BUS41100 Applied Regression Analysis

Week 2: Inference for SLR

Inference: sampling distributions, testing confidence intervals, and prediction intervals

Max H. Farrell
The University of Chicago Booth School of Business
Back to House Prices

Understand the relationship between price and size. How?

Last week we fit a line through a bunch of points:

\[\text{price} = 39 + 35 \times \text{size}. \]
Another example of conditional distributions:

Individual returns given market return.

The Capital Asset Pricing Model (CAPM) for asset \(A \) relates

\[R_{At} = \frac{V_{At} - V_{At-1}}{V_{At-1}} \]

to the “market” return, \(R_{Mt} \).

In particular, the relationship is given by the regression model

\[R_{At} = \alpha + \beta R_{Mt} + \varepsilon \]

with observations at times \(t = 1 \ldots T \)

(and where \([\alpha, \beta] \equiv [\beta_0, \beta_1]\)).

When asset \(A \) is a mutual fund, this CAPM regression can be
used as a performance benchmark for fund managers.
> mfund <- read.csv("mfunds.csv")
> mu <- apply(mfund, 2, mean)
> mu

 drefus fidel keystne Putnmnc scudinc
 0.006767000 0.004696739 0.006542550 0.005517072 0.004432333
 windsor valmrkt tbill
 0.010021906 0.006812983 0.005978333

> stdev <- apply(mfund, 2, sd)
> stdev

 drefus fidel keystne Putnmnc scudinc
 0.047237111 0.056587091 0.084236450 0.030079074 0.035969261
 windsor valmrkt tbill
 0.048639473 0.048000146 0.002522863
> plot(mu, stdev, col=0)
> text(x=mu, y=stdev, labels=names(mfund), col=4)
Lets look at just windsor (which dominates the market).

```r
> windsor.reg <- lm(mfund$windsor ~ mfund$valmrkt)
> plot(mfund$valmrkt, mfund$windsor, pch=20)
> abline(windsor.reg, col="green")
```

$b_0 = 0.0036$

$b_1 = 0.9357$
Modeling goals

Prediction
\[\hat{Y} = b_0 + b_1 X \]
\[Y = b_0 + b_1 X + e \]

Model
\[Y = \beta_0 + \beta_1 X + \varepsilon \]

Why are we running regressions anyway?

1. Properties of \(\beta_k \)
 - Sign: Does \(Y \) go up when \(X \) goes up?
 - Magnitude: By how much?

2. Predicting \(Y \)
 - Best guess for \(Y \) given \(X \).

Key question today: how **uncertain** are our answers?

- First we must formalize our model.
Simple linear regression (SLR) model

\[Y = \beta_0 + \beta_1 X + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2) \]

What’s important?

- It is a model, so we are *assuming* this relationship holds for some fixed but unknown values of \(\beta_0, \beta_1 \).
- It is linear.
- The error \(\varepsilon \) is independent & mean zero
 1. \(\mathbb{E}[\varepsilon] = 0 \iff \mathbb{E}[Y|X] = \beta_0 + \beta_1 X \)
 2. Fixed but unknown variance \(\sigma^2 \); constant over \(X \)
 3. Most things are approx. Normal (Central Limit Theorem)
 4. \(\varepsilon \) represents anything left, not captured in linear fcn of \(X \)
- It just works! This is a very robust model for the world.
Before looking at any data, the model specifies

- how Y varies with X on average: $\mathbb{E}[Y|X] = \beta_0 + \beta_1 X$;
 \textit{i.e. what's the trend?}

- and the influence of factors other than X, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ independently of X.

$$\mathbb{E}[Y|X] = \beta_0 + \beta_1 X$$
The variance σ^2 controls the dispersion of Y around $\beta_0 + \beta_1 X$

- think signal-to-noise
IMPORTANT! β_0 is not b_0, β_1 is not b_1, and ε_i is not e_i

\[\mathbb{E}[Y \mid X] = \beta_0 + \beta_1 X \]

\[\hat{Y} = b_0 + b_1 X \]

(We use Greek letters remind to us.)
Context from the house data example

\[\mathbb{E}[Y|X] \] is the average price of houses with size \(X \), and \(\sigma^2 \) is the spread around that average.

