What is financial time series (FTS) analysis?

Theory and practice of asset valuation over time.

Different from other T.S. analysis?

Close, but with some added uncertainty. For example, FTS must deal with the ever-changing business & economic environment and the fact that volatility is not directly observed.

Objective of the course

- to provide some basic knowledge of financial time series data
- to introduce some statistical tools & econometric models useful for analyzing these series.
- to gain empirical experience in analyzing FTS
- to study methods for assessing market risk and expected loss
- to analyze high-dimensional asset returns.
Examples of financial time series

1. Daily log returns of GE stock

2. Quarterly earnings of Johnson & Johnson
 Seasonal time series useful in
 - earning forecasts
 - pricing weather related derivatives (e.g. energy)
 - modeling intraday behavior of asset returns

3. US monthly interest rates
 Relations between the two series? Term structure of interest rates

4. Exchange rate between US Dollar vs Japanese Yen
 Fixed income, hedging, carry trade

5. Size of insurance claims
 Values of fire insurance claims ($1000 Krone) that exceeded 500 from 1972 to 1992.

6. High-frequency financial data:
 Tick-by-tick data of Boeing stock: December 5, 2005.
Daily log returns of GE stock: 62-99

Figure 1: Daily log returns of GE stock
Quarterly earnings per share of Johnson & Johnson: 60-80

Figure 2: Quarterly earnings per share of Johnson and Johnson
Figure 3: Daily Exchange Rate: Dollar vs Yen

Figure 4: Daily log returns of FX (Dollar vs Yen)
(a) Monthly US interest rates: 10-year maturity

(b) 1-year maturity

Figure 5: Monthly US interest rates
Figure 6: Claim sizes of the Norwegian fire insurance from 1972 to 1992, measured in 1000 Krone and exceeded 500.
<table>
<thead>
<tr>
<th>symbol</th>
<th>date</th>
<th>time</th>
<th>price</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:10</td>
<td>69.4500</td>
<td>60700</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:11</td>
<td>69.4500</td>
<td>100</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:11</td>
<td>69.4500</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:11</td>
<td>69.4500</td>
<td>2500</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:11</td>
<td>69.4500</td>
<td>100</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:11</td>
<td>69.4500</td>
<td>100</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:12</td>
<td>69.4500</td>
<td>1600</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:12</td>
<td>69.4500</td>
<td>1500</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:12</td>
<td>69.4500</td>
<td>1700</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:12</td>
<td>69.4500</td>
<td>100</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:13</td>
<td>69.4500</td>
<td>100</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:15</td>
<td>69.4500</td>
<td>100</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:18</td>
<td>69.4700</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:18</td>
<td>69.4500</td>
<td>100</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:19</td>
<td>69.4500</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:19</td>
<td>69.4500</td>
<td>100</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:27</td>
<td>69.4500</td>
<td>100</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:53</td>
<td>69.4700</td>
<td>1700</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:31:56</td>
<td>69.4800</td>
<td>700</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:32:03</td>
<td>69.4900</td>
<td>200</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:32:06</td>
<td>69.4900</td>
<td>100</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:32:07</td>
<td>69.4800</td>
<td>400</td>
</tr>
<tr>
<td>BA</td>
<td>05DEC2005</td>
<td>9:32:08</td>
<td>69.4900</td>
<td>100</td>
</tr>
</tbody>
</table>
Outline of the course

• Returns & their characteristics: empirical analysis
• Simple linear time series models & their applications
• Univariate volatility modeling & its implications
• Nonlinearity in level and volatility
• Neural network & non-parametric methods
• High-frequency financial data and market micro-structure
• Continuous-time models and derivative pricing
• Value at Risk, extreme value theory and expected loss
• Analysis of multiple asset returns: factor models, dynamic and cross dependence

Asset Returns

Let P_t be the price of an asset at time t, and assume no dividend.

One-period simple return: Gross return

$$1 + R_t = \frac{P_t}{P_{t-1}} \quad \text{or} \quad P_t = P_{t-1}(1 + R_t)$$

Simple return:

$$R_t = \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}}.$$
Multiperiod simple return: Gross return

\[
1 + R_t(k) = \frac{P_t}{P_{t-k}} = \frac{P_t}{P_{t-1}} \times \frac{P_{t-1}}{P_{t-2}} \times \cdots \times \frac{P_{t-k+1}}{P_{t-k}} \\
= (1 + R_t)(1 + R_{t-1}) \cdots (1 + R_{t-k+1}).
\]

The \(k\)-period simple net return is \(R_t(k) = \frac{P_t}{P_{t-k}} - 1\).

