4. Forecasting with ARMA models

MSE optimal forecasts

• Let \hat{Y}_t^1 denote a one-step ahead forecast given information F_t. For ARMA models, $F_t = Y_t, Y_{t-1}, ...$.

• The optimal MSE forecast minimizes

$$E\left(Y_{t+1} - \hat{Y}_t^1\right)^2$$
• MSE is a convenient forecast evaluation that has nice theoretical properties.

• MSE is not always a good way to evaluate forecasts from an economic perspective.
 – It is symmetric. Do you care the same about underestimating the time to walk to the bus vs. overestimating?
 – In general, non-linear payoff functions are not optimized by MSE.

The optimal MSE forecast is the conditional expectation

• To see this, let \(g(X_t) \) denote any other forecast.

\[
E(Y_{t+1} - g(X_t))^2 = E[(Y_{t+1} - E(Y_{t+1} | X_t))^2 + (E(Y_{t+1} | X_t) - g(X_t))^2]
\]

\[
= E(Y_{t+1} - E(Y_{t+1} | X_t))^2 + 2E[(Y_{t+1} - E(Y_{t+1} | X_t))(E(Y_{t+1} | X_t) - g(X_t))]
+ E((E(Y_{t+1} | X_t) - g(X_t))^2
\]

• The middle (cross product) term has expectation zero by the Law of Iterated Expectations (LIE) \(E(Y) = E(E(Y|X)) \)

\[
E\left[\sum_{i=1}^{n} \frac{Y_{t+i} - E(Y_{t+i} | X_t)}{E(Y_{t+i} | X_t) - g(X_t)}\right] = E\left[\sum_{i=1}^{n} \left(E(Y_{t+i} | X_t) - g(X_t) \right) \right] = 0
\]
• So the middle term vanishes and we are left with:

\[E(Y_{t+1} - g(X_t))^2 = E(Y_{t+1} - E(Y_{t+1} | X_t))^2 + E(E(Y_{t+1} | X_t) - g(X_t))^2 \]

• The smallest the second term can be is zero and it is zero only when \(E(Y_{t+1} | X_t) = g(X_t) \)
• So the optimal MSE forecast is the conditional expectation.

Restricting our attention to linear models, a similar result holds for Least Squares estimators

• Let \(E(Y_{t+1} - X_t \beta) X_t = 0 \) so that \(X_t \beta \) is the linear projection of \(Y_{t+1} \) on \(X_t \), or the least squares solution.

• A nearly identical proof shows that the linear projection provides the MSE optimal forecast in the class of linear predictors.
• Let \(X_t \beta \) denote the least squares solution and let \(X_t g \) denote any other linear combination.
\[E(Y_{i+1} - X,g)^2 = E((Y_{i+1} - X,\beta + (X,\beta - X,g))^2 \]
\[= E(Y_{i+1} - X,\beta)^2 + 2*E[(Y_{i+1} - X,\beta)(X,\beta - X,g)] + E(X,\beta - X,g)^2 \]

- The middle term again has expectation zero.

\[E[(Y_{i+1} - X,\beta)(X,\beta - X,g)] = E[(Y_{i+1} - X,\beta)X,\beta - X,g)] \]
\[E[(Y_{i+1} - X,\beta)X,\beta](\beta - g) = 0(\beta - g) = 0 \]

- The resulting expression

\[E(Y_{i+1} - X,g)^2 = E(Y_{i+1} - X,\beta)^2 + E(X,\beta - X,g)^2 \]

is minimized when \(X,\beta = X,g \)

- So if the true conditional expectation is linear then the linear model is the optimal MSE.
- If the true model is non-linear, then the linear model is the best linear predictor.
Forecasting ARMA models

- Consider the ARMA model:
 \[\phi(L)Y_t = \theta(L)\epsilon_t, \]
 where \(\phi(L) = (1 - \beta_2L - \beta_3L^2 - \ldots - \beta_pL^p) \)
 and \(\theta(L) = (1 + \theta_1L + \theta_2L^2 + \ldots + \theta_qL^q) \)

- If the model is weakly stationary we get:
 \[\phi(L)^{-1}\phi(L)Y_t = \phi(L)^{-1}\theta(L)\epsilon_t \quad \text{or} \quad Y_t = \sum_{j=0}^{\infty} \psi_j \epsilon_{t-j} \]
 where \(\psi_0 = 1 \)

