The EGARCH model

Asymmetry in responses to $+$ & $-$ returns:

$$g(\epsilon_t) = \theta \epsilon_t + \gamma [|\epsilon_t| - E(|\epsilon_t|)],$$

with $E[g(\epsilon_t)] = 0$.

To see asymmetry of $g(\epsilon_t)$, rewrite it as

$$g(\epsilon_t) = \begin{cases} (\theta + \gamma)\epsilon_t - \gamma E(|\epsilon_t|) & \text{if } \epsilon_t \geq 0, \\ (\theta - \gamma)\epsilon_t - \gamma E(|\epsilon_t|) & \text{if } \epsilon_t < 0. \end{cases}$$

An EGARCH(m, s) model:

$$a_t = \sigma_t \epsilon_t, \quad \ln(\sigma_t^2) = \alpha_0 + \frac{1 + \beta_1 B + \cdots + \beta_{s-1} B^{s-1}}{1 - \alpha_1 B - \cdots - \alpha_m B^m} g(\epsilon_{t-1}).$$

Some features of EGARCH models:

- uses log trans. to relax the positiveness constraint
- asymmetric responses

Consider an EGARCH$(1,1)$ model

$$a_t = \sigma_t \epsilon_t, \quad (1 - \alpha B) \ln(\sigma_t^2) = (1 - \alpha) \alpha_0 + g(\epsilon_{t-1}),$$

Under normality, $E(|\epsilon_t|) = \sqrt{2/\pi}$ and the model becomes

$$(1 - \alpha B) \ln(\sigma_t^2) = \begin{cases} \alpha_* + (\theta + \gamma)\epsilon_{t-1} & \text{if } \epsilon_{t-1} \geq 0, \\ \alpha_* + (\theta - \gamma)\epsilon_{t-1} & \text{if } \epsilon_{t-1} < 0 \end{cases}$$

where $\alpha_* = (1 - \alpha) \alpha_0 - \sqrt{2/\pi} \gamma$.

This is a nonlinear fun. similar to that of the threshold AR model of Tong (1978, 1990).
Specifically, we have
\[
\sigma_t^2 = \sigma_{t-1}^{2\alpha} \exp(\alpha^*) \left\{ \begin{array}{ll}
\exp[(\theta + \gamma) \frac{a_{t-1}}{\sqrt{\sigma_{t-1}^2}}] & \text{if } a_{t-1} \geq 0, \\
\exp[(\theta - \gamma) \frac{a_{t-1}}{\sqrt{\sigma_{t-1}^2}}] & \text{if } a_{t-1} < 0.
\end{array} \right.
\]

The coefs \((\theta + \gamma)\) & \((\theta - \gamma)\) show the asymmetry in response to positive and negative \(a_{t-1}\). The model is, therefore, nonlinear if \(\theta \neq 0\). Thus, \(\theta\) is referred to as the leverage parameter.

Focus on the function \(g(\epsilon_{t-1})\). The leverage parameter \(\theta\) shows the effect of the sign of \(a_{t-1}\) whereas \(\gamma\) denotes the magnitude effect.

See Nelson (1991) for an example of EGARCH model.

Another example: Monthly log returns of IBM stock from January 1926 to December 1997 for 864 observations.

For textbook, an AR(1)-EGARCH(1,1) is obtained (RATS program):

\[
\begin{align*}
\sigma_t^2 &= \sigma_{t-1}^{2\alpha} \exp(\alpha^*) \\
\ln(\sigma_t^2) &= -5.496 + \frac{g(\epsilon_{t-1})}{1 - .856B}, \\
g(\epsilon_{t-1}) &= -.0795\epsilon_{t-1} + .2647[|\epsilon_{t-1}| - \sqrt{2/\pi}],
\end{align*}
\]

Model checking:

For \(\tilde{\alpha}_t\): \(Q(10) = 6.31(0.71)\) and \(Q(20) = 21.4(0.32)\)

For \(\tilde{\sigma}_t^2\): \(Q(10) = 4.13(0.90)\) and \(Q(20) = 15.93(0.66)\)

Discussion:

Using \(\sqrt{2/\pi} \approx 0.7979 \approx 0.8\), we obtain

\[
\ln(\sigma_t^2) = -1.0 + 0.856 \ln(\sigma_{t-1}^2) + \left\{ \begin{array}{ll}
0.1852\epsilon_{t-1} & \text{if } \epsilon_{t-1} \geq 0, \\
-0.3442\epsilon_{t-1} & \text{if } \epsilon_{t-1} < 0.
\end{array} \right.
\]

Taking anti-log transformation, we have

\[
\sigma_t^2 = \sigma_{t-1}^{2\times0.856} e^{-1.001} \times \left\{ \begin{array}{ll}
e^{0.1852\epsilon_{t-1}} & \text{if } \epsilon_{t-1} \geq 0, \\
e^{-0.3442\epsilon_{t-1}} & \text{if } \epsilon_{t-1} < 0.
\end{array} \right.
\]
For a standardized shock with magnitude 2, (i.e. two standard deviations), we have

\[
\frac{\sigma^2_t(\epsilon_{t-1} = -2)}{\sigma^2_t(\epsilon_{t-1} = 2)} = \frac{\exp[-0.3442 \times (-2)]}{\exp(0.1852 \times 2)} = e^{0.318} = 1.374.
\]

Therefore, the impact of a negative shock of size two-standard deviations is about 37.4% higher than that of a positive shock of the same size.

