Assessing Real Estate Returns by Strategy: Core v. Value-Added v. Opportunistic

Joseph L. Pagliari, Jr.
Clinical Professor of Real Estate
October 25, 2013
Chicago Booth Real Estate Conference
Chicago, Illinois

* Superior research support provided by Camilo Varela
Core v. Non-Core Real Estate Returns

- What Do the Data Look Like?
- Promotes Create Asymmetries
- The Law of One Price
- Putting the Tools to Work: The Results
- Holding-Period Sensitivities
- Appendices
 - Other Sensitivities
 - Dispersion in Fund Returns

Based on the PREA-Sponsored research paper: “An Overview of Fee Structures in Real Estate Funds and Their Implications for Investors” *

* Draft version of the PREA paper will be available on the Conference website.
Exhibit 62: Reported Performance by Fund Type for the 17-Year Period Ended December 31, 2012

Gross & Net Returns by Strategy

Source: NCREIF/Townsend and Author's Calculations
Let’s Consider Fees by Strategy

Strategy
- Core
- Value-Added
- Opportunistic

GP Fees
- ~105 bps
- ~165 bps
- ~350 bps

Exhibit 63: Reported Performance by Fund Type for the 17-Year Period Ended December 31, 2012

<table>
<thead>
<tr>
<th>Year</th>
<th>Gross (Value-Weighted) Returns</th>
<th>Net (Value-Weighted) Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core NPI</td>
<td>NFI-ODCE</td>
</tr>
<tr>
<td>1996-2006</td>
<td>12.56%</td>
<td>12.90%</td>
</tr>
<tr>
<td>1996-2012</td>
<td>9.92%</td>
<td>9.49%</td>
</tr>
<tr>
<td>%Δ</td>
<td>(21.05%)</td>
<td>(26.41%)</td>
</tr>
</tbody>
</table>

Standard Deviation

<table>
<thead>
<tr>
<th>Year</th>
<th>NPI</th>
<th>NFI-ODCE</th>
<th>Value-Added</th>
<th>Opportunistic</th>
<th>NPI</th>
<th>NFI-ODCE</th>
<th>Value-Added</th>
<th>Opportunistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996-2006</td>
<td>4.16%</td>
<td>4.74%</td>
<td>6.72%</td>
<td>16.20%</td>
<td>4.67%</td>
<td>6.18%</td>
<td>13.68%</td>
<td></td>
</tr>
<tr>
<td>1996-2012</td>
<td>9.01%</td>
<td>12.27%</td>
<td>16.45%</td>
<td>21.45%</td>
<td>12.12%</td>
<td>16.05%</td>
<td>19.19%</td>
<td></td>
</tr>
<tr>
<td>%Δ</td>
<td>116.86%</td>
<td>158.84%</td>
<td>144.75%</td>
<td>32.42%</td>
<td>159.51%</td>
<td>159.56%</td>
<td>40.30%</td>
<td></td>
</tr>
</tbody>
</table>
Volatility of Opp Fund Returns Looks Understated

Exhibit 63: Reported Performance by Fund Type for the 17-Year Period Ended December 31, 2012

<table>
<thead>
<tr>
<th>Year</th>
<th>Core</th>
<th>Non-Core</th>
<th>Core</th>
<th>Non-Core</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NPI</td>
<td>NFI-ODCE</td>
<td>Value-Added</td>
<td>Opportunistic</td>
</tr>
<tr>
<td>Arithmetic Average</td>
<td>12.56%</td>
<td>12.90%</td>
<td>15.00%</td>
<td>24.19%</td>
</tr>
<tr>
<td>1996-2006</td>
<td>9.92%</td>
<td>9.49%</td>
<td>10.02%</td>
<td>17.02%</td>
</tr>
<tr>
<td>%Δ</td>
<td>(21.05%)</td>
<td>(26.41%)</td>
<td>(33.21%)</td>
<td>(29.64%)</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>4.16%</td>
<td>4.74%</td>
<td>6.72%</td>
<td>16.20%</td>
</tr>
<tr>
<td>1996-2012</td>
<td>9.01%</td>
<td>12.27%</td>
<td>16.45%</td>
<td>21.45%</td>
</tr>
<tr>
<td>%Δ</td>
<td>116.86%</td>
<td>158.84%</td>
<td>144.75%</td>
<td>32.42%</td>
</tr>
</tbody>
</table>

