Optimal Long-Term Contracting with Learning

Zhiguo He Bin Wei Jianfeng Yu
Chicago Booth & NBER Federal Reserve Board U. of Minnesota

January 2014, AFA

The views expressed herein are those of the authors and do not necessarily reflect the views of the Board of Governors or the staff of the Federal Reserve System.
Motivation

- Many long-term contractual relationships feature uncertainty and learning: e.g., unknown project’s quality or agent’s ability
- Dynamic contracting with uncertainty & learning: empirically relevant but theoretically challenging
- Moral hazard interacts with learning — persistent belief manipulation effect
 - Agent’s shirking lowers today’s output
 - Principal mistakenly thinks the project is worse, and belief distortion persists
 - Agent keeps getting more compensations (information rent) in the future
- Incentive provisions are intertemporally linked
 - higher future incentives \implies more information rents \implies more shirking today
 - not in typical dynamic agency literature with repeated moral hazard
This Paper

- We introduce uncertainty into an infinite-horizon Holmstrom-Milgrom setting
 - both transitory “hidden action” and persistent “hidden information”

- We derive the optimal contract, which best trades off working incentive provision against information rent extraction

- Our model is tractable so that the optimal contract is fully characterized by an ordinary differential equation (ODE) w.r.t. information rent only
Main Results

> The optimal effort policy is fully stochastic, surprising in a CARA-Normal framework
 > a result of both long-term contracting and learning
 > w/o learning, Holmstrom-Milgrom (1987): constant optimal effort
 > w. learning but short-term contracts, Holmstrom (1999): deterministic effort

> Under the optimal contract, Agent works harder in earlier periods
 > otherwise stationary framework
 > but later incentive provisions lead to greater information rents

> Option-like feature: incentives increase following good performance
 > mitigating Agent’s belief-manipulation incentives
 > new insight on the popularity of option-based compensation
Literature Review

- Dynamic agency models with hidden information and learning
 - DeMarzo and Sannikov (2008) and Prat and Jovanovic (2010)
 - Adrian and Westerfield (2009)

- Short-term contracting with adverse selection and moral hazard

- Long-term contracting with adverse selection and moral hazard
The Model

- An infinite-horizon continuous-time principal-agent model
- Principal hires Agent to manage a project with output

\[
\begin{align*}
dY_t &= \left(\begin{array}{c} \mu_t \\ \theta \end{array} \right) dt + \sigma dB_t \\
&= \left(\begin{array}{c} \text{unobservable} \\
\text{effort} \\
\text{unknown} \\
\text{quality/ability} \end{array} \right) dt + \sigma dB_t
\end{align*}
\]

- \(\theta \) is *unknown* quality (or managerial ability), \(B_\theta \perp B \):

\[
d\theta_t = \sigma \phi dB_{\theta,t}
\]

- common prior \(\theta \sim \mathcal{N}(m_0, \Sigma_0) \), posterior

\[
m^\mu_t = \mathbb{E}^\mu[\theta | y^t, \mu^t]
\]

- stationary Bayesian learning: assume \(\Sigma_0 = \sigma^2 \phi \)

\[
\Sigma_t = \text{Var}[\theta | y^t, \mu^t] = \Sigma_0 \quad \text{for all } t
\]
The Model (Cont’d)

- Principal is risk-neutral & offers a contract \(\{ c_t, \mu_t \}_{t=0}^{\infty} \)
- Risk averse Agent with exponential utility & reservation value \(v_0 \) chooses actual effort \(\hat{\mu}_t \) and actual consumption \(\hat{c}_t \)

\[
\mathbb{E}^{\hat{\mu}} \left[\int_0^\infty e^{-rt} u (\hat{c}_t, \hat{\mu}_t) \, dt \right]
\]

where \(u (\hat{c}_t, \hat{\mu}_t) = -\frac{1}{a} \exp \left[-a (\hat{c}_t - g (\hat{\mu}_t)) \right] \)

- moral hazard: effort is unobservable and costly

\[
g (\hat{\mu}_t) = \frac{1}{2} \hat{\mu}_t^2
\]

- private savings account with balance \(S_t \):

\[
dS_t = rS_t \, dt + c_t \, dt - \hat{c}_t \, dt \text{ with } S_0 = 0
\]

