Problem A: (34 pts) Answer briefly the following questions.

1. Consider the monthly simple returns of Decile 1 and Decile 10 portfolios from January 1988 to December 2007 for 240 observations. Due to January effects, Decile 1 has some serial correlations at seasonal lags. To remove the effect, an ARIMA model is used. Write down the fitted model for the Decile 1 portfolio returns, including the variance of the innovations.

2. Again, consider the monthly simple returns of Decile 1 of the prior question. Are there any serial correlations in the residuals? Are there any ARCH-effects in the residuals? Why?
3. The residuals of the prior model for Decile 1 returns are combined with Decile 10 returns to form a bivariate time series. The multivariate Ljung-Box statistics are applied to detect any serial or cross-correlations between the two time series. Write down the null hypothesis for $Q_{2}(10)$ statistic, where 10 denotes the first 10 lags of serial and cross correlations. What is the asymptotic distribution of $Q_{2}(10)$? Is the test significant for the two series? Why?

4. Describe conditions under which nonsynchronous trading leads to the existence of serial correlations at all lags in the returns of an asset, even though the returns are in fact serially uncorrelated.

5. In addition to GARCH-type models, give two alternative approaches to modeling daily stock volatilities.

6. The CBOE VIX index is used as a measure of market volatility. We can use time series models to forecast the VIX index. Write down the fitted model for the log(VIX) series, including residual variance. Compute 1-step and 5-step ahead forecasts of the VIX index (not log(VIX)).

7. Suppose that the price P_t of a stock follows the stochastic diffusion model

$$dP_t = \mu P_t dt + \sigma P_t^{0.5} dw_t,$$

where μ and σ are constant and w_t is the standard Brownian motion. What is the stochastic model for the log price $G(P_t) = \ln(P_t)$?

8. Consider a nondividend-paying stock. If the current price of the stock is $45.50 and the risk-free interest rate is 5% per annum. What is the minimum price of a European call option on the stock with time-to-expiration 3 months and strike price 43.00?
9. Describe a consequence in linear regression analysis if the serial correlations of the residuals are overlooked.

10. Describe briefly two methods that can be used to model the stock price changes in tick-by-tick transaction data.

11. Suppose that the monthly log returns, in percentages, of an asset follow the model

\[r_t = 0.1 + 0.2r_{t-1} + a_t, \quad a_t = \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0,1), \quad \sigma_t^2 = 0.95 \sigma_{t-1}^2 + 0.05 a_{t-1}^2. \]

Suppose that at the forecast origin \(T \), \(r_T = 1.0, r_{T-1} = -0.5 \), and \(\sigma_T^2 = 2.05 \). What is the 2-step ahead forecast \(r_T(2) \) of the return? What is the 2-step ahead volatility forecast \(\sigma_T(2) \)?

12. Give one advantage and one disadvantage of using the empirical quantiles to calculate Value at Risk (VaR) of a financial position.

13. Consider the daily log returns, in percentages, of Caterpillar Stock from January 1993 to December 2007. The summary statistics are given. Is the distribution of the log returns symmetric against its mean? Perform a proper test to justify your answer.

14. Again, consider the daily log returns of Caterpillar stock of the prior question. Is the mean of the returns significantly different from zero? Why?

15. Realized volatility has been used as a measure of daily stock volatility. However, market microstructure may affect the quality of the measure. Give two approaches that can overcome the effects of microstructure noises on the realized volatility.
16. Consider two stocks. Let their log prices be p_{1t} and p_{2t}, respectively. Describe two conditions needed for implementing pairs trading of the two stocks to obtain a positive profit.

17. Consider a univariate AR(3) model, say $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \phi_3 x_{t-3} + a_t$, where $\{a_t\}$ is a sequence of independent and identically distributed random variables with mean zero and variance $\sigma^2 > 0$. Write down an explicit error-correction form for the model to perform unit-root test. What is the null hypothesis?

Problem B. (30 points) Consider the daily log returns, in percentages, of the Caterpillar and Adobe System Stocks from January 1993 to December 2007. The sample size is 3778 and the tick symbols are CAT and ADBE, respectively. Suppose that you hold a long position of the stocks valued at 1 million dollars each. (Total is 2 millions.) Answer the following questions based on the attached output.

1. Focus on the CAT stock. A GARCH(1,1) model is fitted to the data. Write down the fitted model, including innovation distributions. Is the fitted model adequate? Why?