Pre-Financial Crisis

Entire Time Period
Problems with the Data for Non-Core Returns

• Voluntary, Self-Reported Results
• Inconsistent Methodologies for Reporting
• Mark-to-Market Staleness
• Incomplete Capture of Fund Universe
• Incomplete Characterization of Funds:
 • domestic v. foreign,
 • debt v. equity, etc.
• Survivorship Bias ← only element we can attempt to correct
 – Survivorship Bias = During & after the financial crisis, some funds stop reporting (without apparent termination)
 – Survivorship Bias Adjustment (θ) = Percentage of assets lost by non-reporting firms
Opp Returns with Survivorship-Bias Adjustment

Exhibit 64: Reported Performance of the Opportunistic Funds for the 17-Year Period Ended December 31, 2012 with Survivorship Bias Adjustment (θ)

Source: NCREIF/Townsend and Author's Calculations
Survivorship-Bias Adjusted Opp Returns

Exhibit 65: Reported and Adjusted Performance by Fund Type for the 17-Year Period Ended December 31, 2012

<table>
<thead>
<tr>
<th>Year</th>
<th>Gross (Value-Weighted) Returns</th>
<th>Net (Value-Weighted) Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core NPI</td>
<td>NFI-ODCE</td>
</tr>
<tr>
<td>1996-2006</td>
<td>12.56%</td>
<td>12.90%</td>
</tr>
<tr>
<td>1996-2012</td>
<td>9.92%</td>
<td>9.49%</td>
</tr>
</tbody>
</table>

| %Δ | (21.05%) | (26.41%) | (33.21%) | (37.27%) | (28.45%) | (37.46%) | (41.98%) |

<table>
<thead>
<tr>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996-2006</td>
</tr>
<tr>
<td>1996-2012</td>
</tr>
</tbody>
</table>

| %Δ | 116.86% | 158.84% | 144.75% | 42.22% | 159.51% | 159.56% | 52.90% |

* Adjustment to opportunistic funds, with \(\theta = 50\% \).

Ultimately, survivorship-bias adjustment does little to cure the suspected problem.
Survivorship-Bias Adjusted Opp Returns in Context

Exhibit 66: Reported and Adjusted Performance by Fund Type for the 17-Year Period Ended December 31, 2012

Source: NCREIF/Townsend and Author’s Calculations
Core v. Non-Core Real Estate Returns

- What Do the Data Look Like?
- Promotes Create Asymmetries
- The Law of One Price
- Putting the Tools to Work: The Results
- Holding-Period Sensitivities
- Appendices
 - Other Sensitivities
 - Dispersion in Fund Returns

Based on the PREA-Sponsored research paper: “An Overview of Fee Structures in Real Estate Funds and Their Implications for Investors” *

* Draft version of the PREA paper will be available on the Conference website.
Numerical Example: Pref & Promote Structure

Fund-Level Return Distribution:
- Gross Return: 13.0%
- Base Fees: 1.0%
- Net Return: 12.0%
- Volatility: 15.0%

Fund Structure:
- Investor’s Preference: 12.0%
- Residual Split:
 - Investor: 80%
 - General Partner: 20%

Notes:
- Investor’s preference typically set at or below fund’s likely return.
- The general partner’s “promoted” interest creates an option-like return for operator.
- The value of the option reduces the investor’s upside.
Exhibit 10: Illustration of Expected Fund-Level Returns with Investment Manager's Promoted Interest

Manager's Promoted Interest

Distribution of Expected Fund-Level Returns

Likely Returns
Promotes Truncate the Investor’s “Upside” Return

Exhibit 11: Illustration of Fund-Level and Investor-Level Returns when Investment Manager Receives a Promoted Interest

Likely Returns before Promote

Likely Returns after Promote

Estimated Frequency

Likely Returns

-33% -28% -23% -18% -13% -8% -3% 2% 7% 12% 17% 22% 27% 32% 37% 42% 47% 52% 57%
Fund’s Gross and Net Returns:

– **Likely Returns:**
 - Gross Return: 13.0%
 - Ongoing/Base Fees: 1.0%
 - Operating Partner’s Participation: 1.2%
 - Investor’s Net Return: 10.8%

– **Volatility (Standard Deviation):**
 - Fund-Level Volatility before General Partner: 15.0%
 - General Partner’s Participation: 1.5%
 - Investor’s Net Return: 13.5%

Notes:

– The general partner’s “promoted” interest reduces the investor’s net return by 120 bps:
 Even though the value of the promote equals zero at the most likely return,
 This is attributable to general partner’s asymmetric participation in returns.
– The reduction in the investor’s standard deviation is a statistical illusion:
 The investor still receives 100% of the economic downside.
Point #1: Average Expectation ≠ Expectation of the Average

A simple way to the think of the average promote:

\[
E(\pi) = \int_0^\infty \kappa (x - \psi) f(x) dx
\]

where: \(\pi \) = the “promote”, \(\kappa \) = general partner’s participation in the excess profits, \(\psi \) = investor’s preference, and \(f(x) \) = the distribution of fund-level returns, \(x \).