When we specify the SLR model we say that

- the average house price is linear in its size, but we don’t know the coefficients.
- Some houses could have a higher than expected value, some lower, but the amount by which they differ from average is unknown and
 - is independent of the size,
 - and is Normal.

Question: At an open house: is this house priced fairly?
Context from the CAPM example

\[\mathbb{E}[Y|X] \] is the average return of the asset when the market return is \(X \), and \(\sigma^2 \) is the spread around that average.

When we specify the SLR model we say that

- the average asset return is linear in the market return, but we don’t know the coefficients.
- Some days could have a higher than expected value, some lower, but the amount by which they differ from average is unknown and
 - is independent of the market return,
 - and is Normal.

Question: Does this asset follow the market? (Is \(\beta = 1 \)?)
Detour / example:

Oracle v. SAP

Uncertainty Matters!

RESEARCH NOTE

“SAP customers are 20% less profitable than their industry peers”

Don’t SAP Your Profits.
Get Results With Oracle Applications.
> sap <- read.csv("sap.csv")
> m.sap <- mean(sap$ROE)
> m.I <- mean(sap$IndustryROE)
> m.sap / m.I
[1] 0.8049701

That’s the mean, what about the spread?

> summary(sap[,4:5])

<table>
<thead>
<tr>
<th>ROE</th>
<th>IndustryROE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. : -91.80</td>
<td>Min. : 2.6</td>
</tr>
<tr>
<td>1st Qu.: 6.20</td>
<td>1st Qu.: 10.2</td>
</tr>
<tr>
<td>Median : 13.40</td>
<td>Median : 14.0</td>
</tr>
<tr>
<td>Mean : 12.64</td>
<td>Mean : 15.7</td>
</tr>
<tr>
<td>3rd Qu.: 22.80</td>
<td>3rd Qu.: 19.5</td>
</tr>
<tr>
<td>Max. : 116.40</td>
<td>Max. : 48.8</td>
</tr>
</tbody>
</table>
What’s going on here?

- SAP ROE is more variable than average Industry ROE. Makes sense, averages are less variable than atoms.
- What about large values (positive and negative)?
Uncertainty matters!

Do we even think that SAP use is correlated with lower ROE?
 - Probably not, given the above results

But even beyond statistical uncertainty:
 - Does SAP use cause ROE to fall?
 - Were the SAP ROEs selected at random in the industry?

Statistical uncertainty is the only kind we can quantify. In any analysis there is a lot we aren’t sure about:
 - Do we have the right data?
 - Do we have the “right” (useful?) model?
 - What assumptions are we making?
Sampling distribution of LS estimates

We think of the data as being one possible realization of data that could have been generated from the model

\[Y|X \sim \mathcal{N}(\beta_0 + \beta_1 X, \sigma^2). \]

- How much do our estimates depend on the particular random sample that we happen to observe?
 - Different data \(\Rightarrow \) different \(b_0 \) and \(b_1 \)
 - Always the same \(\beta_0 \) and \(\beta_1 \).

If the estimates don’t vary much from sample to sample, then it doesn’t matter which sample you happen to observe.

If the estimates do vary a lot, then it matters which sample you happen to observe.
How do we know what would happen with other realizations?

We pretend!

1. Randomly draw **new** data
2. Compute the **estimates** b_0 and b_1
3. Repeat

Or we use statistics to tell us:

- What the sampling distribution is . . .
- . . . and how to use it to measure **uncertainty**.
 - Testing, confidence intervals, etc.

But first let’s see it!
Sampling distribution of LS estimates

What did we just do?

- We “imagined” through simulation the sampling distribution of a LS line.

What did we learn?

- Looked pretty Normal!
- When $n = 5$, some lines are close, others aren’t: we need to get lucky.
- The lines are much closer to the truth when $n = 50$.
- The variance σ^2 matters a lot!
What happens in real life?

- We get just one data set, and we don’t know the true generating model.
- But we can still imagine . . .

. . . and use statistics!

- Quantify how n and σ^2 matter
- Quantify uncertainty only within our model.
Normal Distribution – Quick Review

Why do we like the Normal distribution?

- Symmetric
- Concentration around the mean!

→ 95% of the data within 2 s.d.

![Diagram showing the normal distribution with 95% confidence intervals marked by Z0.025 and Z0.975 at ±2 standard deviations from the mean.](image)
Sampling distribution of b_1

It turns out that b_1 is Normally distributed: $b_1 \sim \mathcal{N}(\beta_1, \sigma_{b_1}^2)$.

