5.88</td>
<td>5.13</td>
<td>5.06</td>
<td>4.98</td>
</tr>
</tbody>
</table>

Note: Purchase common equity in our experiment; government purchased preferred equity. We translate that the effective amount of common purchased was $48bn.
Model is canonical and fairly tractable.

Equity pricing literature tells us that low probability bad states have disproportionate effect on average pricing. Needs further exploration.