Example: Suppose the daily closing prices of a stock are

<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>37.84</td>
<td>38.49</td>
<td>37.12</td>
<td>37.60</td>
<td>36.30</td>
</tr>
</tbody>
</table>

1. What is the simple return from day 1 to day 2?
 Ans: \(R_2 = \frac{38.49 - 37.84}{37.84} = 0.017\).

2. What is the simple return from day 1 to day 5?
 Ans: \(R_5(4) = \frac{36.30 - 37.84}{37.84} = -0.041\).

3. Verify that \(1 + R_5(4) = (1 + R_2)(1 + R_3) \cdots (1 + R_5)\).

Time interval is important! Default is one year.

Annualized (average) return:

\[
\text{Annualized}[R_t(k)] = \left[\prod_{j=0}^{k-1} (1 + R_{t-j}) \right]^{1/k} - 1.
\]

An approximation:

\[
\text{Annualized}[R_t(k)] \approx \frac{1}{k} \sum_{j=0}^{k-1} R_{t-j}.
\]
Continuously compounding: Illustration of the power of compounding (int. rate 10% per annum)

<table>
<thead>
<tr>
<th>Type</th>
<th>#(payment)</th>
<th>Int.</th>
<th>Net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
<td>1</td>
<td>0.1</td>
<td>$1.10000</td>
</tr>
<tr>
<td>Semi-Annual</td>
<td>2</td>
<td>0.05</td>
<td>$1.10250</td>
</tr>
<tr>
<td>Quarterly</td>
<td>4</td>
<td>0.025</td>
<td>$1.10381</td>
</tr>
<tr>
<td>Monthly</td>
<td>12</td>
<td>0.0083</td>
<td>$1.10471</td>
</tr>
<tr>
<td>Weekly</td>
<td>52</td>
<td>$\frac{0.1}{52}$</td>
<td>1.10506</td>
</tr>
<tr>
<td>Daily</td>
<td>365</td>
<td>$\frac{0.1}{365}$</td>
<td>1.10516</td>
</tr>
<tr>
<td>Continuously</td>
<td>∞</td>
<td></td>
<td>1.10517</td>
</tr>
</tbody>
</table>

\[A = C \exp[r \times n] \]

where \(r \) is the interest rate per annum, \(C \) is the initial capital, \(n \) is the number of years, and \(\exp \) is the exponential function.

Present value:

\[C = A \exp[-r \times n] \]

Continuously compounded (or log) return

\[r_t = \ln(1+R_t) = \ln \frac{P_t}{P_{t-1}} = p_t - p_{t-1}, \]

where \(p_t = \ln(P_t) \).

Multiperiod log return:

\[r_t(k) = \ln[1+R_t(k)] = \ln[(1+R_t)(1+R_{t-1}) \cdots (1+R_{t-k+1})] \]
\[\ln(1 + R_t) + \ln(1 + R_{t-1}) + \cdots + \ln(1 + R_{t-k+1}) = r_t + r_{t-1} + \cdots + r_{t-k+1}. \]

Example (continued). Use the previous daily prices.

1. What is the log return from day 1 to day 2?

 A: \(r_2 = \ln(38.49) - \ln(37.84) = 0.017. \)

2. What is the log return from day 1 to day 5?

 A: \(r_5(4) = \ln(36.3) - \ln(37.84) = -0.042. \)

3. It is easy to verify \(r_5(4) = r_2 + \cdots + r_5. \)

Portfolio return: \(N \) assets

\[R_{p,t} = \sum_{i=1}^{N} w_i R_{it} \]

Example: An investor holds stocks of IBM, Microsoft and Citigroup. Assume that her capital allocation is 30%, 30% and 40%. Use the monthly simple returns in Table 1.2. What is the mean simple return of her stock portfolio?

Answer: \(E(R_t) = 0.3 \times 1.42 + 0.3 \times 3.37 + 0.4 \times 2.20 = 2.32. \)

Dividend payment:

\[R_t = \frac{P_t + D_t}{P_{t-1}} - 1, \quad r_t = \ln(P_t + D_t) - \ln(P_{t-1}). \]

Excess return: (adjusting for risk)

\[Z_t = R_t - R_{0t}, \quad z_t = r_t - r_{0t}. \]
where \(r_{0t} \) denotes the log return of a reference asset (e.g. risk-free interest rate).

