Discussion of

Real Exchange Rate Adjustment In and Out of the Eurozone

by

Martin Berka (Victoria U. of Wellington),
Michael Devereux (UBC), and
Charles Engel (U. of Wisconsin)

Brent Neiman
University of Chicago
and NBER

January, 2012
Discussion Plan

- Quick Review of Results
- The Model and Trade Structure
 - PCP at the Dock
 - Real Rigidites
 - How Big is this Cost?
- Robustness and Next Steps on Empirics
 - Differences In and Out of the Eurozone
 - Quick Empirical Suggestions
- Corroborative Results from Micro Data
- Summarize and Conclude
Result 1: “Good q and Bad q”

- Consider the Engel (1999) decomposition of the RER:

\[q = (1 - \varrho) \left(p_N^* - p_T^* - (p_N - p_T) \right) + \left(p_T^* + s - p_T \right) \]

\[q_n \text{ or “Good q”} \quad q_T \text{ or “Potentially Bad q”} \]

- \(q_T \neq 0 \) captures LOOP violations. What can cause these?:
 1. Transport costs or different sourcing patterns
 2. Non-traded inputs included in price of traded good
 3. Heterogeneity in desired markups across markets
 4. Local currency pricing and NER movements

- 1-2 are innocuous, while 3-4 imply inefficiencies (“bad q”)

- \(q_T \) in floaters reflects all 4, but \(q_T \) for pegs only reflect 1-3.

- \(q_T \) variation much more prominent in \(q \) variation in floaters. Gain from eliminating 4 with peg is quantitatively meaningful.
Result 2

- On its own, doesn’t prove which q movement was better.

- What if q adjustment in Eurozone lacked LOP deviations but was slow/tiny, while q_n and q_T adjusted a lot in floaters?

- Simulations of flexible model shows an increasing relationship between q and A_T, a benchmark for efficient adjustment.

- Eurozone exhibits this relationship more strongly than floaters.
Result 3

• If Non-traded inputs matter, we can (with symmetry) write:

\[q_T = (1 - \tilde{\varrho}) \left(p_N^* - p_T^* - (p_N - p_T) \right) + (\tilde{p}_T^* + s - \tilde{p}_T), \]

where \(q_n \) is the same term as from before.

• Movements in \(q_n \) generate movements in \(q_T \) for Eurozone countries, implying non-tradeds might in fact matter.

• Gives us more confidence that \(q_T \) movement is in fact the “bad” kind
PCP at the dock and Substitutability

• Authors acknowledge that PCP at the dock is commonplace.

• BLS export data shows $>90\%$ of U.S. exports are PCP

• Under what conditions in the model and in the world will this not matter?
• While UK consumer price is fixed, ER doesn’t matter
• Distributor profits/losses are returned with complete markets
• What if we add those non-traded components?
• In model, very low substitutability, so little changes
• What if we add substitutability with local producers?
• Most trade, I believe, is in differentiated manufactured inputs
And what about outside substitutes?
China’s price could be fixed or adjusting
• Consider decentralized structure where importers take PCP trade prices and set LCP retail prices with pricing power

• Again, as LCP price is fixed, nothing happens

• But when LCP price changes, influenced by the PCP price

• What if world is state-dependent, not Calvo? Distributor adjusts stickiness of LCP price as a function of PCP price.
PCP at the dock and Upstream/Downstream Stickiness

- When would this matter most? When trade prices stickier than retail (or retail pricing state-dependent).

- Evidence that Upstream is Stickier than Downstream
 - Nakamura Steinsson (2008)
 - Goldberg and Hellerstein (2008) on beer prices
Real Rigidities?

- If there is some share of traded prices which in fact are sticky and PCP, the benefits of flexibility will be amplified.

- If PCP at dock example from previous slides is correct, FX movement ameliorates concern of distributor that other distributors did not receive shock.

- Charles, over email, felt strongly that consumer-good PCP is very rare in practice. I thought hard and think he’s right. But if pushed, a few possible candidates:
 - Travel services (1/4 of services exports; 7% of merchandise exports; probably higher shares of traded final consumption)
 - Goods over the Internet where repricing is done automatically.
How Big is this Particular Cost?

- LOOP deviations caused by LCP+NER are bad in way analogous to arguments about cost of inflation

- If there’s cost shock but only some prices can change, this produces excess or inefficient relative price changes

- As authors acknowledge, only 1 component of decision to peg

- So, how big is it?
 - Calvo pricing: Probably large. e.g. Levin et al. (2005).
 - State-dependent pricing: Probably small. e.g. Burstein and Hellwig (2008)

- Some examples of evidence of state-dependent pricing, particularly in tradable sector
 - Gopinath and Itsikhoki 2010
 - Gagnon 2009
 - Gopinath, Itsikhoki, and Neiman 2011
Empirics: Differences In and Out of Eurozone?

• Harder to find true matches of products?
 • Chain stores with centralized pricing more prevalent in Eurozone?
 • Eurozone regulations influence production cost (labels, etc.)?
 • Eurozone regulations explicitly influence LOOP deviations?

• Measurement error larger outside the Eurozone?

• Differences in stickiness in and out of Eurozone?

• Why does “mixed” look “somewhere in-between” Eurozone and floaters, instead of just like floaters?

• Perhaps details elsewhere, but little said about the data
Empirics: Quick Ideas

• Can we look to other countries to see if peg or if Eurozone? Denmark would be a good example

• Can compare results for long horizon changes vs. short horizon changes? Large-scale changes vs. small-scale changes?

• Can focus on country pairs which switched regimes in 1999?
LOP Deviations in Internet Prices of Identical Good

- Data from Cavallo, Neiman, and Rigobon (2012) in Asia
- Prices relative to Japan for 1000s of goods
LOP Deviations in Internet Prices of Identical Good

- Data from Cavallo, Neiman, and Rigobon (2012) in Europe
- Prices relative to Germany for 1000s of goods
Summarize and Conclude

• A simple point (here and in their other work) proves powerful and data bears it out with surprising strength.

• Results in Engel (1999) might have been attributed to measurement issues or non-traded costs.

• True LOOP deviations from NER are huge relative to total RER adjustment: A very interesting result!

• Authors are careful about 2 claims worth repeating:
 • More “bad q” \neq “worse” – entire GE adjustment changes
 • Many other costs and benefits of pegging