- private saving in CARA framework helps tractability
The Principal-Agent Problem

- Agent. Given contract with wages and recommended effort \(\{ c_t, \mu_t \} \)

\[
\max_{\{\hat{c}, \hat{\mu}\}} \mathbb{E}^{\hat{\mu}} \left[\int_0^\infty e^{-rt} u(\hat{c}_t, \hat{\mu}_t) \, dt \right]
\]

s.t. \[
dY_t = \left(\hat{\mu}_t + \hat{\mu}_t^\mu \right) dt + \sigma dB^\hat{\mu}_t
\]

\[
dS_t = rS_t dt + c_t dt - \hat{c}_t dt \text{ with } S_0 = 0
\]

- w.l.o.g, focus on incentive-compatible & no-savings contracts

- Principal.

\[
\max_{\{c, \mu\}} \mathbb{E}_0^{\mu} \left[\int_0^\infty e^{-rt} (dY_t - c_t dt) \right]
\]

s.t. \[
dY_t = \left(\mu_t + \mu_t^\mu \right) dt + \sigma dB^{\mu}_t
\]

\[
\mathbb{E}_0^{\mu} \left[\int_0^\infty e^{-rt} u(c_t, \mu_t) \, dt \right] = v_0
\]

\(\{c_t, \mu_t\} \) satisfy incentive-compatible & no-savings constraints
Belief Manipulation

- If Agent follows \(\{\mu_t\} \) recommended by Principal (on-equilibrium), both share same posterior \(m_t^\mu = \mathbb{E}^\mu [\theta | y^t, \mu^t] \):

\[
dm_t^\mu = \phi \left[dY_t - (\mu_t + m_t^\mu) \right] dt
\]
Belief Manipulation

- If Agent follows \(\{\mu_t\} \) recommended by Principal (on-equilibrium), both share same posterior \(m^\mu_t = \mathbb{E}^\mu [\theta | y^t, \mu^t] \):

\[
dm^\mu_t = \phi \left[dY_t - \left(\mu_t + m^\mu_t \right) dt \right]
\]

- Otherwise, if Agent shirked \(\hat{\mu}_t = \mu_t - \epsilon \) only at \([t, t + dt] \) (off-equilibrium), then Principal’s belief would be distorted

Agent knows the truth: \(dm^\mu_t = \phi \left[dY_t - \left(\hat{\mu}_t + m^\mu_t \right) dt \right] \)

- Persistent belief-manipulation effect for \(s \geq t \) — hidden information

\[
m^\mu_s - \hat{m}^\mu_s = -\phi e^{-\phi(s-t)} \epsilon \cdot dt < 0 \text{ for any } s \geq t
\]
Belief Manipulation (Cont’d)

One time shirking at \([t, t + dt]\) leads to persistent belief distortion

\[
m^\mu_s - \hat{m}^\mu_s = -\phi e^{-\phi(s-t)} \epsilon \cdot dt < 0 \text{ for any } s \geq t
\]
The Agent’s Problem: Continuation Value

- Given the contract \(\{c_t, \mu_t\} \), continuation value, no-savings

\[
v_t \equiv \mathbb{E}_t^\mu \left[\int_t^\infty e^{-r(s-t)} u(c_s, \mu_s) \, ds \right]
\]
The Agent’s Problem: Continuation Value

- Given the contract \(\{c_t, \mu_t\} \), continuation value, no-savings

\[
v_t \equiv \mathbb{E}^\mu_t \left[\int_t^\infty e^{-r(s-t)} u(c_s, \mu_s) \, ds \right]
\]

- Martingale Representation Theorem (Sannikov, 2008):

\[
dv_t = rv_t \, dt - u(c_t, \mu_t) \, dt + \beta_t \left(-arv_t \right) \left(dY_t - \left(\mu_t + m^\mu_t \right) \, dt \right)
\]

\$\text{incentive}\ \text{Marginal } u, \ \$\rightarrow \text{utils} \quad \text{performance } \sigma dB^\mu_t

- Private savings + CARA imply

\[
rv_t = u(c_t, \mu_t) \quad \text{and} \quad u_c = -arv_t
\]

 - CARA utility \(\Rightarrow u_c \) is proportional to \(u \)