Multi-step ahead forecast

- Or,
 \[Y_{t+k} = \sum_{j=0}^{k-1} \psi_j \epsilon_{t+k-j} + \sum_{j=k}^{\infty} \psi_j \epsilon_{t+k-j} \]

- If the \(\epsilon \)'s are independent, then conditional on past \(\epsilon \)'s, future \(\epsilon \)'s have expectation zero:
 \[E(Y_{t+k} | \epsilon_t, \epsilon_{t-1}) = \sum_{j=k}^{\infty} \psi_j \epsilon_{t+k-j} \]

- The forecast error is
 \[E(Y_{t+k} - Y_t^k) = \sum_{j=0}^{k-1} \psi_j \epsilon_{t+k-j} \]

- Since the forecast errors are uncorrelated with the “X’s” use to predict, this is the best linear predictor.
If the ϵ's are white noise (not iid) then the forecast is the optimal linear predictor

- Denote \(E(Y_{t+k} | F_t) = Y_t^k = \sum_{j=k}^{\infty} \psi_j \epsilon_{t+k-j} \)

- The forecast error is
 \[
 E(Y_{t+k} - Y_t^k) = \sum_{j=0}^{k-1} \psi_j \epsilon_{t+k-j}
 \]
- Since the forecast errors are uncorrelated with the “X’s” (past epsilons) this is the best linear predictor.

- The forecast error is defined as the difference between the outcome and it’s forecast is denoted by:
 \[
 e_t^k = Y_{t+k} - E(Y_{t+k} | F_t) = \sum_{j=0}^{k-1} \psi_j \epsilon_{t+k-j}
 \]
• The k-step ahead forecast error variance is then given by:

\[
\text{Var}(e^k_t) = \text{Var}\left(\sum_{j=0}^{k-1} \psi_j \varepsilon_{t+k-j} \right) = \sigma^2 \sum_{j=0}^{k-1} \psi_j^2
\]

• If the errors are Gaussian then the 95% prediction interval is given by:

\[
Y^k_t \pm 2\sigma \sqrt{\sum_{j=0}^{k-1} \psi_j^2}
\]

Example

• Consider the AR(1) model

\[
(1 - \beta L)Y_t = \beta_0 + \varepsilon_t
\]

• Pre-multiply both sides of \(Y_{t+k} \) by:

\[
(1 + \beta L + \beta^2 L^2 + ... + \beta^{k-1} L^{k-1})
\]

yielding

\[
(1 - \beta^k L^k)Y_{t+k} = \beta_0 \sum_{j=0}^{k-1} \beta^j + \sum_{j=0}^{k-1} \beta^j \varepsilon_{t+k-j}
\]

or

\[
Y_{t+k} = \beta^k Y_t + \beta_0 \sum_{j=0}^{k-1} \beta^j + \sum_{j=0}^{k-1} \beta^j \varepsilon_{t+k-j}
\]
• The k-step ahead forecast is:

\[E(Y_{t+k} \mid F_t) = \beta^k Y_t + E\left(\sum_{j=0}^{k-1} \beta^j e_{t+j}\right) = \beta_0 \sum_{j=0}^{k-1} \beta^j + \beta^k Y_t \]

• The forecast error is \(\sum_{j=0}^{k-1} \beta^j e_{t+j} \)

• The forecast error variance is:

\[\text{Var}\left(\sum_{j=0}^{k-1} \beta^j e_{t+j}\right) = \sigma^2 \sum_{j=0}^{k-1} \beta^{2j} \]

• Notice that we could pre-multiply by \((1 + \beta L + \beta^2 L^2 + \ldots + \beta^{k-1} L^{k-1}) \) regardless of whether \(\beta \) is less than one (we didn’t actually use the inverse operator).
• If $|\beta|<1$, the point forecast is

$$E(Y_{t+k} | F_t) = \beta_0 \sum_{j=0}^{k-1} \beta^j + \beta^k Y_t = \beta_0 \frac{1-\beta^k}{1-\beta} + \beta^k Y_t$$

$$= (1-\beta^k) \mu + \beta^k Y_t$$

and the forecast error variance is:

$$Var(e_t^k) = Var\left(\sum_{j=0}^{k-1} \beta^j e_{t-j}\right) = \sigma^2 \sum_{j=0}^{k-1} \beta^{2j} = \sigma^2 \frac{1-\beta^{2k}}{1-\beta^2}$$