Because of the general partner’s asymmetric participation:

- The average expectation does not equal the expectation of the average:

\[
E(\pi) = \int_0^\infty \kappa (x - \psi) f(x) dx \neq \kappa (\overline{x} - \psi)
\]
Mathematically, it is true that the dispersion in net returns is narrower:

However, the investor retains all the “downside” risk
– Therefore, investor faces the same risk as before the promote
– This is an important point when examining index returns by strategy
Core v. Non-Core Real Estate Returns

- What Do the Data Look Like?
- Promotes Create Asymmetries
- The Law of One Price
- Putting the Tools to Work: The Results
- Holding-Period Sensitivities
- Appendices
 - Other Sensitivities
 - Dispersion in Fund Returns

Based on the PREA-Sponsored research paper: “An Overview of Fee Structures in Real Estate Funds and Their Implications for Investors” *

* Draft version of the PREA paper will be available on the Conference website.
Use the “Law of One Price” to Create Risk/Return Continuum

Exhibit 68: Illustration of "Law of One Price"
Lever Core Assets to Create Risk/Return Continuum

- Expected Return (k_e)
- Expected Volatility (σ_e)

k_e: Levered Core Fund Returns
k_u: Unlevered Core Fund Returns

- 0% Leverage
- 25% Leverage
- 50% Leverage
- 75% Leverage
Exhibit 69: Application of "Law of One Price"
Levered Core Assets v. Non-Core Funds

- Expected Return (k_e)
- Expected Volatility (σ_e)

α: Risk-Adjusted Returns

- Out-Performing Non-Core Fund
- Under-Performing Non-Core Fund

0% Leverage
25% Leverage
50% Leverage
75% Leverage

k_e: Levered Core Fund Returns
k_e: Unlevered Core Fund Returns

Positive Alpha
Negative Alpha
Interest Rates $= f(LTV \mid \text{Asset Quality, Sponsorship, etc.})$

Exhibit 67: Illustration of the Cost of Indebtedness as a Function of Leverage

- Mortgage Interest Rate
- Default Risk (δ) Premium
- Structural Differences (γ) in Payment Schedules, Servicing Fees, Etc.
- Risk-free Rate

Relationship is for a given moment in time
Risk-Free Rates & Spreads Vary Over Time

Exhibit 71: Estimates of the Annual Interest Rate at Various Leverage Ratios for the Years 1996 through 2012

Changes Over Time:

1. Risk-free Rate, and

2. Spreads:

 a) low before the financial crisis,

b) spiked up during and after the financial crisis, and

c) have started to recede thereafter
Core v. Non-Core Real Estate Returns

- What Do the Data Look Like?
- Promotes Create Asymmetries
- The Law of One Price
- Putting the Tools to Work: The Results
- Holding-Period Sensitivities
- Appendices
 - Other Sensitivities
 - Dispersion in Fund Returns

Based on the PREA-Sponsored research paper: “An Overview of Fee Structures in Real Estate Funds and Their Implications for Investors” *

* Draft version of the PREA paper will be available on the Conference website.
Let’s Put the Tools to Work: The Results

Exhibit 74: Reported and Adjusted Performance by Fund Type for the 17-Year Period Ended December, 2012 with Levered Core Creating the Law-of-One-Price Continuum

Tools:
1. Net Returns,
2. Survivorship Bias (θ), and
3. Law of One Price:
 a) De-lever Core, assume $N = 7$
 b) Re-lever Core, assume $N = 3$

NPI Value-Added
Opportunistic
($\theta = .5$)

Gross Returns
Net Returns

0%
5%
10%
15%
20%
25%

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%

Volatility
Average Annual Compounded Returns

LTV
24% LTV
35% LTV
45% LTV
55% LTV
60% LTV
Let’s Put the Tools to Work: The Results (continued)

Exhibit 75: Reported & Volatility-Adjusted Performance by Fund Type for the 17-Year Period Ended December, 2012 with Levered Core Creating the Law-of-One-Price Continuum

Tools:
4. Volatility Adjustment (correct for statistical illusion)

Average Annual Compounded Returns

Opportunistic
($\theta = .5$)

NPI Value-Added

Core

Gross Returns

Net Returns - Unadjusted

Net Returns - Volatility-Adjusted

Volatility
Let’s Put the Tools to Work: The Results (continued)