- b_1 is unbiased: $\mathbb{E}[b_1] = \beta_1$.
- The sampling sd σ_{b_1} determines precision of b_1:

\[
\sigma_{b_1}^2 = \text{var}(b_1) = \frac{\sigma^2}{\sum(X_i - \bar{X})^2} = \frac{\sigma^2}{(n - 1)s_x^2}.
\]

It depends on three factors:

1. sample size (n)
2. error variance ($\sigma^2 = \sigma_{\varepsilon}^2$), and
3. X-spread (s_x).

(We don’t have time to do detailed proofs, but there is an extensive handout on my website; see also the Sheather book.)
Sampling distribution of b_0

The intercept is also **normal** and **unbiased**: $b_0 \sim \mathcal{N}(\beta_0, \sigma^2_{b_0})$, where

$$\sigma^2_{b_0} = \text{var}(b_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{(n-1)s_x^2} \right).$$

What is the intuition here?

$$\text{var}(\bar{Y} - \bar{X}b_1) = \text{var}(\bar{Y}) + \bar{X}^2 \text{var}(b_1) - 2\bar{X} \text{cov}(\bar{Y}, b_1)$$

- \bar{Y} and b_1 are uncorrelated because the slope (b_1) is invariant if you shift the data up or down (\bar{Y}).
Joint distribution of b_0 and b_1

We know that b_0 and b_1 can be dependent, i.e.,

$$\mathbb{E}[(b_0 - \beta_0)(b_1 - \beta_1)] \neq 0.$$

This means that estimation error in the slope is correlated with the estimation error in the intercept.

$$\text{cov}(b_0, b_1) = -\sigma^2 \left(\frac{\bar{X}}{(n - 1)s_x^2} \right)$$

- Usually, if the slope estimate is too high, the intercept estimate is too low (negative correlation).
- The correlation decreases with more X spread (s_x^2).
Estimation of error variance

The formulas aren’t practicable since they involve an unknown quantity: \(\sigma = \sigma_\varepsilon \). Replace with:

\[
\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} e_i^2 \quad \text{or} \quad s^2 = \frac{1}{n - p} \sum_{i=1}^{n} e_i^2 = \frac{SSE}{n - p}
\]

\((p \text{ is the number of regression coefficients; i.e. } 2 \text{ for } \beta_0 + \beta_1)\).

It is often convenient to report \(\hat{\sigma} \) or \(s \), which are in the same units as \(Y \).

Plug in for \(\sigma \) in any formula, e.g.

\[
\sigma_{b_1}^2 = \frac{\sigma^2}{(n - 1)s_x^2} \quad \Rightarrow \quad s_{b_1}^2 = \frac{s^2}{(n - 1)s_x^2}
\]

- Small \(s_{b_j}^2 \) values mean high info/precision/accuracy.
Example: revisit the house price/size data

> summary(house.reg)

Call:
 lm(formula = price ~ size)

Residuals:
 Min 1Q Median 3Q Max
-30.425 -8.618 0.575 10.766 18.498

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 38.8850 9.0941 4.276 0.000903 ***
size 35.3862 4.4941 7.874 2.66e-06 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 14.14 on 13 degrees of freedom
Multiple R-squared: 0.8267, Adjusted R-squared: 0.8133
F-statistic: 62 on 1 and 13 DF, p-value: 2.66e-06
Testing

Suppose we think that the true β_j is equal to some value β_j^0 (often 0). Does the data support that guess?

We can rephrase this in terms of competing hypotheses.

(Null) $H_0 : \beta_j = \beta_j^0$

(Alternative) $H_1 : \beta_j \neq \beta_j^0$

Our hypothesis test will either reject or fail to reject the null hypothesis

- If the hypothesis test rejects the null hypothesis, we have statistical support for our claim
- Gives only a “yes” or “no” answer!
- You choose the “probability” of false rejection: α
We use b_j for our test about β_j.

- Reject H_0 when b_j is “far” from β_j^0; assume H_0 when close.
- What we really care about is: how many standard errors b_j is away from β_j^0.