• If $\beta = 1$, the point forecast is given by:

$$E(Y_{t+k} | F_t) = \beta_0 \sum_{j=0}^{k-1} \beta^j + \beta^k Y_t = \beta_0 k + Y_t$$

• The forecast error variance is given by:

$$Var(e_t^k) = Var\left(\sum_{j=0}^{k-1} \beta^j e_{t+k-j}\right) = \sigma^2 \sum_{j=0}^{k-1} \beta^{2j} = \sigma^2 k$$
A simple algorithm for multi-step ahead forecasts

• 1 step: \[E(Y_{t+1} | F_t) = \sum_{j=1}^{p} \beta_j Y_{t-j} + \sum_{j=1}^{q} \theta_j \varepsilon_{t-j} \]

• 2 step
\[E(Y_{t+2} | F_t) = \beta_1 E(Y_{t+1} | F_t) + \sum_{j=2}^{p} \beta_j Y_{t+1-j} + \sum_{i=1}^{q} \theta_i \varepsilon_{t+1-i} \]
\[= \beta_1 E(Y_{t+1} | F_t) + \sum_{j=2}^{p} \beta_j Y_{t+1-j} + \sum_{i=1}^{q} \theta_i \varepsilon_{t+1-i} \]

• 3 step
\[E(Y_{t+3} | F_t) = \beta_1 E(Y_{t+2} | F_t) + \beta_2 E(Y_{t+1} | F_t) + \sum_{j=3}^{p} \beta_j Y_{t+2-j} + \sum_{i=1}^{q} \theta_i \varepsilon_{t+2-i} \]

• So once you have the one-step you can get the two step, once you have the two-step, you can get the three-step and so on.

• Plug in conditional expected values for future values of \(Y\) and zero for the expectation of future values of \(\varepsilon\). Plug in know past values for values of \(Y\) and \(\varepsilon\) at or before time \(t\).
5. Maximum Likelihood Estimation

• Let’s start with a simple example.
• Suppose that we take an iid sample of size 10 of whether a voter will vote for candidate A.
• Suppose the data look like this: 1 0 1 1 1 0 0 1 0 1 where a 1 denotes “favor candidate A”.
• Let \(p \) denote the true fraction of voters that favor candidate A. \(p \) is the parameter we want to estimate.

• If we knew \(p \), how likely would it be to observe this sequence of data?
• Well, they are all independent and identically distributed.
 1 0 1 1 1 0 0 1 0 1
The joint probability that \(x_1=1, x_2=0, x_3=1 \)... is given by:
\[
p(1-p)ppp(1-p)(1-p)p(1-p)p=p^6(1-p)^4
\]
• More generally, for a sample of size \(n \) we can write the probability of observing the sample as

\[
p^n (1 - p)^{n_0}
\]

• This is simply the joint probability of \(n \) outcomes.

• For a given value of \(p \), \(L(data \mid p) = p^n (1 - p)^{n_0} \) tells us how likely it is to observe this particular data set. We therefore call this the likelihood function.

• The goal of maximum likelihood is to find the parameter value \(p \) that maximizes the likelihood function.

• In doing so we are finding the parameter value that makes it most likely that we observe our given sample.
• The log function is a monotonically increasing function. This means that the value of p that maximizes the likelihood function L is the same as the value of p that maximizes the log of the likelihood function.

\[L(data \mid p) = \ln(L) = n_1 \ln(p) + n_0 \ln(1 - p) \]

• We can maximize the likelihood by taking the derivative and setting it to zero.

• The p that maximizes the log likelihood function will be our estimate of p so we denote it by \hat{p}
• Taking the derivative and setting to zero yields:

\[
\frac{dL(p|\text{data})}{dp} = \frac{n_1}{p} - \frac{n_0}{p(1-p)} = 0
\]

• The solution is:

\[
\hat{p} = \frac{n_1}{n_0 + n_1} = \frac{n_1}{n}
\]

• For continuous random variables the density function describes probabilities.