- \(v_t \) is an exponential Martingale, with loading being incentives \(\{\beta_u\} \)

\[
v_s = v_t \exp \left(- \int_t^s ar\beta_u \sigma dB^\mu_u - \frac{1}{2} \int_t^s a^2 r^2 \beta_u^2 \sigma^2 \, du \right), \quad \text{for } s > t
\]
The Agent’s Problem: Incentive-Compatibility Condition

- Shirking \(\hat{\mu}_t = \mu_t - \epsilon \) at \([t, t + dt]\) affects the agent’s total payoff

\[
u (c_t, \mu_t - \epsilon) dt + v_t + E_t^\mu \left[\int_t^\infty e^{-r(s-t)} dv_s \right]
\]

\[
= u (c_t, \mu_t - \epsilon) dt + E_t^\mu \left[\beta_t (-arv_t) \left(dY_t (\mu_t - \epsilon) - \mu_t dt - m_t^\mu dt \right) \right]
\]

Saving effort cost (+)
Hurting performance today (-)

\[
+ E_t^\mu \left[\int_{t+dt}^\infty e^{-r(s-t)} \beta_s (-arv_s) \left(dY_s (\mu_s) - \mu_s dt - m_s^\mu dt \right) \right] + v_t
\]

Creating future belief divergence (+)
The Agent’s Problem: Incentive-Compatibility Condition

- Shirking $\hat{\mu}_t = \mu_t - \epsilon$ at $[t, t + dt]$ affects the agent’s total payoff

$$u (c_t, \mu_t - \epsilon) dt + v_t + \mathbb{E}^\mu_t \left[\int_t^\infty e^{-r(s-t)} dv_s \right]$$

$$= u (c_t, \mu_t - \epsilon) dt + \mathbb{E}^\mu_t \left[\beta_t (-arv_t) \left(dY_t (\mu_t - \epsilon) - \mu_t dt - m^\mu_t dt \right) \right]$$

- Saving effort cost (+)
- Hurting performance today (-)

$$+ \mathbb{E}^\mu_t \left[\int_{t+dt}^\infty e^{-r(s-t)} \beta_s (-arv_s) \left(dY_s (\mu_s) - \mu_s dt - m^\mu_s dt \right) \right] + v_t$$

- Creating future belief divergence (+)

- The incentive-compatibility (IC) condition

$$u_\mu + (-arv_t) \beta_t - \mathbb{E}^\mu_t \left[\int_t^\infty \phi e^{-(\phi+r)(s-t)} \beta_s (-arv_s) ds \right] = 0$$

- future incentives $\beta_s \uparrow$, shirking to manipulate belief \uparrow, offsetting today’s incentive β_t
The Incentive-Compatibility Condition — Information Rent

- Recall $u_\mu = -u_c \mu_t = (arv_t) \mu_t$

 $v_s = v_t \exp \left(-\int_t^s ar \beta_u \sigma dB_u^\mu - \frac{1}{2} \int_t^s a^2 r^2 \beta_u^2 \sigma^2 du \right)$

- Cancel v_t on both sides, IC condition becomes

$$\mu_t = \beta_t - \mathbb{E}_t^\mu \left[\int_t^\infty \phi e^{-(\phi + r)(s-t)} \beta_s e^{-\int_t^s ar \beta_u \sigma dB_u^\mu - \frac{1}{2} \int_t^s a^2 r^2 \beta_u^2 \sigma^2 du} ds \right]$$

- $\mu_t = \beta_t - \rho_t$, only $\{\beta\}$ enters in the IC condition!

- Intuitively, CARA implies level invariance, the level of today’s v does not matter

- We use Pontryagin’s Maximum Principle to rigorously derive it and prove its sufficiency
The Principal’s Problem

The Principal’s Problem:

\[\max_{\{\beta_t\}} \mathbb{E} \left[\int_0^{\infty} e^{-rt} (dY_t - c_t dt) \right] \]

s.t.

\[dY_t = (\mu_t + m_t)dt + \sigma dB_t \quad \text{and} \quad dm_t = \phi \sigma dB_t \]

\[c_t = \frac{1}{2} \mu_t^2 - \frac{\ln(-ar v_t)}{a} \]

\[dv_t = \beta_t (-ar v_t) \sigma dB_t \quad \text{given} \quad v_0 \]

\[\mu_t = \beta_t - pt (\{\beta_s\}) \]