2. Use the fitted GARCH(1,1) model, calculate the VaR of the CAT position for the next trading day.

3. A special IGARCH(1,1) model is also fitted to the CAT returns. Use the information to calculate VaR of the CAT position via the RiskMetrics method. What is the corresponding VaR for the next 10 trading days?
4. Apply the traditional extreme value theory to the negative log returns with block size 63. What are the estimates of the three parameters k, α, and β? Are these estimates statistically significant? Why?

5. Based on the EVT estimates of block size 63, what is the VaR of the CAT position for the next trading day?

6. Turn to the approach of peaks over the threshold. Using threshold 2.5, we estimate the parameters of generalized Pareto distribution for the negative CAT returns. Does the log returns have a heavy left tail? Why?

7. Based on estimated generalized Pareto distribution, what is the VaR of the CAT position for the next trading day? What is the VaR of the position for the next 10 trading days?

8. Again, based on the fitted generalized Pareto distribution with threshold 2.5, what is the expected shortfall when the 1% VaR is used?

9. Turn next to the ADBE stock. Again, a special IGARCH(1,1) model is fitted. Based on the information available, what is the VaR of the ADBE position for the next trading day.

10. The correlation between the CAT and ADBE stocks is 0.208. What is the VaR of your portfolio of the two stocks for the next trading day?
Problem C. (16 pts) Again, consider the daily log returns, in percentages, of the Adobe System stock from January 1993 to December 2007. Now, let us focus on predicting the direction of price movement. Define

\[Y_t = \begin{cases}
1 & \text{if } r_t > 0 \\
0 & \text{otherwise}
\end{cases} \]

where \(r_t \) is the log return of ADBE stock at time index \(t \).

1. A 5-2-1 neural network is employed for \(Y_t \). The five input variables are the first five lagged values of the returns, i.e. \(x_{1,t} = r_{t-1}, x_{2,t} = r_{t-2}, \ldots, r_{t-5} \). Write down the fitted model for the first node (\(h_1 \)) of the hidden layer.

2. Write down the fitted model for the output node.

3. Alternatively, a logistic linear regression can be used to model \(Y_t \) using the five input variables. Write down the fitted logistic linear regression model. Are the estimated coefficients significant? Why?

4. To simplify the model, we only keep the lag-1 variable \((r_{t-1}) \) as the independent variable. Write down the fitted logistic linear regression model. If \(r_T = -0.47 \), what is the probability that the price of the stock would increase at the time index \(T + 1 \)?
Problem D. (20 points) Consider the adjusted daily closing prices of BHP and RIO stocks from March 21, 2002 to May 30, 2008 as discussed in class. Let the log price be p_{1t} and p_{2t}, respectively. Based on the augmented Dickey-Fuller unitroot test, both series $\{p_{1t}\}$ and $\{p_{2t}\}$ have a unitroot.

1. Use p_{1t} as the dependent variable and p_{2t} as the independent variable. What is the linear combination that gives rise to a mean-reverting process?

2. Denote the mean-reverting linear combination by w_t. Unitroot test confirms that it is indeed stationary. The values of w_t for t from 330 to 340 are shown in the attached output. Consider the position: long one share of BHP stock and short γ shares of RIO stock. Let $\delta = 0.03$. Was there an trading opportunity within the time period (assume no problem with order execution)? If yes, what is the resulting profit?

3. Alternatively, use p_{2t} as the dependent variable and p_{1t} as the independent variable. What is the linear combination that gives rise to a mean-reverting process?

4. The values of the linear combination of Question 3 (denoted by w_1 in the output) are given for t from 605 to 630. Based on the values, construct a portfolio and chosen threshold δ that will provide a maximum profit. What is the resulting profit?

5. Compare the two linear combinations in Question 1 and 3. The R^2 measure of the two simple linear regressions is the same. Similarly, the two t-ratios for regression coefficients are the same. For the purpose of pairs trading, which linear combination do you prefer? Why?
Computer output.