Exhibit 76: Estimated Alpha for Non-Core Funds for the 17-Year Period Ended December, 2012

Tools:

5. Risk-Adjusted Returns (α)
Let’s Put the Tools to Work: The Results (continued)

Exhibit 76: Estimated Alpha for Non-Core Funds for the 17-Year Period Ended December, 2012

Results:

For Opportunistic Funds, an “efficient market” type answer: investors receive a “fair” return, while managers receive the “surplus”

For Value-Added Funds, no such answer: dramatic under-performance
Core v. Non-Core Real Estate Returns

- What Do the Data Look Like?
- Promotes Create Asymmetries
- The Law of One Price
- Putting the Tools to Work: The Results
- Holding-Period Sensitivities
- Appendices
 - Other Sensitivities
 - Dispersion in Fund Returns

Based on the PREA-Sponsored research paper: “An Overview of Fee Structures in Real Estate Funds and Their Implications for Investors”*

* Draft version of the PREA paper will be available on the Conference website.
Any fair comparison examines a complete market cycle.

In a market downturn, there is a “flight to quality” → non-core assets are hit harder.

Let’s consider returns by “vintage” by strategy.
“Mountain” Chart for Value-Added Index’s Alpha

- Repeat the earlier (α) exercise for differing vintages
- Choose any beginning and ending date, with minimum 6-year hold
- Value-add funds underperform before, during & after the financial crisis
- The pre-financial-crisis underperformance is particularly damning!

Exhibit 78: Value-Added Funds' Estimated Alpha for Various Holding Periods

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
<td>(3.19)%</td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>(3.05)%</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td>(2.92)%</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td>(2.68)%</td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td>(2.34)%</td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td>(2.34)%</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td>(2.10)%</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>(2.00)%</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td>(1.53)%</td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td>(1.63)%</td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td>(1.39)%</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td>(1.47)%</td>
</tr>
</tbody>
</table>

* Not applicable - The reported volatility of the value-added funds during this period is less than that of the core funds for the same period.

Our earlier result

CHICAGO BOOTH
Repeat the earlier (α) exercise for differing vintages

The index of Opportunistic funds underperforms before the financial crisis

Yet, they overperform during & after the financial crisis!

How can this be? It cannot [$= f(\text{“flight to quality”})$]

Provides another perspective on data problems & survivorship bias

Exhibit 79: Opportunity Funds' Estimated Alpha for Various Holding Periods

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0.76%</td>
<td>(0.32%)</td>
<td>(3.78%)</td>
<td>(0.88%)</td>
<td>6.19%</td>
<td>4.05%</td>
<td>1.39%</td>
<td>0.58%</td>
<td>0.63%</td>
<td>0.53%</td>
<td>0.31%</td>
<td>0.11%</td>
</tr>
<tr>
<td>2002</td>
<td>(1.54%)</td>
<td>0.36%</td>
<td>5.04%</td>
<td>3.42%</td>
<td>1.27%</td>
<td>0.60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>(3.78%)</td>
<td>0.88%</td>
<td>6.19%</td>
<td>4.05%</td>
<td>1.39%</td>
<td>0.58%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>0.88%</td>
<td>6.19%</td>
<td>4.05%</td>
<td>1.39%</td>
<td>0.58%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>0.76%</td>
<td>(0.32%)</td>
<td>(3.78%)</td>
<td>(0.88%)</td>
<td>6.19%</td>
<td>4.05%</td>
<td>1.39%</td>
<td>0.58%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>(1.54%)</td>
<td>0.36%</td>
<td>5.04%</td>
<td>3.42%</td>
<td>1.27%</td>
<td>0.60%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>(2.00%)</td>
<td>(1.11%)</td>
<td>(2.78%)</td>
<td>(2.95%)</td>
<td>(3.93%)</td>
<td>(1.84%)</td>
<td>2.66%</td>
<td>1.82%</td>
<td>0.48%</td>
<td>0.06%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>(2.46%)</td>
<td>(2.86%)</td>
<td>(0.37%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>3.96%</td>
<td>0.51%</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>(2.46%)</td>
<td>(2.86%)</td>
<td>(0.37%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
</tbody>
</table>

Our earlier result
Core v. Non-Core Real Estate Returns

- What Do the Data Look Like?
- Promotes Create Asymmetries
- The Law of One Price
- Putting the Tools to Work: The Results
- Holding-Period Sensitivities
- Appendices
 - Other Sensitivities: $\theta = .5$, $N_{\text{Core}} = 5$ & $N_{\text{Opp}} = 3$
 - Dispersion in Fund Returns