Relationship:

\[
 r_t = \ln(1 + R_t), \quad R_t = e^{r_t} - 1.
\]

If the returns are in **percentage**, then

\[
 r_t = 100 \times \ln(1 + \frac{R_t}{100}), \quad R_t = [\exp(r_t/100) - 1] \times 100.
\]

Temporal aggregation of the returns produces

\[
 1 + R_t(k) = (1 + R_t)(1 + R_{t-1}) \cdots (1 + R_{t-k+1}),
\]

\[
 r_t(k) = r_t + r_{t-1} + \cdots + r_{t-k+1}.
\]

These two relations are important in practice, e.g. obtain annual returns from monthly returns.

Example: If the monthly log returns of an asset are 4.46\%, −7.34\% and 10.77\%, then what is the corresponding quarterly log return?

Answer: \(4.46 − 7.34 + 10.77 = 7.89\% \).

Example: If the monthly simple returns of an asset are 4.46\%, −7.34\% and 10.77\%, then what is the corresponding quarterly simple return?

Answer: \(R = (1 + 0.0446)(1 − 0.0734)(1 + 0.1077) − 1 = 1.0721 − 1 = 0.0721 = 7.21\% \)
Distributional properties of returns

Key: What is the distribution of
\{r_{it}; i = 1, \cdots, N; t = 1, \cdots, T}\?

Some theoretical properties:

Moments of a random variable \(X\) with density \(f(x)\): \(\ell\)-th moment

\[m'_\ell = E(X^\ell) = \int_{-\infty}^{\infty} x^\ell f(x) dx\]

First moment: mean or expectation of \(X\).
\(\ell\)-th central moment

\[m_\ell = E[(X - \mu_x)^\ell] = \int_{-\infty}^{\infty} (x - \mu_x)^\ell f(x) dx,\]

2nd c.m.: Variance of \(X\).

Skewness (symmetry) and kurtosis (fat-tails)

\[S(x) = E \left[\frac{(X - \mu_x)^3}{\sigma_x^3} \right], \quad K(x) = E \left[\frac{(X - \mu_x)^4}{\sigma_x^4} \right].\]

\(K(x) - 3\): Excess kurtosis.

Why are mean and variance of returns important?
They are concerned with long-term return and risk, respectively.

Why is symmetry of interest in financial study?
Symmetry has important implications in holding short or long financial positions and in risk management.

Why is kurtosis important?
Related to volatility forecasting, efficiency in estimation and tests, etc.
High kurtosis implies heavy (or long) tails in distribution.

Estimation:

Data: \{x_1, \cdots, x_T\}

- sample mean:
 \[\hat{\mu}_x = \frac{1}{T} \sum_{t=1}^{T} x_t, \]

- sample variance:
 \[\hat{\sigma}_x^2 = \frac{1}{T - 1} \sum_{t=1}^{T} (x_t - \hat{\mu}_x)^2, \]

- sample skewness:
 \[\hat{S}(x) = \frac{1}{(T - 1)\hat{\sigma}_x^3} \sum_{t=1}^{T} (x_t - \hat{\mu}_x)^3, \]

- sample kurtosis:
 \[\hat{K}(x) = \frac{1}{(T - 1)\hat{\sigma}_x^4} \sum_{t=1}^{T} (x_t - \hat{\mu}_x)^4. \]

Under normality assumption,

\[\hat{S}(x) \sim N(0, \frac{6}{T}), \quad \hat{K}(x) - 3 \sim N(0, \frac{24}{T}). \]

Some simple tests for normality (for large \(T\)).

1. Test for symmetry:
 \[S^* = \frac{\hat{S}(x)}{\sqrt{6/T}} \sim N(0, 1) \]

 if normality holds.

 Decision rule: Reject \(H_o\) of a symmetric distribution if \(|S^*| > Z_{\alpha/2}\) or p-value is less than \(\alpha\).
2. Test for tail thickness:

\[K^* = \frac{\hat{K}(x) - 3}{\sqrt{24/T}} \sim N(0, 1) \]

if normality holds.

Decision rule: Reject \(H_0 \) of normal tails if \(|K^*| > Z_{\alpha/2}\) or p-value is less than \(\alpha \).

3. A joint test (Jarque-Bera test):

\[JB = (K^*)^2 + (S^*)^2 \sim \chi^2_2 \]

if normality holds, where \(\chi^2_2 \) denotes a chi-squared distribution with 2 degrees of freedom.

Decision rule: Reject \(H_0 \) of normality if \(JB > \chi^2_2(\alpha) \) or p-value is less than \(\alpha \).