Forecasting: some recursive formula available

Another parameterization of EGARCH models

\[
\ln(\sigma^2_t) = \alpha_0 + \alpha_1 \frac{|a_{t-1}| + \gamma_1 a_{t-1}}{\sigma_{t-1}} + \beta_1 \ln(\sigma^2_{t-1}),
\]

where \(\gamma_1\) denotes the leverage effect.

S-Plus demonstration

```r
> spfit=garch(x~1,~egarch(1,1),leverage=T) # Fit an EGARCH(1,1) model
> summary(spfit)
Call: garch(formula.mean = x ~ 1, formula.var = ~ egarch(1, 1), leverage = T)

Mean Equation: x ~ 1
Conditional Variance Equation: ~ egarch(1, 1)
Conditional Distribution: gaussian

--------------------------------------------------------------
Estimated Coefficients:
--------------------------------------------------------------

| Value Std.Error | t value  | Pr(>|t|) | |
|---|---|---|---|---|---|
| C 0.006901      | 0.001608 | 4.293    | 1.986e-05 Mean equ: r(t) = 0.0069 + sigma(t)*e(t) |
| A -0.379589     | 0.052316 | -7.256   | 9.592e-13 Let h(t) = ln(sigma(t)**2) |
| ARCH(1) 0.228222 | 0.029438 | 7.753    | 2.798e-14 Volatility equ: |
| GARCH(1) 0.966338 | 0.007759 | 124.542  | 0.000e+00 h(t) = -0.38 + .97h(t-1) + |
| LEV(1) -0.292277 | 0.090273 | -3.238   | 1.255e-03 .23*[|e(t-1)|-.29*e(t-1)]/sigma(t-1). |

AIC(5) = -2533.294, BIC(5) = -2509.922

Normality Test:

<table>
<thead>
<tr>
<th>Jarque-Bera P-value Shapiro-Wilk P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>102.5</td>
</tr>
</tbody>
</table>
```

3
Ljung-Box test for standardized residuals:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>P-value</th>
<th>Chi^2</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.69</td>
<td>0.4706</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Ljung-Box test for squared standardized residuals:

<table>
<thead>
<tr>
<th>Statistic</th>
<th>P-value</th>
<th>Chi^2</th>
<th>d.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.51</td>
<td>0.2148</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Lagrange multiplier test:

<table>
<thead>
<tr>
<th>Lag 1</th>
<th>Lag 2</th>
<th>Lag 3</th>
<th>Lag 4</th>
<th>Lag 5</th>
<th>Lag 6</th>
<th>Lag 7</th>
<th>Lag 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.7505</td>
<td>0.2304</td>
<td>-0.2817</td>
<td>-0.6344</td>
<td>-0.2022</td>
<td>-0.8465</td>
<td>1.758</td>
<td>2.201</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lag 9</th>
<th>Lag 10</th>
<th>Lag 11</th>
<th>Lag 12</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5231</td>
<td>2.278</td>
<td>0.4728</td>
<td>0.144</td>
<td>-0.9919</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TR^2</th>
<th>P-value</th>
<th>F-stat</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.82</td>
<td>0.1996</td>
<td>1.468</td>
<td>0.2428</td>
</tr>
</tbody>
</table>

R demonstration: It is a bit more complicated to fit an EGARCH model in R. Several factors are involved. First, an EGARCH\((m, s)\) model in the textbook is an EGARCH\((m, s+1)\) model in R. Thus, an EGARCH\((1,1)\) model in R also contains the ARCH parameter. Second, the names alpha and beta are interchanged between textbook and R. Third, the default option of parameter constraints in R requires the constant term in the volatility equation to be positive. This is incorrect because EAGARCH uses logarithm of volatility. Thus, one needs to use “unconstrained” estimation to fit an EGARCH model. This involves editing the “GarchOxModelling.ox” file in the OX/lib directory. Finally, THETA1 in R output is the leverage parameter.

[Alternatively, you may create a separate GarchOxModelling.ox file and garchoxfit-R.txt file to perform the EGARCH estimation in R.] I demonstrate the R estimation below for the monthly log returns of IBM stock.

```r
> library("fSeries")
> source("garchoxfit_R.txt")
```
> ibm=scan(file='m-ibmln.dat')
> m1=garchOxFit(formula.mean=~arma(1,0),formula.var=~egarch(1,1),series=ibm)

** SPECIFICATIONS **

Dependent variable : X
Mean Equation : ARMA (1, 0) model.
No regressor in the mean
Variance Equation : EGARCH (1, 1) model.
No regressor in the variance
The distribution is a Gauss distribution.

