Financial Econometrics
Midterm Review

Nina Boyarchenko
February 5, 2010

Contents

1 AR(p) models 2

2 MA(q) models 2

3 Forecasting 3
 3.1 In-sample forecasts ... 3
 3.2 Out-of-sample forecasts .. 3

4 Models of volatility 3
 4.1 Historical volatility ... 3
 4.2 Exponential smoothing .. 4
 4.3 ARCH/GARCH .. 4
1 AR(p) models

Recall that an autoregressive model of order p is given by:

\begin{equation}
Y_t = \beta_0 + \beta_1 Y_{t-1} + \ldots + \beta_p Y_{t-p} + \epsilon_t; \quad \epsilon_t \sim \text{i.i.d. } N(0, \sigma^2).
\end{equation}

Question 1. What does this model say about the evolution of Y over time?

Question 2. Which part of Y depends on the past?

Question 3. Which part of Y is not predictable from the past?

Question 4. For an AR(1) model, how do we determine if the series is stationary?

Question 5. For an AR(p) model, how do we determine if the series is stationary?

Question 6. For an AR(1) model, what happens if $|\beta_1| = 1$?

Question 7. For an AR(1) model, what happens if $|\beta_1| > 1$?

Question 8. What does the ACF look like for an AR(p) model? What does the PACF look like for an AR(p) model?

2 MA(q) models

Recall that a moving average model of order q is given by:

\begin{equation}
Y_t = \beta_0 + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q} + \epsilon_t; \quad \epsilon_t \sim \text{i.i.d. } N(0, \sigma^2).
\end{equation}

Question 9. What does this model say about the evolution of Y over time?

Question 10. Which part of Y depends on the past?

Question 11. Which part of Y is not predictable from the past?

Question 12. For an MA(1) model, how do we determine if the series is stationary?

Question 13. For an MA(q) model, how do we determine if the series is stationary?

Question 14. What does the ACF look like for an MA(q) model? What does the PACF look like for an MA(q) model?
3 Forecasting

3.1 In-sample forecasts

Recall that the models we consider have the form:

\[y_t = f(y_{t-1}, \ldots, y_0) + \epsilon_t; \quad \epsilon_t \sim N(0, \sigma^2). \]

Thus, the one-step ahead forecast is just given by:

\[\mathbb{E}[y_t | y_{t-1}, \ldots, y_0] = f(y_{t-1}, \ldots, y_0) \]

Thus, the best one-step-ahead forecast in-sample is just given by \(y_t - \hat{\epsilon}_t \).

3.2 Out-of-sample forecasts

Consider first an AR(1) model of the form:

\[y_t = \beta_0 + \beta_1 y_{t-1} + \epsilon_t; \quad \epsilon_t \sim N(0, \sigma^2). \]

Recall from your teaching notes that the \(k \)-step ahead forecast is given by:

\[y_{t+k}^f \equiv \mathbb{E}[y_{t+k} | y_t] = \begin{cases} \frac{\beta_1^k y_t + (1 - \beta_1^k) \mu}{k \beta_0 + y_t}; & |\beta_1| < 1 \\ \frac{1 - \beta_1^k}{1 - \beta_1} \sigma^2; & |\beta_1| = 1 \end{cases} \]

where \(\mu = \beta_0/(1 - \beta_1) \) is the unconditional mean. The forecast error is then given by:

\[\text{var} \left(\epsilon_{t+k}^f \right) \equiv \text{var} \left(y_{t+k} - y_{t+k}^f | y_t \right) = \begin{cases} \frac{1 - \beta_1^k}{1 - \beta_1} \sigma^2; & |\beta_1| < 1 \\ k \sigma^2; & |\beta_1| = 1 \end{cases} \]

and the 95% confidence interval by:

\[y_{t+k}^f \pm 2 \sqrt{\text{var} \left(\epsilon_{t+k}^f \right)}. \]

4 Models of volatility

4.1 Historical volatility

Recall that if we have a time series \(r_t \), the \(K \)-period average of historical volatility is given by:

\[\hat{\sigma}_t = \sqrt{252 \sum_{i=1}^{K} \frac{r_{t-i}^2}{k}} \]

Remember that, in choosing the optimal window for the historical volatility calculations, you are balancing a more accurate estimate (\(k \) high) versus having an estimate that reacts promptly to changes in the time series (\(k \) low).
4.2 Exponential smoothing

For exponential smoothing, the time series of volatility is constructed as:

\[h_t^2 = \lambda h_{t-1}^2 + (1 - \lambda) r_{t-1}^2. \]

A high value of \(\lambda \) implies that you put more weight on past estimates, while a low value of \(\lambda \) implies that you want to update your data more quickly.

4.3 ARCH/GARCH

An ARCH(p) model is a generalization of the historical volatility model, with the estimation equation given by:

\[r_t = \sqrt{h_t} z_t, \quad z_t \sim N(0, 1) \]
\[h_t = \omega + \sum_{i=1}^{p} \alpha_i r_{t-i}^2. \]

A GARCH(p,q) model is a generalization of the exponential smoothing model, with the estimation equation given by:

\[r_t = \sqrt{h_t} z_t, \quad z_t \sim N(0, 1) \]
\[h_t = \omega + \sum_{i=1}^{p} \alpha_i r_{t-i}^2 + \sum_{j=1}^{q} \beta_j h_{t-j}^2. \]

Consider a GARCH(1,1) model. The \(k \)-step ahead forecast specification is:

\[h_{t+k|t} = \sigma^2 + (\alpha + \beta)^{k-1}(h_{t+1} - \sigma^2), \]

with the one-step ahead forecast is given by: \(h_{t+1|t} = \omega + \alpha r_t^2 + \beta h_t. \)