Empirical properties of returns

Data sources:

- Course web:

 http://faculty.chicagogsb.edu/ruey.tsay/teaching/bs41202/sp2008/

- CRSP: Center for Research in Security Prices (via Wharton WRDS)

 http://wrds.wharton.upenn.edu/

- Various web sites, e.g. Federal Reserve Bank at St. Louis

 http://research.stlouisfed.org/fred2/
Data sets of the textbook:
http://faculty.chicagogsb.edu/ruey.tsay/teaching/fts2/

Empirical dist of asset returns tends to be skewed to the left with heavy tails and has a higher peak than normal dist. See Table 1.2 of the text.

Demonstration of Data Analysis

R demonstration: Use monthly IBM stock returns rom 1926 to 2007.

**** Task: (a) Set the working directory
(b) Load the library ‘‘fSeries’’ and library ‘‘fBasics’’.
(c) Compute summary statistics
(d) Perform test for mean return being zero.
(e) Perform normality test using the Jaque-Bera method.
(f) Perform skewness and kurtosis tests.

R version 2.6.2 (2008-02-08)
Copyright (C) 2008 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

> setwd("C:/teaching/bs41202") % Set working directory for R
> library(fSeries) % load the fSeries package

> x=read.table("m-ibm2607.txt") % load the data into R workspace
> ibm=x[,2] % 2nd column is the monthly IBM simple returns
> plot(ibm,type='l',xlab='time',ylab='return') %Plot the data (not shown in handout)

% Below are commands to compute the usual sample statistics.
> mean(ibm)
[1] 0.01380532
> stdev(ibm)
Figure 7: Comparison of empirical IBM return densities (solid) with Normal densities (dashed)
> min(ibm)
[1] -0.261905
> max(ibm)
[1] 0.470588
> median(ibm)
[1] 0.011019
> skewness(ibm)
[1] 0.4707835
> kurtosis(ibm) % Excess kurtosis.
[1] 3.476233

> library(fBasics) % Load the package ‘fBasics’.

> basicStats(ibm) % Compute the summary statistics all at once.

 ibm
 nobs 984.000000
 NAs 0.000000
Minimum -0.261905
Maximum 0.470588
1. Quartile -0.027162
3. Quartile 0.051689
 Mean 0.013805
 Median 0.011019
 Sum 13.584433
 SE Mean 0.002271
 LCL Mean 0.009348
 UCL Mean 0.018262
 Variance 0.005076
 Stdev 0.071245
 Skewness 0.470783
 Kurtosis 3.476233

> t.test(ibm) % Test the for mean return being zero.

 One Sample t-test

data: ibm
t = 6.0784, df = 983, p-value = 1.734e-09
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 0.00934837 0.01826227
sample estimates:
mean of x
 0.01380532
\texttt{lnibm=log(ibm+1)} % Compute the monthly IBM log returns.
\texttt{basicStats(lnibm)} % Compute the summary statistics for the IBM log returns.

\begin{verbatim}
lnibm
nobs 984.000000
NAs 0.000000
Minimum -0.303683
Maximum 0.385662
1. Quartile -0.027538
3. Quartile 0.050397
Mean 0.011263
Median 0.010959
Sum 11.082324
SE Mean 0.002232
LCL Mean 0.006883
UCL Mean 0.015642
Variance 0.004900
Stdev 0.070003
Skewness -0.035295
Kurtosis 2.636756
\end{verbatim}

\texttt{normalTest(ibm,method='jb')} % Perform normality test using Jaque-Bera method.

\textbf{Title:}
Jarque - Bera Normality Test

\textbf{Test Results:}
\textbf{STATISTIC:}
\hspace{1cm}X-squared: 535.6765
\textbf{P VALUE:}
\hspace{1cm}Asymptotic p Value: < 2.2e-16

\% Perform skewness & kurtosis tests
\texttt{s3=skewness(ibm)}
\texttt{T=length(ibm)}
\texttt{Tst=s3/sqrt(6/T)}
\texttt{Tst}
\>[1] 6.02897 % The value is large, indicating rejection of the null hypothesis

\texttt{s4=kurtosis(ibm) } % s4 is excess kurtosis.
\texttt{Tst=s4/sqrt(24/T)}
\texttt{Tst}
\>[1] 22.25875 % The value is large so that null-hypo is rejected.

\texttt{q()} % quit R.

\textbf{Splus demonstration:} Use the same IBM monthly returns
*** Task: (a) Load Finmetrics module
 (b) Load data into Splus
 (c) Compute summary statistics
 (d) Test the mean return being zero.
 (e) Perform normality test

$ Splus
> module(finmetrics) % load FinMetrics Module
(click on ‘‘File’’, then click on ‘‘Load module’’ on a window version to
select the ‘‘FinMetrics’’.)

