Special Notes:

1. This is a closed-book exam. You may use an 8 × 11 piece of paper for the formulas.
2. Throughout this paper, \(N(\mu, \sigma^2) \) will denote a normal distribution with mean \(\mu \) and variance \(\sigma^2 \).
3. This is a 2 hr exam.

Honor Code: By signing my name below, I pledge my honor that I have not violated the Booth Honor Code during this examination.

Signature:

Problem A. True or False: Please Explain your answers in detail. Partial credit will be given (60 points)

1. Let \(X \) be a random variable with cdf \(F_X(x) \). Then \(F_X(X) \) is uniformly distributed.

 True. \(P(F_X(X) \leq x) = P\left(X \leq F_X^{-1}(x)\right) = F_X\left(F_X^{-1}(x)\right) = x.\)

2. The Binomial distribution converges to a Poisson distribution with rate \(\lambda \) as the number of trials tends to infinity with proportion given by \(p = \lambda/n.\)

 True. The moment generating functions converge and so we also have convergence in distribution.
3. You toss a fair coin until either the sequence \(THT \) or \(HTT \) appears. The waiting time for \(THT \) is longer than that of \(HTT \).

\(\text{True.} \) The expected waiting time of \(THT \) is 10 and \(HTT \) only 8.

4. For a non-negative random variable with finite expectation, \(E(\log X) \geq \log E(X) \).

\(\text{False.} \) From Jensen’s inequality, as \(\log(\cdot) \) is a concave function, we must have that:

\[
E(\log X) \leq \log E(X)
\]

5. The Gamma distribution is a special case of the \(\chi^2 \)-distribution.

\(\text{False.} \) It’s the opposite.

6. The Cauchy distribution is self-reciprocal, i.e. \(1/C \) is also Cauchy.

\(\text{True.} \) The density of a Cauchy is \(f_C(x) = 1/\pi(1 + x^2) \) which is self-reciproal.

7. Let \(U \sim U(0, 1) \). Then \(1/U \) has a Beta distribution.

\(\text{False.} \) Let \(Y = g(U) = \frac{1}{U} \). Then, the transformation formula gives \(g^{-1}(y) = y^{-1} \)

\[
f_y(y) = f_U(g^{-1}(y)) \left| \frac{\partial g^{-1}(y)}{\partial y} \right| = y^{-2} \quad \text{for} \ 1 \leq y < \infty
\]
which is a Pareto distribution.

8. Consider the hierarchical model specified by the conditional and marginal distributions
 \(X|\theta \sim N(2\theta, 1) \) and \(\theta \sim N(0, 1) \). Then \(E(X) = 2 \) and \(Var(X) = 1 \).

 \textit{False} Using Law of Iterated Expectation, we have that:
 \[
 E[X] = E\left[E[X|\theta]\right] = E[2\theta] = 2 \times 0 = 0
 \]
 \[
 E[X^2] = E\left[E[X^2|\theta]\right] = E\left[Var(X|\theta) + E[X|\theta]^2\right]
 \]
 \[
 = E\left[1 + 4\theta^2\right] = 1 + 4 = 5
 \]

9. Let \(B_t \) denote a standard Brownian motion. Then \(E(B_t^2) = 1 \).

 \textit{False} Given \(B_0 = 0 \) and \(B_t \sim N(0, t) \), we have \(E[B_t^2] = t \)

10. A chest has three drawers; one contains two gold coins, one contains two silver coins,
 and one contains one gold and one silver coin. Assume that one drawer is selected
 randomly and that a randomly selected coin from that drawer turns out to be gold.
 Then the probability that the chosen drawer contains two gold coins is 50%.

 \textit{False}. Three drawers \(A, B, C \). Prior \(P(G) = \frac{1}{2} \).
 Posterior \(P(A|G) = P(A \cap G)/P(G) = (1/3)(1/2) = 2/3 \).
Problem B. (20 points)

Let $X \sim \text{Exp}(\lambda_1)$ and $Y \sim \text{Exp}(\lambda_2)$ be independent exponential random variables where the rates $\lambda_1, \lambda_2 > 0$. Calculate the following distributions:

1. If $\lambda_1 = \lambda_2$, find the distribution of $Z = X + Y$.

2. If $\lambda_1 > \lambda_2$, show that the distribution of $Z = X + Y$ is a weighted sum of exponentials. Identify the weights and components.

Answers

1. We have that:

$$f_{x+y}(z) = \int_0^z f_x(x)f_y(z-x)\,dx$$

$$= \int_0^z \lambda_1 e^{-\lambda_1 x} \lambda_2 e^{-\lambda_2(z-x)}\,dx$$

$$= \lambda_1 \lambda_2 \int_0^z e^{-\lambda_1 x} \lambda_2 e^{-\lambda_2 x} \,dx$$

$$= \lambda_1 \lambda_2 \int_0^z e^{-(\lambda_1-\lambda_2)x} \,dx$$

Thus, if we have that $\lambda_1 = \lambda_2 = \lambda$, the density of $X + Y$ is then equal to:

$$f_{x+y}(z) = \lambda_1 \lambda_2 e^{-\lambda z} \int_0^z \,dx$$

$$= \lambda_1 \lambda_2 z e^{-\lambda z}$$

$$= \lambda^2 z e^{-\lambda z}$$

Note that this is Erlang distribution with parameter 2 and λ.

2. If however, we have that $\lambda_1 > \lambda_2$, we then have that:

$$f_{x+y}(z) = \lambda_1 \lambda_2 e^{-\lambda_2 z} \int_0^z e^{(\lambda_2-\lambda_1)x} \,dx$$

$$= \lambda_1 \lambda_2 e^{-\lambda_2 z} \left. \frac{e^{(\lambda_2-\lambda_1)x}}{\lambda_2 - \lambda_1} \right|_0^z$$

$$= \frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2} e^{-\lambda_2 z} (e^{(\lambda_2-\lambda_1)z} - 1)$$

$$= \frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2} (e^{-\lambda_1 z} - e^{-\lambda_2 z})$$
Problem C. (20 points)

Elvis Presley had a twin brother (Jesse Garon Presley) who died at birth.

1. What is the probability that Elvis was an identical twin?

Background Information: Twins are estimated to be approximately 1.9% if the world population. Mono-zygotic (“identical”) twins making up 0.2% of the total world population and 8% of all twins. You can also assume that fraternal twins are equally likely to be of opposite sex.

- Explain clearly any laws of probability that you use.

The hypotheses are:
A: Elvis’s birth event was an identical birth event
B: Elvis’s birth event was a fraternal twin event
If identical twins are 8% of all twins, then identical birth events are 8% of all twin birth events, so the priors are

\[P(A) = 0.08 \quad \text{and} \quad P(B) = 0.92 \]

The evidence is \(E \): Elvis’s twin was male
The likelihoods are

\[P(E|A) = 1 \quad \text{and} \quad P(E|B) = 1/2 \]

Because identical twins are necessarily the same sex, but fraternal twins are equally likely to be opposite sex by assumption. Hence

\[P(A|E) = \frac{8}{54} = 0.15. \]

The tricky part of this one is realizing that the sex of the twin provides relevant information!

Full Solution: Using Bayes’ rule, we have that:

\[
Pr(A|E) = \frac{Pr(E|A)Pr(A)}{Pr(E)} = \frac{Pr(E|A)Pr(A)}{Pr(E|A)Pr(A) + Pr(E|B)Pr(B)}
\]

\[
= \frac{(1)(.08)}{(1)(.08) + (.5)(.92)}
\]

\[
= \frac{.08}{.54} = \frac{4}{27} = 0.148148...
\]