The t-statistic for this test is

$$z_{b_j} = \frac{b_j - \beta_j^0}{s_{b_j}} \overset{H_0}{\sim} \mathcal{N}(0, 1).$$

“Big” $|z_{\beta_j}|$ makes our guess β_j^0 look silly \Rightarrow reject

- If H_0 is true, then $\mathbb{P}[|z_{b_j}| > 2] < 0.05 = \alpha$

But:

$$|z_{\beta_j}| > 2 \iff \beta_j^0 \not\in (b_j \pm 2s_{b_j})$$
Confidence intervals

Since $b_j \sim \mathcal{N}(\beta_j, \sigma_{b_j}^2)$,

$$1 - \alpha = \mathbb{P}\left[z_{\alpha/2} < \frac{b_j - \beta_j}{s_{b_j}} < z_{1-\alpha/2} \right]$$

$$= \mathbb{P}\left[\beta_j \in (b_j \pm z_{\alpha/2}s_{b_j}) \right]$$

Why should we care about confidence intervals?

- The confidence interval **completely** captures the information in the data about the parameter.
 - Center is your estimate
 - Length is how sure you are about your estimate
 - Any value outside would be rejected by a test!
Real life or pretend?

\[P[\beta_1 \in (b_1 \pm 2\sigma_{b_1})] = 95\% \]

or

\[P[\beta_1 \in (b_1 \pm 2\sigma_{b_1})] = 0 \text{ or } 1 \]

?
The \(p \)-value is \(\mathbb{P}[|Z| > |z_{\beta_j}|] \).

- Test with size/level = \(p \)-value *almost* rejects
- CI of level \(1 - (p \text{-value}) \) *just* excludes \(|z_{\beta_j}| \)
Example: revisit the CAPM regression for the Windsor fund.

Does Windsor have a non-zero intercept?
(i.e., does it make/lose money independent of the market?).

\[H_0 : \beta_0 = 0 \]
\[H_1 : \beta_0 \neq 0 \]

▶ Recall: the intercept estimate \(b_0 \) is the stock’s “alpha”

\[
\begin{array}{lllll}
\text{Estimate} & \text{Std. Error} & \text{t value} & \text{Pr(>|t|)} \\
(Intercept) & 0.003647 & 0.001409 & 2.588 & 0.0105^* \\
mfund$valmrkt & 0.935717 & 0.029150 & 32.100 & <2e-16^{***} \\
\end{array}
\]

\[2*\text{pnorm}(-\text{abs}(0.003647/0.001409)) \]
\[[1] 0.009643399 \]

We reject the null at \(\alpha = .05 \), Windsor does have an “alpha” over the market.

▶ Why set \(\alpha = .05 \)? What about at \(\alpha = 0.01 \)?
Now let’s ask whether or not Windsor moves in a different way than the market (e.g., is it more conservative?).

- Recall that the estimate of the slope b_1 is the “beta” of the stock.

This is a rare case where the null hypothesis is not zero:

$H_0 : \beta_1 = 1$, Windsor is just the market (+ alpha).

$H_1 : \beta_1 \neq 1$, Windsor softens or exaggerates market moves.

This time, R’s output t/p values are not what we want (why?).

```r
> summary(windsor.reg) ## output abbreviated

             Estimate  Std. Error   t value     Pr(>|t|)
(Intercept)  0.003647    0.001409    2.5880       0.0105 *
mfund$valmrkt 0.935717    0.029150   32.1000 < 2.2e-16 ***
```
But we can get the appropriate values easily:

- **Test and \(p \)-value:**

  ```r
  > b1 <- 0.935717; sb1 <- 0.029150
  > zb1 <- (b1 - 1)/sb1
  [1] -2.205249
  > 2*pnorm(-abs(zb1))
  [1] 0.02743665
  ```

- **Confidence Interval**

  ```r
  > confint(windsor.reg, level=0.95)
  2.5 %   97.5 %
  (Intercept)  0.000865657  0.006428105
  mfund$valmrkt  0.878193149  0.993240873
  ```

Reject at \(\alpha = .05 \), so Windsor softens than the market.

- **What about other values of \(\alpha \)?**

  ```r
  confint(windsor.reg, level=0.99)
  confint(windsor.reg, level=(1-2*pt(-abs(zb1), df=178)))
  ```
Forecasting & Prediction Intervals

The conditional forecasting problem:

- Given covariate X_f and sample data $\{X_i, Y_i\}_{i=1}^n$, predict the “future” observation Y_f.