> x=read.table("m-ibm2607.txt") % Load data into S-Plus workspace
> ibm=x[,2] % 2nd column is the monthly IBM simple returns.
> plot(ibm,xlab='year',ylab='return',type='l') % Plot not shown in the handout.
> mean(ibm)
[1] 0.01380532
> sqrt(var(ibm))
[1] 0.07124459
> skewness(ibm)
[1] 0.4722222
> kurtosis(ibm)
[1] 3.513334
> median(ibm)
[1] 0.011019

> summaryStats(ibm)

Sample Quantiles:
 min 1Q median 3Q max
-0.2619 -0.02716 0.01102 0.05169 0.4706

Sample Moments:
 mean std skewness kurtosis
 0.01381 0.07124 0.4715 6.489

Number of Observations: 984

> t.test(ibm) % Test the mean IBM return being zero.

 One-sample t-Test

data: ibm
t = 6.0784, df = 983, p-value = 0
alternative hypothesis: mean is not equal to 0
95 percent confidence interval:
 0.009348371 0.018262265
sample estimates:
 mean of x
 0.01380532

> normalTest(ibm,method='jb') % Normality test using Jaque-Bera method.
Test for Normality: Jarque-Bera
Null Hypothesis: data is normally distributed
Test Statistics:
 Test Stat 535.6765
 p.value 0.0000
Dist. under Null: chi-square with 2 degrees of freedom
 Total Observ.: 984

> lnibm=log(ibm+1) % Transform to long returns
> summaryStats(lnibm)

Sample Quantiles:

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>1Q</th>
<th>median</th>
<th>3Q</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.3037</td>
<td>-0.02754</td>
<td>0.01096</td>
<td>0.0504</td>
<td>0.3857</td>
</tr>
</tbody>
</table>

Sample Moments:

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>std</th>
<th>skewness</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01126</td>
<td>0.07</td>
<td>-0.03535</td>
<td>5.648</td>
</tr>
</tbody>
</table>

Number of Observations: 984
> q() % Exit Splus.

Normal and lognormal dists

Y is lognormal if $X = \ln(Y)$ is normal.

If $X \sim N(\mu, \sigma^2)$, then $Y = \exp(X)$ is lognormal with mean and variance

\[
E(Y) = \exp(\mu + \frac{\sigma^2}{2}), \quad V(Y) = \exp(2\mu + \sigma^2)[\exp(\sigma^2) - 1].
\]
Conversely, if Y is lognormal with mean μ_y and variance σ^2_y, then $X = \ln(Y)$ is normal with mean and variance

$$
E(X) = \ln \left(\frac{\mu_y}{\sqrt{1 + \frac{\sigma^2_y}{\mu_y^2}}} \right), \quad V(X) = \ln \left(1 + \frac{\sigma^2_y}{\mu^2_y} \right).
$$

Application: If the log return of an asset is normally distributed with mean 0.0119 and standard deviation 0.0663, then what is the mean and standard deviation of its simple return?

Answer: Solve this problem in two steps.

Step 1: Based on the prior results, the mean and variance of $Y_t = \exp(r_t)$ are

$$
E(Y) = \exp \left[0.0119 + \frac{0.0663^2}{2} \right] = 1.014
$$

$$
V(Y) = \exp(2 \times 0.0119 + 0.0663^2) \left[\exp(0.0663^2) - 1 \right] = 0.0045
$$

Step 2: Simple return is $R_t = \exp(r_t) - 1 = Y_t - 1$. Therefore,

$$
E(R) = E(Y) - 1 = 0.014
$$

$$
V(R) = V(Y) = 0.0045, \quad \text{standard dev} = \sqrt{V(R)} = 0.067
$$

Remark: See the monthly IBM stock returns in Table 1.2.

Processes considered

- return series (e.g., ch. 1, 2, 5)
- volatility processes (e.g., ch. 3, 4, 10, 12)
Likelihood function (for self study)
Finally, it pays to study the likelihood function of returns \(\{r_1, \cdots, r_T\} \) discussed in Chapter 1.