*** Problem A ***
> x=read.table("m-dec1n10.txt")
> dim(x)
[1] 240 3
> dec1=x[,2]
> dec10=x[,3]

> mm=arima(dec1,order=c(0,0,1),seasonal=list(order=c(1,0,1),period=12))
> mm
arima(x = dec1, order = c(0, 0, 1), seasonal = list(order = c(1, 0, 1), period = 12))

Coefficients:

 ma1 sar1 sma1 intercept
 0.1927 0.9985 -0.9757 0.0148

s.e. 0.0630 0.0061 0.0487 0.0092

sigma^2 estimated as 0.002966: log likelihood = 350.82, aic = -691.64

> Box.test(mm$residuals,24,type='Ljung')
Box-Ljung test
data: mm$residuals
X-squared = 15.1279, df = 24, p-value = 0.917

> Box.test(mm$residuals^2,24,type='Ljung')
Box-Ljung test
data: mm$residuals^2
X-squared = 10.4837, df = 24, p-value = 0.9922

> rr=cbind(mm$residuals,dec10)
> source("mqstat.txt")
> mq(rr,10)
[1] "m, Q(m) p-value:"
[1] 1.0000 9.1862 0.0566
[1] 2.000 11.521 0.174
[1] 3.000 14.281 0.283
.....
[1] 10.000 32.420 0.797

**** VIX ****
> x=read.table("vix08.txt",header=T)
> vix=log(x[,7])
> pacf(diff(vix))
> mm=arima(vix,order=c(0,1,2))
> tsdiag(mm) # Shows some serial correlations in the residuals.
> acf(mm$residuals)

> mm=arima(vix,order=c(0,1,2),seasonal=list(order=c(0,0,1),period=8))
> tsdiag(mm,gof.lag=15) # The model is adequate.
> mm
Call:
arima(x = vix, order = c(0, 1, 2), seasonal = list(order = c(0, 0, 1), period = 8))
Coefficients:
 ma1 ma2 sma1
ma1 -0.161100 -0.0932420 -0.1045366
s.e. 0.030510 0.0328060 0.030510

sigma^2 estimated as 0.003732: log likelihood = 1485.1, aic = -2962.2
>
> predict(mm,5)
$pred
Time Series:
Start = 1081
End = 1085
Frequency = 1

*** CAT stock returns ***
> x=read.table("d-cat9307.txt")
> cat=log(x[,2]+1)*100
> library(fBasics)
> basicStats(cat)

 cat
 nobs 3778.000000
 NAs 0.000000
 Minimum -15.685851
 Maximum 10.295994
 Mean 0.071379
 Median 0.005050
 SE 0.032052
 LCL Mean 0.008538
 UCL Mean 0.134220
 Variance 3.881240
 Stdev 1.970086
 Skewness -0.185373
 Kurtosis 3.808928
**** Problem B *******

```r
> x=read.table("d-cat9307.txt")
> cat=log(x[,2]+1)*100
> m1=garchOxFit(formula.mean=~arma(0,0),formula.var=~garch(1,1),series=cat,
cond.dist="t")
```

** SPECIFICATIONS **

Dependent variable : X
Mean Equation : ARMA (0, 0) model.
No regressor in the mean
Variance Equation : GARCH (1, 1) model.
No regressor in the variance
The distribution is a Student distribution, with 5.90009 degrees of freedom.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std.Error</th>
<th>t-value</th>
<th>t-prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cst(M)</td>
<td>0.082924</td>
<td>0.027293</td>
<td>3.038</td>
</tr>
<tr>
<td>Cst(V)</td>
<td>0.017036</td>
<td>0.008425</td>
<td>2.022</td>
</tr>
<tr>
<td>ARCH(Alpha1)</td>
<td>0.021360</td>
<td>0.004853</td>
<td>4.402</td>
</tr>
<tr>
<td>GARCH(Beta1)</td>
<td>0.974316</td>
<td>0.006142</td>
<td>158.6</td>
</tr>
<tr>
<td>Student(DF)</td>
<td>5.900092</td>
<td>0.53214</td>
<td>11.09</td>
</tr>
</tbody>
</table>

No. Observations : 3778 No. Parameters : 5
Mean (Y) : 0.07138 Variance (Y) : 3.88021
Skewness (Y) : -0.18545 Kurtosis (Y) : 6.81253
Log Likelihood : -7648.597

** TESTS **

Information Criterium (to be minimized)
Akaike 4.051666 Shibata 4.051662
Schwarz 4.059920 Hannan-Quinn 4.054600

Q-Statistics on Standardized Residuals
Q(10) = 8.60388 [0.5700636]
Q(15) = 12.3913 [0.6492001]
Q(20) = 16.5084 [0.6846259]

H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]

Q-Statistics on Squared Standardized Residuals
 --> P-values adjusted by 2 degree(s) of freedom
Q(10) = 3.96433 [0.8603270]
Q(15) = 5.84873 [0.9514853]
Q(20) = 7.96943 [0.9790882]

H0 : No serial correlation ==> Accept H0 when prob. is High [Q < Chisq(lag)]

> m1$condvars[3778]
[1] 2.8458
> m1$residuals[3778]
[1] -0.90641

> m2=garchOxFit(formula.mean=~arma(0,0),formula.var=~igarch(1,1),series=cat,
include.mean=F,include.var=F)

** SPECIFICATIONS **

Dependent variable : X
Mean Equation : ARMA (0, 0) model.
No regressor in the mean
Variance Equation : IGARCH (1, 1) model.
No regressor in the variance
The distribution is a Gauss distribution.