The solution is to use our LS fitted value: $\hat{Y}_f = b_0 + b_1 X_f$.

- That’s the easy bit.

The hard (and very important!) part of forecasting is assessing uncertainty about our predictions.

One method is to specify a prediction interval

- a range of Y values that are likely, given an X value.
The least squares line is a prediction rule:

\[\hat{Y} \text{ off the line for a new } X. \]

- It’s not a perfect prediction: \(\hat{Y} \) is what we expect.
If we use \hat{Y}_f, our prediction error has two pieces:

$$e_f = Y_f - \hat{Y}_f = Y_f - b_0 - b_1 X_f$$

$$\mathbb{E}[Y_f|X_f] = \beta_0 + \beta_1 X_f$$
We can decompose e_f into two sources of error:

- Inherent idiosyncratic randomness (due to ε).
- Estimation error in the intercept and slope (i.e., discrepancy between our line and “the truth”).

\[
e_f = Y_f - \hat{Y}_f = (Y_f - \mathbb{E}[Y_f|X_f]) + \mathbb{E}[Y_f|X_f] - \hat{Y}_f
\]
\[
= \varepsilon_f + (\mathbb{E}[Y_f|X_f] - \hat{Y}_f)
\]
\[
= \varepsilon_f + (\beta_0 - b_0) + (\beta_1 - b_1)X_f.
\]

The variance of our prediction error is thus

\[
\text{var}(e_f) = \text{var}(\varepsilon_f) + \text{var}(\mathbb{E}[Y_f|X_f] - \hat{Y}_f) = \sigma^2 + \text{var}(\hat{Y}_f)
\]
From the sampling distributions derived earlier, \(\text{var}(\hat{Y}_f) \) is

\[
\text{var}(b_0 + b_1 X_f) = \text{var}(b_0) + X_f^2 \text{var}(b_1) + 2X_f \text{cov}(b_0, b_1)
\]

\[
= \sigma^2 \left[\frac{1}{n} + \frac{(X_f - \bar{X})^2}{(n - 1)s_x^2} \right].
\]

Replacing \(\sigma^2 \) with \(s^2 \) gives the standard error for \(\hat{Y}_f \).

And hence the variance of our predictive error is

\[
\text{var}(e_f) = \sigma^2 \left[1 + \frac{1}{n} + \frac{(X_f - \bar{X})^2}{(n - 1)s_x^2} \right].
\]
Putting it all together, we have that

\[\hat{Y}_f \sim \mathcal{N} \left(Y_f, \sigma^2 \left[1 + \frac{1}{n} + \frac{(X_f - \bar{X})^2}{(n - 1)s_x^2} \right] \right) \]

A \((1 - \alpha)100\%\) confidence/prediction interval for \(Y_f\) is thus

\[b_0 + b_1 X_f \pm z_{\alpha/2} \times \left(s \sqrt{1 + \frac{1}{n} + \frac{(X_f - \bar{X})^2}{(n - 1)s_x^2}} \right). \]
Looking closer at what we’ll call

\[s_{\text{pred}} = s \sqrt{1 + \frac{1}{n} + \frac{(X_f - \bar{X})^2}{(n - 1)s_x^2}} = \sqrt{s^2 + s_{\text{fit}}^2}. \]

A large predictive error variance (high uncertainty) comes from

- Large \(s \) (i.e., large \(\varepsilon \)'s).
- Small \(n \) (not enough data).
- Small \(s_x \) (not enough observed spread in covariates).
- Large \((X_f - \bar{X}) \).