Basic concept:
Joint dist = Conditional dist \(\times \) Marginal dist, i.e.

\[
f(x, y) = f(x|y)f(y)
\]

For two consecutive returns \(r_1 \) and \(r_2 \), we have

\[
f(r_2, r_1) = f(r_2|r_1)f(r_1).
\]

For three returns \(r_1, r_2 \) and \(r_3 \), by repeated application,

\[
f(r_3, r_2, r_1) = f(r_3|r_2, r_1)f(r_2, r_1) = f(r_3|r_2, r_1)f(r_2|r_1)f(r_1).
\]

In general, we have

\[
f(r_T, r_{T-1}, \cdots, r_2, r_1)
\]

\[
= f(r_T|r_{T-1}, \cdots, r_1)f(r_{T-1}, \cdots, r_1)
\]

\[
= f(r_T|r_{T-1}, \cdots, r_1)f(r_{T-1}|r_{T-2}, \cdots, r_1)f(r_{T-2}, \cdots, r_1)
\]

\[
= \cdots
\]

\[
= \left[\prod_{t=2}^{T} f(r_t|r_{t-1}, \cdots, r_1) \right] f(r_1),
\]
where $\prod_{t=2}^{T}$ denotes product.

If $r_t | r_{t-1}, \ldots, r_1$ is normal with mean μ_t and variance σ_t^2, then likelihood function becomes

$$f(r_T, r_{T-1}, \ldots, r_1) = \prod_{t=2}^{T} \frac{1}{\sqrt{2\pi \sigma_t}} \exp \left[\frac{-(r_t - \mu_t)^2}{2\sigma_t^2} \right] f(r_1).$$

For simplicity, if $f(r_1)$ is ignored, then the likelihood function becomes

$$f(r_T, r_{T-1}, \ldots, r_1) = \prod_{t=2}^{T} \frac{1}{\sqrt{2\pi \sigma_t}} \exp \left[\frac{-(r_t - \mu_t)^2}{2\sigma_t^2} \right].$$

This is the conditional likelihood function of the returns under normality.

Other dists, e.g. Student-t, can be used to handle heavy tails.

Model specification

- μ_t: discussed in Chapter 2
- σ_t^2: Chapters 3 and 4.
Takeaway

1. Understand the summary statistics of asset returns
2. Understand various definitions of returns & their relationships
3. Learn basic characteristics of FTS.
Linear Time Series (TS) Models

Financial TS: collection of a financial measurement over time
Example: log return r_t

Data: $\{r_1, r_2, \ldots, r_T\}$ (T data points)
Purpose: What information contained in $\{r_t\}$?

Basic concepts

• Stationarity:
 – Strict: distributions are time-invariant
 – Weak: first 2 moments are time-invariant

What does weak stationarity mean in practice?
Past: time plot of $\{r_t\}$ varies around a fixed level within a finite range!
Future: the first 2 moments of future r_t are the same as those of the data so that meaningful inferences can be made.

• Mean (or expectation) of returns:
 $$\mu = E(r_t)$$

• Variance (variability) of returns:
 $$\text{Var}(r_t) = E[(r_t - \mu)^2]$$
• Sample mean and sample variance are used to estimate the mean and variance of returns.

\[\bar{r} = \frac{1}{T} \sum_{t=1}^{T} r_t \quad \& \quad \text{Var}(r_t) = \frac{1}{T - 1} \sum_{t=1}^{T} (r_t - \bar{r})^2 \]

• Test \(H_o : \mu = 0 \) vs \(H_a : \mu \neq 0 \). Compute

\[t = \frac{\bar{r}}{\text{std}(\bar{r})} = \frac{\bar{r}}{\sqrt{\text{Var}(r_t)/T}} \]

Compare \(t \) ratio with \(N(0, 1) \) dist.

Decision rule: Reject \(H_o \) of zero mean if \(|t| > Z_{\alpha/2}\) or p-value is less than \(\alpha \).

• Lag-\(k \) autocovariance:

\[\gamma_k = \text{Cov}(r_t, r_{t-k}) = E[(r_t - \mu)(r_{t-k} - \mu)] \]

• Serial (or auto-) correlations:

\[\rho_\ell = \frac{\text{cov}(r_t, r_{t-\ell})}{\text{var}(r_t)} \]

Note: \(\rho_0 = 1 \) and \(\rho_k = \rho_{-k} \) for \(k \neq 0 \). Why?

Existence of serial correlations implies that the return is predictable, indicating market inefficiency.