• Let \(f(\cdot|\theta) \) denote a density function that depends on a possible vector of parameters (i.e. for the normal it depends on the mean and variance).
• If we take an iid sample of a continuous random variable then the likelihood of observing the sample is given by the product of the marginal densities.

\[
f(y_1, y_2, \ldots, y_n | \theta) = f(y_1 | \theta) f(y_2 | \theta) \cdots f(y_n | \theta)
\]

• It is convenient to take the log of the joint density function in which case we get:

\[
\ln f(y_1, y_2, \ldots, y_n | \theta) = \sum_{i=1}^{n} \ln f(y_i | \theta)
\]

• As before, the value of \(\theta \) that maximizes the function \(f \) will also maximize \(\ln(f) \) and is called the Maximum Likelihood Estimate \(\hat{\theta} \).
• Example: iid Normal likelihood function. (on white board)

How do we set up the likelihood for dependent time series data?

• The factorization of the likelihood into the product of marginal densities relied on an iid sample of data which is clearly not true for dependent time series data.

• Fact: without any loss of generality, the joint density function $f(y_T, y_{T-1}, \ldots, y_1 | \theta)$ can always be expressed as:

$$f(y_T, y_{T-1}, \ldots, y_1 | \theta) = f(y_T | y_{T-1}, y_{T-2}, \ldots, y_1; \theta) f(y_{T-1} | y_{T-2}, y_{T-3}, \ldots, y_1; \theta)$$
$$f(y_{T-2} | y_{T-3}, y_{T-4}, \ldots, y_1; \theta) \ldots f(y_2 | y_1; \theta) f(y_1; \theta)$$
• Taking logs of the joint density then gives:

\[
\ln f(y_1, y_2, \ldots, y_n | \theta) = \sum_{i=1}^{n} \ln f(y_i | y_{i-1}, y_{i-2}, \ldots, y_1; \theta)
\]

• The value of \(\theta \) that maximizes the likelihood is called the Maximum Likelihood Estimate (MLE) of \(\theta \).

• All the models that considered in class are different models for this conditional distribution.

• The result says that if we can write the conditional density of \(f(y_{t+1} | F_t) \) we can construct the likelihood.

• But this is exactly how we specified the models discussed so far. We defined the dynamics conditional of \(F_t \).
• AR(1) model likelihood under Gaussian errors. (on white board)

Variance of maximum likelihood parameter estimates

• The value of θ that maximizes the likelihood is our estimate, but how accurate is the estimate?
• If the assumed distribution is correct then the variance covariance matrix of the parameter estimates is given by inverse of the information matrix denoted by I^{-1}.
Constructing the information matrix

- Write the log likelihood function as: \(\mathbf{L} = \sum_{t=1}^{T} l_t \) where \(l_t = \ln f(y_t | y_{t-1}, y_{t-2}, ..., y_1; \theta) \)
- There are two ways to estimate the information matrix:

1) \(\hat{I}_{2d} = \frac{-1}{T} \frac{d^2 L}{d\theta d\theta'} |_{\hat{\theta}} = \frac{-1}{T} \sum_{t=1}^{T} \frac{d^2 l_t}{d\theta d\theta'} |_{\hat{\theta}} \)

2) \(\hat{I}_{op} = \frac{1}{T} \sum_{t=1}^{T} \frac{dl_t}{d\theta} \bigg|_{\hat{\theta}} \frac{dl_t'}{d\theta'} \bigg|_{\hat{\theta}} \)

- The if \(\theta_0 \) is the true parameter value, the distribution of the parameter estimates is given by:
 \(\hat{\theta} \sim N\left(\theta_0, \frac{1}{T} \hat{I}^{-1}\right) \)
- Where \(\hat{I} \) is one of the two estimates \(\hat{I}_{2d} \) or \(\hat{I}_{op} \).
• When the model is correctly specified the two estimate of the information matrix are the same in large samples. In small samples they will differ a little although neither is preferred.

• There are several ways the model can be wrong.
 – First, we could misspecify the dynamics (i.e. have the wrong AR model)
 – Second, we could use the wrong shape for the conditional distribution (i.e. use a Normal when we should have used a t-distribution)

Getting the standard errors right

• Interestingly, if we have the dynamics right but falsely assume Normality, the parameter estimates are still consistent under very general conditions.
• The standard errors will be wrong, however.
• The good news is that we know how to fix them.
White Robust Standard Errors

- If the dynamics are correctly specified, but the assumed distribution is wrong the estimates are consistent and the variance covariance matrix can be estimated by:

\[
\hat{\theta} \sim N\left(\theta_0, \frac{1}{T} \hat{I}_2^{-1} \hat{I}_{op} \hat{I}_2^{-1} \right)
\]