Maximum Likelihood Estimation (Std.Errors based on Second derivatives)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std.Error</th>
<th>t-value</th>
<th>t-prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH(Alpha1)</td>
<td>0.012178</td>
<td>0.0019016</td>
<td>6.404</td>
</tr>
<tr>
<td>GARCH(Beta1)</td>
<td>0.988022</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> source("r-garch11v.txt")
> m3=garch11v(cat,0,0,0.012,0.988)
> names(m3)
[1] "condvars" "atsq"
> m3$condvars[3778]
[1] 2.572129
> m3$atsq[3778]
[1] 0.6781215

> ncat=-cat
> library(evir)
> m4=gev(ncat,63)
> m4
$n.all
[1] 3778
$n
[1] 60
$data

11
block

par.ests

\begin{align*}
\begin{array}{ccc}
\text{x}_i & \text{sigma} & \mu \\
0.2473358 & 1.5297742 & 3.9135484 \\
\end{array}
\end{align*}$

par.ses

\begin{align*}
\begin{array}{ccc}
\text{x}_i & \text{sigma} & \mu \\
0.1191271 & 0.1866184 & 0.2279482 \\
\end{array}
\end{align*}$

\begin{verbatim}
> m5=gpd(ncat,2.5)
> m5
n

[1] 3778

data

[1] 2.715128 2.655036 2.766312 2.558246 3.261720 2.779472 4.602614

(edited)

[267] 3.096965 5.410356 2.828528 3.806226 3.085722

threshold

[1] 2.5

p.less.thresh

[1] 0.928269

n.exceed

[1] 271

par.ests

\begin{align*}
\begin{array}{ccc}
\text{x}_i & \beta \\
0.1537228 & 1.1388052 \\
\end{array}
\end{align*}$

par.ses

\begin{align*}
\begin{array}{ccc}
\text{x}_i & \beta \\
0.06507928 & 0.10081661 \\
\end{array}
\end{align*}$

> riskmeasures(m5,c(0.99,0.999))

\begin{verbatim}
 p
quantile sfall
[1,] 0.990 5.120717 6.942424
[2,] 0.999 9.379966 11.975349
\end{verbatim}

> y=read.table("d-adbe9307.txt")
> adbe=log(y[,2]+1)*100
> g1=garchOxFit(formula.mean=~arma(0,0),formula.var=~igarch(1,1),series=adbe,
include.mean=F,include.var=F)

** SPECIFICATIONS **

Dependent variable : X
Mean Equation : ARMA (0, 0) model.
No regressor in the mean
Variance Equation : IGARCH (1, 1) model.
No regressor in the variance
The distribution is a Gauss distribution.

Maximum Likelihood Estimation (Std.Errors based on Second derivatives)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std.Error</th>
<th>t-value</th>
<th>t-prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH(Alpha1)</td>
<td>0.022568</td>
<td>0.0032825</td>
<td>6.875</td>
</tr>
<tr>
<td>GARCH(Beta1)</td>
<td>0.977632</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No. Observations : 3778 No. Parameters : 2
Mean (Y) : 0.08302 Variance (Y) : 12.07482
Skewness (Y) : -0.27535 Kurtosis (Y) : 11.85749
Log Likelihood : -9684.285

> g2=garch11v(adbe,0,0,0.0226,0.9776)
> g2$condvars[3778]
[1] 2.771387
> g2$atsq[3778]
[1] 0.2180784
>
> cor(cat,adbe)
[1] 0.2081141