• Sample autocorrelation function (ACF)

\[\hat{\rho}_\ell = \frac{\sum_{t=1}^{T-\ell}(r_t - \bar{r})(r_{t+\ell} - \bar{r})}{\sum_{t=1}^{T}(r_t - \bar{r})^2} \]

where \(\bar{r} \) is the sample mean & \(T \) is the sample size.
• Test zero serial correlations (market efficiency)
 – Individual test: for example,
 \[H_0 : \rho_1 = 0 \text{ vs } H_a : \rho_1 \neq 0 \]
 \[t = \frac{\hat{\rho}_1}{\sqrt{1/T}} = \sqrt{T}\hat{\rho}_1 \]
 Asym. \(N(0, 1) \).
 Decision rule: Reject \(H_0 \) if \(|t| > Z_{\alpha/2}\) or p-value less than \(\alpha \).
 – Joint test (Ljung-Box statistics):
 \[H_0 : \rho_1 = \cdots = \rho_m = 0 \text{ vs } H_a : \rho_i \neq 0 \]
 \[Q(m) = T(T + 2) \sum_{\ell=1}^{m} \frac{\hat{\rho}_\ell^2}{T - \ell} \]
 Asym. chi-squared dist with \(m \) degrees of freedom.
 Decision rule: Reject \(H_0 \) if \(Q(m) > \chi^2_m(\alpha) \) or p-value is less than \(\alpha \).

• Sources of serial correlations in financial TS
 – Nonsynchronous trading (ch. 5)
 – Bid-ask bounce (ch. 5)
 – Risk premium, etc. (ch. 3)

Thus, significant sample ACF does not necessarily imply market inefficiency.

Example: Monthly returns of IBM stock from 1926 to 1997.
• R_t: $Q(5) = 5.4(0.37)$ and $Q(10) = 14.1(0.17)$

• r_t: $Q(5) = 5.8(0.33)$ and $Q(10) = 13.7(0.19)$

Remark: What is p-value? How to use it?

Implication: Monthly IBM stock returns do not have significant serial correlations.

Example: Monthly returns of CRSP value-weighted index from 1926 to 1997.

• R_t: $Q(5) = 27.8$ and $Q(10) = 36.0$

• r_t: $Q(5) = 26.9$ and $Q(10) = 32.7$

All highly significant. Implication: there exist significant serial correlations in the equal-weighted index returns. (Nonsynchronous trading might explain the existence of the serial correlations, among other reasons.)

R demonstration: IBM monthly simple returns from 1926 to 2007.

```r
> library('fSeries')
> x=read.table("m-ibm2607.txt")
> ibm=x[,2] % 2nd column of the data file.
> acf(ibm,lag=15) % Obtain the ACF plot
> s1=acf(ibm,lag=15) % Obtain the ACF plot and more.
> names(s1)
[1] "acf" "type" "n.used" "lag" "series" "snames"

> s1$acf
     [,1]    [,2]    [,3]
[1,] 1.000000 0.035765 -0.01128
[2,] 0.035765 0.055155 -0.01743
[3,] 0.011281 0.055155 -0.01743
```

31
\[s_2 = \text{pacf}(ibm, \text{lag}=15) \] % Compute the Partial ACF

\[> s2 = \text{pacf}(ibm, \text{lag}=15) \]
\[> s2$acf \]

\[
\begin{array}{c}
[0.035764535,]
[-0.012575498,]
[-0.016331049,]
[-0.030680635,]
[0.022997644,]
[-0.003105335,]
[-0.038383961,]
\end{array}
\]

\[> \text{Box.test}(ibm, \text{lag}=10) \] % Default method is 'Box-Pierce'

\[
\begin{array}{c}
\text{Box-Pierce test} \\
data: \text{ibm} \\
X\text{-squared} = 13.5852, \ df = 10, \ p\text{-value} = 0.1928
\end{array}
\]

\[> \text{Box.test}(ibm, \text{lag}=10, \text{type}='\text{Ljung}') \] % Ljung-Box Q statistics.

\[
\begin{array}{c}
\text{Box-Ljung test} \\
data: \text{ibm} \\
X\text{-squared} = 13.7108, \ df = 10, \ p\text{-value} = 0.1866
\end{array}
\]

Splus demonstration: IBM monthly simple returns from 1926 to 2007.

\[> \text{module}('\text{finmetrics}') \]
\[> x = \text{read.table(''m-ibm2607.txt'')} \]
\[> ibm = x[,2] \] % 2nd column is the simple returns.
\[> \text{acf}(ibm, \text{lag.max}=15) \] % Obtain ACF plot and values.
Call: \[\text{acf}(x = \text{ibm}, \text{lag.max} = 15) \]

Autocorrelation matrix:
lag ibm
1 0 1.0000
2 1 0.0358
3 2 -0.0113
4 3 -0.0172
5 4 -0.0317
(edited)
14 13 -0.0629
15 14 -0.0123
16 15 -0.0390

> acf(ibm,type='partial') % Obtain Partial ACF and plot.
Call: acf(x = ibm, type = "partial")

Partial Correlation matrix:

 lag ibm
 1 1 0.0358
 2 2 -0.0126
 3 3 -0.0163
 4 4 -0.0307
(edited)
 14 14 -0.0031
 15 15 -0.0384

> autocorTest(ibm,lag=10) % Obtain Ljung-Box Q(10) test

Test for Autocorrelation: Ljung-Box

Null Hypothesis: no autocorrelation

Test Statistics:

Test Stat 13.7108
 p.value 0.1866

Dist. under Null: chi-square with 10 degrees of freedom
 Total Observ.: 984
Back-shift (lag) operator
A useful notation in TS analysis.

