What makes US government bonds safe assets?

Zhiguo He (Chicago Booth and NBER)
Arvind Krishnamurthy (Stanford GSB and NBER)
Konstantin Milbradt (Northwestern Kellogg and NBER)

ASSA 2016
Motivation

- US Treasury bonds have been the world safe asset for a long time
 - Safe asset portfolios tilted towards US Treasury bonds
 - “Convenience yield” on US Treasury bonds
 - Higher premium in bad states ("negative β") & flight to quality
 - Persists despite a high US debt/GDP ratio
- Safety endogenous: when investors believe an asset is safe, their actions can make that asset safe
Model Setup

Risk-neutral Investors:
- Measure f of investors with one unit of funds each
- **Must** invest their funds in sovereign debt

Countries/debt (i):
- Two countries $i = A, B$ with one-period rollover debt
- Debt due today b^i_t, debt to be issued today b^{i}_{t+1}
- **Absolute safe debt capacity**: B^i_{t+1}
- Assume that each country issued up to capacity, $b^i_{t+1} = B^i_{t+1}$ [in full paper, noise makes each country want to issue to max]
- We assume A is the “large” country: $B^A_{t+1} > B^B_{t+1}$
- Then default (and shutout from debt market going forward) if

$$p^i_t B^i_{t+1} \leq b^i_t$$
Equilibrium conditions

Let \(f^i \equiv p^i_t B^i_{t+1} \) be proceeds of country \(i \)'s bond issue

Equilibrium conditions:

1. No default if \(f^i \geq b^i_t \)
2. All funds invested \(f^A + f^B = f \)
3. No arbitrage (if both survive) \(\frac{B^A_{t+1}}{f^A} = \frac{B^B_{t+1}}{f^B} \)

Assume \(f \geq \min \{ b^A_t, b^B_t \} \) so enough funds to make at least one country safe

Further, assume pareto equilibrium selection rule

[In full paper He et al 2015, heterogenous signals (i.e., a global game) will help narrow down the possible equilibria]
Three equilibria

Three possible equilibria:

1. Joint survival with \(\frac{f^B}{f^A} = \frac{B_t^B}{B_t^A} \)
2. Only A survives with \(p_t^A = \frac{f}{B_t^A} \)
3. Only B survives with \(p_t^B = \frac{f}{B_t^B} \)

Pareto criterion gives equilibrium ordering E1 > E2 > E3
Size benefit (1): Large initial debt b_t^A of large country A

- Suppose b_t^A large enough so joint safety (E1) infeasible
- b_t^A not too large so individual safety for both countries (E2 & E3)
- Equilibrium selection picks larger debt capacity country A (E2)
- Worsening turmoil in both US and the world in 2008 led to increased financing needs for countries
 - As a result, joint safety disappeared, and US sole safe asset
Size benefit (1): Large initial debt b^B_t of small country B

Large initial debt b^B_t can be costly for the smaller country:

- Suppose b^B_t is large enough so that joint safety (E1) cannot hold
- Still assume that f is large enough so that individual safety possible for either country (E2 & E3)
- Then equilibrium selection picks the country with the larger debt capacity, country A (E2)
Size benefit (2): Larger capacity B_{t+1}^A of large country A

![Diagram showing the relationship between f^A, f^B, b_t^A, and b_t^B.]

- For large enough B_{t+1}^A no-arbitrage violated (no E1). Why? Country B would have issue bonds at higher prices than country A.
- Individual safety does not involve such a no-arbitrage condition \Rightarrow Selection rule picks country A with the larger debt capacity (E2).
- Supply of US safe assets rose from 2008-2010, leading to European bonds losing their safe asset status, precipitating a sovereign crisis.
Suppose countries receive some fiscale surplus $\theta^i = \theta B_{t+1}^i$ in addition to bond proceeds

This modification only affects default condition: $\theta B_{t+1}^i + f^i \leq b_t^i$

Negative shock to θ shifts out the orange dashed lines if large enough, E1 disappears and switch to E2, so country A’s bond price increases (negative beta)
Large debt size can be a burden: Low global funding f

- Suppose global savings f are small compared to average debt sizes b_t^i.
- When f is small enough:
 - Joint safety disappears (E1), but also
 - Individual safety for country A disappears (E2), and only country B can possibly be safe (E3)
Conclusion

- Safety is endogenous: when investors believe an asset is safe, their actions can make that asset safe

- We analyzed this multiple equilibrium by assuming a Pareto equilibrium selection rule
 [In full paper He et al 2015, heterogeneous signals (i.e., a global game) will help narrow down the possible equilibria]

- Main result: there can be benefits (in terms of a higher chance of being the safe asset) from
 1. Large absolute initial debt size
 2. Large absolute safe debt capacity

- Large initial debt size can be a burden in a low funding world

- Interpret some of the safe asset shifts from 2008 to 2010 through lens of shifting equilibrium