The first three are familiar... what about the last one?
For X_f far from our \bar{X}, the space between lines is magnified ...
⇒ The prediction (conf.) interval needs to widen away from \bar{X}
Returning to our housing data for an example ...

```r
> Xf <- data.frame(size=c(mean(size), 2.5, max(size)))
> cbind(Xf,predict(reg, newdata=Xf, interval="prediction"))

<table>
<thead>
<tr>
<th>size</th>
<th>fit</th>
<th>lwr</th>
<th>upr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.85</td>
<td>104.47</td>
<td>72.92</td>
<td>136.01</td>
</tr>
<tr>
<td>2.50</td>
<td>127.35</td>
<td>95.19</td>
<td>159.51</td>
</tr>
<tr>
<td>3.50</td>
<td>162.74</td>
<td>127.37</td>
<td>198.10</td>
</tr>
</tbody>
</table>

- `interval="prediction"` gives `lwr` and `upr`, otherwise we just get `fit`
- `s_pred` is not shown in this output
We can get \( s_{\text{pred}} \) from the \texttt{predict} output.

\begin{verbatim}
> p <- predict(reg, newdata=Xf, se.fit=TRUE)
> s <- p$residual.scale
> sfit <- p$se.fit
> spred <- sqrt(s^2+sfit^2)
> b <- reg$coef
> b[1] + b[2]*Xf[1,]+ c(0,-1, 1)*qnorm(.975)*spred[1]
> b[1] + b[2]*Xf[1,]+ c(0,-1, 1)*qt(.975, df=n-2)*spred[1]
\end{verbatim}

\begin{verbatim}
[,1] [,2] [,3]
[1,] 104.4667  75.84713 133.0862
[1,] 104.4667  72.92080 136.0125
\end{verbatim}

\begin{verbatim}
> b[1] + b[2]*Xf[1,]+ c(0,-1, 1)*qt(.975, df=n-2)*spred[1]
\end{verbatim}

\begin{verbatim}
[1,] 104.4667  72.92080 136.0125
\end{verbatim}

\begin{itemize}
  \item Or, we can calculate it by hand [see R code].
\end{itemize}

\begin{align*}
\text{Notice that } s_{\text{pred}} = \sqrt{s^2 + s^2_{\text{fit}}}; \text{ you need to square before summing.}
\end{align*}
Summary

Uncertainty matters!

Captured by the Sampling Distribution.
- Quantifies uncertainty from the data
- ...only within the model, assumed before we see data.
- Which factors matter for signal-to-noise?

Reporting
- Confidence Interval: completely captures the information in the data about the parameter.
- Testing/p-value: only a yes/no answer.

(Don’t abuse p-values)
Glossary and Equations

- **LS Estimators:** $b_1 = r_{xy} \frac{S_y}{S_x} = \frac{S_{xy}}{s_x^2}$ and $b_0 = \bar{Y} - b_1 \bar{X}$.

- $\hat{Y}_i = b_0 + b_1 X_i$ is the $i$th fitted value.

- $e_i = Y_i - \hat{Y}_i$ is the $i$th residual.

- $\hat{\sigma}, s$: standard error of regression residuals ($\approx \sigma = \sigma_\varepsilon$).

- $s_{b_j}$: standard error of regression coefficients.

$$s_{b1} = \sqrt{\frac{s^2}{(n-1) s_x^2}} \quad s_{b0} = s \sqrt{\frac{1}{n} + \frac{\bar{X}^2}{(n-1)s_x^2}}$$
- $\alpha$ is the significance level (prob of type 1 error).
- $z_{\alpha/2}$ is the value such that for $Z \sim \mathcal{N}(0, 1)$,
  \[
  \mathbb{P}[Z > -z_{\alpha/2}] = \mathbb{P}[Z < z_{\alpha/2}] = \alpha/2.
  \]
- $z_{b_j}$ is the standardized coefficient:
  \[
  z_{b_j} = \frac{b_j - \beta_j^0}{s_{b_j}} \overset{H_0}{\sim} \mathcal{N}(0, 1).
  \]
- The $(1 - \alpha) \times 100\%$ confidence interval for $\beta_j$ is
  $b_j \pm z_{\alpha/2} s_{b_j}$
\( \hat{Y}_f = b_0 + X_f b_1 \) is a forecast prediction.

\[
\text{se}(\hat{Y}_f) = s_{\text{fit}} = s \sqrt{\frac{1}{n} + \frac{(X_f - \bar{X})^2}{(n - 1)s_x^2}}
\]

Forecast residual is \( e_f = Y_f - \hat{Y}_f \) and \( \text{var}(e_f) = s^2 + s_{\text{fit}}^2 \). That is, the predictive standard error is

\[
s_{\text{pred}} = s \sqrt{1 + \frac{1}{n} + \frac{(X_f - \bar{X})^2}{(n - 1)s_x^2}}.
\]

and \( \hat{Y}_f \pm z_{\alpha/2}s_{\text{pred}} \) is the \((1 - \alpha)100\%\) prediction interval at \( X_f \).