- Definition: $B r_t = r_{t-1}$ or $L r_t = r_{t-1}$
- $B^2 r_t = B(B r_t) = B r_{t-1} = r_{t-2}$.

B (or L) means time shift! $B r_t$ is the value of the series at time $t - 1$.

Suppose that the daily log returns are

<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_t</td>
<td>0.017</td>
<td>-0.005</td>
<td>-0.014</td>
<td>0.021</td>
</tr>
</tbody>
</table>

Answer the following questions:

- $r_2 =$
- $B r_3 =$
- $B^2 r_5 =$

Question: What is B^2?

What are the important statistics in practice?
Conditional quantities, not unconditional

A proper perspective: at a time point t

- Available data: $\{r_1, r_2, \cdots, r_{t-1}\} \equiv F_{t-1}$
The return is decomposed into two parts as
\[r_t = \text{predictable part} + \text{not predic. part} \]
\[= \text{function of elements of } F_{t-1} + a_t \]

In other words, given information \(F_{t-1} \)
\[r_t = \mu_t + a_t \]
\[= E(r_t|F_{t-1}) + \sigma_t \epsilon_t \]

- \(\mu_t \): conditional mean of \(r_t \)
- \(a_t \): shock or innovation at time \(t \)
- \(\epsilon_t \): an iid sequence with mean zero and variance 1
- \(\sigma_t \): conditional standard deviation (commonly called volatility in finance)

Traditional TS modeling is concerned with \(\mu_t \):
Model for \(\mu_t \): **mean equation**
Volatility modeling concerns \(\sigma_t \).
Model for \(\sigma_t^2 \): **volatility equation**

Univariate TS analysis serves two purposes

- a model for \(\mu_t \)
- understanding models for \(\sigma_t^2 \): properties, forecasting, etc.

Linear time series: \(r_t \) is linear if
• the predictable part is a linear function of F_{t-1}

• \{a_t\} are indep. and have the same dist. (iid)

Mathematically, it means r_t can be written as

$$r_t = \mu + \sum_{i=0}^{\infty} \psi_i a_{t-i},$$

where μ is a constant, $\psi_0 = 1$ and \{a_t\} is an iid sequence with mean zero and well-defined distribution.

In the economic literature, a_t is the shock (or innovation) at time t and \{\psi_i\} are the impulse responses of r_t.

White noise: iid sequence (with finite variance), which is the building block of linear TS models.

White noise is not predictable, but has zero mean and finite variance.

Univariate linear time series models

1. autoregressive (AR) models

2. moving-average (MA) models

3. mixed ARMA models

4. seasonal models

5. regression models with time series errors

6. fractionally differenced models (long-memory)
Example Quarterly growth rate of U.S. real gross national product (GNP), seasonally adjusted, from the second quarter of 1947 to the first quarter of 1991.

An AR(3) model for the data is

\[r_t = 0.005 + 0.35r_{t-1} + 0.18r_{t-2} - 0.14r_{t-3} + a_t, \quad \hat{\sigma}_a = 0.01, \]

where \(\{a_t\} \) denotes a white noise with variance \(\sigma_a^2 \). Given \(r_n, r_{n-1} \& r_{n-2} \), we can predict \(r_{n+1} \) as

\[\hat{r}_{n+1} = 0.005 + 0.35r_n + 0.18r_{n-1} - 0.14r_{n-2}. \]

Other implications of the model?
Example: Monthly simple return of CRSP equal-weighted index

\[R_t = 0.013 + a_t + 0.178a_{t-1} - 0.13a_{t-3} + 0.135a_{t-9}, \quad \hat{\sigma}_a = 0.073 \]

Checking: \(Q(10) = 11.4(0.122) \) for the residual series \(a_t \).

Implications of the model?

Important properties of a model

- Stationarity condition
- Basic properties: mean, variance, serial dependence
- Empirical model building: specification, estimation, & checking
- Forecasting