Value function is separable w.r.t. two state variables: \((v_t, p_t)\)

\[J(v, p) = V(p) - \frac{\ln(-ar v)}{ar} \]

- Project Value
- Certainty Equivalent to Agent

CARA setting, \(v_t\) only matters to the extent of certainty equivalent
The Principal’s Problem: Dynamic Programming

- Hamilton-Jacobi-Bellman equation for $V(p)$, with only state variable p_t

$$
V(p) \equiv \max_{\{\beta_t, \sigma_t^P\}} \mathbb{E} \left[\int_0^\infty e^{-rt} \left(\begin{array}{c}
(\beta_t - p_t) - \frac{1}{2} (\beta_t - p_t)^2 \\
-\frac{1}{2} ar\sigma^2 \beta_t^2
\end{array} \right) dt \right]
$$

s.t. $dp_t = [(\phi + r) p_t + \beta_t \left(ar\sigma^P \sigma_t - \phi \right)] dt + \sigma_t^P dB_t$, $p_0 = p$

- Optimal control is on β_t (drift of dp_t) and σ_t^P (volatility of dp_t)
- Mapping to consumption/portfolio problem: β_t is like consumption affecting the drift of wealth, σ_t^P is like portfolio choice affecting the volatility of wealth
Benchmark Case: Deterministic Contracts

- Under the restriction $\sigma^p = 0$,
 - $\{\beta_t\}$ is deterministic and

 $$(IC) \quad \mu_t = \beta_t - \int_t^\infty \phi \beta_s e^{-(\phi + r)(s-t)} ds$$

- The optimal deterministic contract is solved in closed-form with quadratic value function

 $$V^d(p) = -\frac{1}{2}A^d p^2 + B^d p$$

- Result: p^d, β^d, and μ^d declines exponentially over time toward zero
 - more costly to provide incentives later, because later incentives give agent information rents early on
 - remains to hold in the stochastic optimal contract
The Optimal Contract: Characterization

- Value function $V(p)$ satisfies ODE: for $p \in [0, \bar{p}]$

\[
rx \frac{1}{2} \frac{(1 + p - \phi V_p)^2}{1 + ar\sigma^2 + a^2r^2\sigma^2 \frac{V^2_p}{V_{pp}}} - p - \frac{1}{2}p^2 + V_p (\phi + r) p
\]

where p_t is bounded between an endogenous entry-no-exit upper boundary $\{\bar{p}\}$ and an absorbing lower boundary $\{0\}$

- Under the optimal contract, effort $\mu_t = \beta_t - p_t$ is stochastic!
Optimal Contracting: Option-Like Feature

- Besides time-decreasing effort, the optimal contract exhibits an **option-like** feature
 - incentives increase after good performance, i.e., diffusion of β is positive
- Interestingly, it is due to an asset pricing intuition
- To reduce the agent’s information rent

$$p_t = \frac{1}{u_c(c_t)} \mathbb{E}_t \left[\int_t^\infty \phi e^{-(\phi+r)(s-t)} \beta_s u_c(c_s) \, ds \right].$$

- Intuition: (i) following good performance, $u_c(c_s, \mu_s) \downarrow$
 (ii) increasing incentives, $\beta_s \uparrow$, induces negative covariance
 $$\text{Cov}_t[\beta_s, u_c(c_s, \mu_s)] < 0$$
 \Rightarrow as a result, information rent p_t is lower
- Option: give belief manipulation rewards (high incentives) in states where Agent does not care much (low marginal utility)
Concluding Remarks

- We study optimal dynamic contracting in a context of uncertainty and learning
- Our continuous time agency model features both hidden action and hidden information
 - the optimal effort policy is stochastic and front-loaded
- The optimal contract has an option-like feature, which is used to mitigate the agent’s belief-manipulation motives
 - it is typically hard to have option in optimal contracting standard models (Dittmann and Maug, 2007)
- Empirical predictions/evidence
 - Core and Guay (1999) find that the annual grant of options and stocks to CEO is increasing in past stock returns
 - the industry/firm with higher uncertainty should have more option-based contracts for managerial compensation
 - Ittner, Lambert, and Larcker (2003) and Murphy (2003) who document new-economy firms (e.g., computer) grant more stock options to managers than old-economy firms