*** Problem C ***
> y=adbe[6:3778]
> xx=cbind(adbe[5:3777],adbe[4:3776],adbe[3:3775],adbe[2:3774],adbe[1:3773])
> dy=ifelse(y>0,1,0)
> library(nnet)
> n1=nnet(xx,dy,size=2,skip=T,linout=F,maxit=3000)
weights: 20
initial value 1360.069317
....
final value 926.854281
converged
> summary(n1)
a 5-2-1 network with 20 weights
options were - skip-layer connections
\texttt{\textgreater{} n3=glm(dy~xx[,1]+xx[,2]+xx[,3]+xx[,4]+xx[,5],family=binomial)}
\texttt{\textgreater{} summary(n3)}
\texttt{Call: glm(formula = dy \sim xx[, 1] + xx[, 2] + xx[, 3] + xx[, 4] + xx[, 5], family = binomial)}

\textbf{Coefficients:}
\begin{tabular}{lrrrr}
 Estimate & Std. Error & z value & \texttt{Pr(>|z|)} \\
(Intercept) & -0.058773 & 0.032675 & -1.799 & 0.0721 .
xx[, 1] & -0.023368 & 0.009497 & -2.461 & 0.0139 *
xx[, 2] & -0.011216 & 0.009436 & -1.189 & 0.2346
xx[, 3] & -0.015253 & 0.009459 & -1.613 & 0.1068
xx[, 4] & 0.006230 & 0.009433 & 0.660 & 0.5090
xx[, 5] & -0.010918 & 0.009438 & -1.157 & 0.2474
\end{tabular}

Null deviance: 5226.7 on 3772 degrees of freedom
Residual deviance: 5214.9 on 3767 degrees of freedom
AIC: 5226.9

\texttt{\textgreater{} n4=glm(dy~xx[,1],family=binomial)}
\texttt{\textgreater{} summary(n4)}
\texttt{Call: glm(formula = dy \sim xx[, 1], family = binomial)}

\textbf{Coefficients:}
\begin{tabular}{lrrrr}
 Estimate & Std. Error & z value & \texttt{Pr(>|z|)} \\
(Intercept) & -0.061280 & 0.032610 & -1.879 & 0.0602 .
xx[, 1] & -0.023255 & 0.009457 & -2.459 & 0.0139 *
\end{tabular}

Null deviance: 5226.7 on 3772 degrees of freedom
Residual deviance: 5220.6 on 3771 degrees of freedom
AIC: 5224.6

**** Pairs trading ***
> x=read.table("d-bhp0208r.txt")
> bhp=log(x[,9])
> y=read.table("d-rio0208r.txt")
> rio=log(y[,9])
> library(FinTS)

> adfTest(rio,type=c("c"))
Title:
Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
 Lag Order: 1
STATISTIC:
 Dickey-Fuller: 0.1375
P VALUE:
 0.9667

> adfTest(bhp,type=c("c"))
Title:
Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
 Lag Order: 1
STATISTIC:
 Dickey-Fuller: -0.2018
P VALUE:
 0.9317

> m3=lm(bhp~rio)
> summary(m3)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.816399 0.004241 428.3 <2e-16 ***
rio 0.718123 0.001961 366.3 <2e-16 ***

Residual standard error: 0.07404 on 1558 degrees of freedom
Multiple R-squared: 0.9885, Adjusted R-squared: 0.9885

> w=m3$residuals
> adfTest(w,lags=2)
Title:
Augmented Dickey-Fuller Test

Test Results:
PARAMETER:
 Lag Order: 2
STATISTIC:
 Dickey-Fuller: -4.0677
P VALUE:
 0.01

> print(w[330:340],digits=3)
 330 331 332 333 334 335 336 337
-0.01431 -0.00216 -0.04059 -0.01960 -0.01329 -0.00258 -0.03232 0.00450
 338 339 340
0.00759 0.01961 0.04060

> m4=lm(rio~bhp)
> summary(m4)
lm(formula = rio ~ bhp)

Coefficients:

 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.47811 0.012339 -200.8 <2e-16 ***
bhp 1.37653 0.003758 366.3 <2e-16 ***

Residual standard error: 0.1025 on 1558 degrees of freedom
Multiple R-squared: 0.9885, Adjusted R-squared: 0.9885

> w1=m4$residuals
> print(w1[605:630],digits=3)
 605 606 607 608 609 610 611 612
-0.06428 -0.06946 -0.03435 -0.01126 -0.01767 -0.03348 -0.05349 -0.03299
 613 614 615 616 617 618 619 620
-0.00644 -0.01654 -0.01426 0.01946 0.01425 0.00266 -0.00975 0.01809
 621 622 623 624 625 626 627 628
 0.05738 0.05534 0.05879 0.04013 0.04380 0.05841 0.08031 0.03897
 629 630
 0.02378 0.02515

16