Based on the PREA-Sponsored research paper: “An Overview of Fee Structures in Real Estate Funds and Their Implications for Investors” *

* Draft version of the PREA paper will be available on the Conference website.
The Sensitivity of Survivorship-Bias Adjustment (θ)

Results

- $\theta = 0$
- $\theta = 0.5$ (base case)
- $\theta = 1$

As you'd suspect: $\alpha \downarrow$ as $\theta \uparrow$

Range ≈ 410 bps

Exhibit S1: Opportunity Funds | Sensitivity of Alpha to Assumed Percentage (θ) of Survivorship Bias

Opportunistic Funds' Estimated Alpha, Given $\theta = 0$

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exhibit S2: Opportunity Funds | Sensitivity of Alpha to Assumed Percentage (θ) of Survivorship Bias

Opportunistic Funds' Estimated Alpha, Given $\theta = 0.5$

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exhibit S3: Opportunity Funds | Sensitivity of Alpha to Assumed Percentage (θ) of Survivorship Bias

Opportunistic Funds' Estimated Alpha, Given $\theta = 1$

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.02%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Neutralize Differences in Loan Maturities

- Assume that core funds have longer loan maturities ($N = 7$).
- Assume that non-core funds have shorter maturities ($N = 3$).
- In order to place core funds on equal footing with non-core funds, need to de-lever core funds at their assumed loan maturity and re-lever core funds at the assumed loan maturity of non-core funds.

Exhibit 7.2: Historical Path of Treasury Bond Interest Rates for 1- and 10-Year Maturities for the Period 1954 through 2012
Results:

\[N_{Core} = 5 \]

\[N_{Core} = 7 \]
(base case)

\[N_{Core} = 10 \]

As you’d suspect:

\[\alpha \downarrow \text{ as } N_{core} \uparrow \]

Range \(\approx 40 \text{ bps} \)
The Sensitivity of Assumed Core Debt Maturity (N_{Opp})

Results:

- $N_{\text{Opp}} = 2$
- $N_{\text{Opp}} = 3$ (base case)
- $N_{\text{Opp}} = 4$

As you’d suspect: $\alpha \downarrow$ as $N_{\text{Opp}} \uparrow$

Range ≈ 90 bps
Core v. Non-Core Real Estate Returns

- What Do the Data Look Like?
- Promotes Create Asymmetries
- The Law of One Price
- Putting the Tools to Work: The Results
- Holding-Period Sensitivities
- Appendices
 - Other Sensitivities
 - Dispersion in Fund Returns

Based on the PREA-Sponsored research paper: “An Overview of Fee Structures in Real Estate Funds and Their Implications for Investors” *

* Draft version of the PREA paper will be available on the Conference website.
Note: An Index v. Individual Funds

Exhibit 80: Illustration of Dispersion in Manager-Specific Performance
Gross Returns as a Function of Investment Strategy

- Upper Quartile Performance
- Average Fund-Manager Performance
- Lower Quartile Performance

Expected Return (E_r) vs. Volatility of Expected Return (σ_E)
Hypothetical Dispersion in Performance for a Given Strategy

Exhibit A.2.6: Hypothetical Illustration of the Difference between the Average Fund's Volatility and Fund_i's Volatility

Major Assumptions:

- The average return of any one fund equals ~11%.
- The average volatility of any one fund equals ~18%.
- The average correlation between a given fund's return and its volatility equals 80%.
Risk/Return Characteristics: Index v. Funds

- The return of the index = the (weighted) average of the funds’ returns
- The volatility (σ) of the index < the (weighted) average of the funds’ volatility
- There’s a diversification effect (w.r.t. to volatility only)

Exhibit A.2.7: Hypothetical Illustration of the Difference between the Average Fund’s Volatility and the Index’s Volatility
• Consider the dispersion around the (weighted) average of the funds’ returns
 • not the index’s return!

• Each ellipse contains a certain proportion of fund returns:
Risk/Return Characteristics: Index v. Funds (continued)

- This diversification effect is greatest with opportunistic funds
 - → biggest difference between index’s σ and the average fund’s σ
 - → need more opp funds to be well diversified (within that strategy)
- Under-diversified opp-fund investors experience greatest decline in α

Exhibit A.2.9: Illustration of the Law of One Price
Lever Core Assets to Create Risk/Return Continuum

To be effectively diversified (i.e., within 50 bps of an index’s volatility) and given my underlying assumptions, an investor would need:

- ≥ 2 core funds,
- ≥ 7 value-add funds, &
- ≥ 15 opportunity funds.