Strong convergence using numerical derivatives
Log-likelihood = 1157

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std.Error</th>
<th>t-value</th>
<th>t-prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cst(M)</td>
<td>0.011489</td>
<td>0.0024738</td>
<td>4.644</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.091821</td>
<td>0.039852</td>
<td>2.304</td>
</tr>
<tr>
<td>Cst(V)</td>
<td>-5.4956513427</td>
<td>663.64</td>
<td>-82.81</td>
</tr>
<tr>
<td>ARCH(Alpha1)</td>
<td>0.312637</td>
<td>0.29194</td>
<td>1.071</td>
</tr>
<tr>
<td>GARCH(Beta1)</td>
<td>0.766558</td>
<td>0.053626</td>
<td>14.29</td>
</tr>
<tr>
<td>EGARCH(Theta1)</td>
<td>-0.075240</td>
<td>0.027518</td>
<td>-2.734</td>
</tr>
<tr>
<td>EGARCH(Theta2)</td>
<td>0.251740</td>
<td>0.067992</td>
<td>3.703</td>
</tr>
</tbody>
</table>

No. Observations : 864 No. Parameters : 7
Mean (Y) : 0.01189 Variance (Y) : 0.00439
Skewness (Y) : -0.22061 Kurtosis (Y) : 5.05331
Log Likelihood : 1157.004

Warning : To avoid numerical problems, the estimated parameter Cst(V), and its std.Error have been multiplied by 10^-4.

From the output, the estimate of ARCH coefficient is insignificant with p-value of 0.28. For simplicity, we ignore it and the fitted model reduces approximately to

\[r_t = 0.011 + 0.092 r_{t-1} + a_t, \quad a_t = \sigma_t \epsilon_t, \]
\[\ln(\sigma_t^2) = -5.496 + \frac{g(\epsilon_{t-1})}{1 - 0.767 B}, \]
\[g(\epsilon_{t-1}) = -0.075 \epsilon_{t-1} + 0.252 [\epsilon_{t-1}] - 0.8]. \]

This is close to what we have before.
Remark: Before you are comfortable with changing commands in R for EGARCH model estimation, you may use the GJR model discussed below to estimate the leverage effect.

The Threshold GARCH (TGARCH) or GJR Model

A TGARCH\((s, m)\) or GJR\((s, m)\) model is defined as

\[
 r_t = \mu_t + a_t, \quad a_t = \sigma_t \epsilon_t \sigma_t^2 = \alpha_0 + \sum_{i=1}^{s} (\alpha_i + \gamma_i N_{t-i}) a_{t-i}^2 + \sum_{j=1}^{m} \beta_j \sigma_{t-j}^2,
\]

where \(N_{t-i}\) is an indicator variable such that

\[
 N_{t-i} = \begin{cases}
 1 & \text{if } a_{t-i} < 0, \\
 0 & \text{otherwise}.
\end{cases}
\]

One expects \(\gamma_i\) to be positive so that prior negative returns have higher impact on the volatility.

R demonstration

```r
> m2=garchOxFit(formula.mean=~arma(1,0),formula.var=~gjr(1,1),series=ibm)

***************
** SPECIFICATIONS **
***************
Dependent variable : X
Mean Equation : ARMA (1, 0) model.
No regressor in the mean
Variance Equation : GJR (1, 1) model.
No regressor in the variance
The distribution is a Gauss distribution.

Strong convergence using numerical derivatives
Log-likelihood = 1168.27

Maximum Likelihood Estimation (Std.Errors based on Numerical OPG matrix)

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Std.Error</th>
<th>t-value</th>
<th>t-prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cst(M)</td>
<td>0.012261</td>
<td>0.0024782</td>
<td>4.948</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.108345</td>
<td>0.038208</td>
<td>2.836</td>
</tr>
<tr>
<td>Cst(V)</td>
<td>3.976257</td>
<td>1.1618</td>
<td>3.422</td>
</tr>
<tr>
<td>ARCH(Alpha1)</td>
<td>0.053328</td>
<td>0.024655</td>
<td>2.163</td>
</tr>
<tr>
<td>GARCH(Beta1)</td>
<td>0.806274</td>
<td>0.044067</td>
<td>18.30</td>
</tr>
<tr>
<td>GJR(Gamma1)</td>
<td>0.090895</td>
<td>0.033665</td>
<td>2.700</td>
</tr>
</tbody>
</table>
```

No. Observations : 864 No. Parameters : 6
Mean (Y) : 0.01189 Variance (Y) : 0.00439
Skewness (Y) : -0.22061 Kurtosis (Y) : 5.05331
Log Likelihood : 1168.266

Warning: To avoid numerical problems, the estimated parameter Cst(V), and its std.Error have been multiplied by 10^-4.

** FORECASTS **

Number of Forecasts: 15

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.005999</td>
<td>0.005012</td>
</tr>
<tr>
<td>2</td>
<td>0.01158</td>
<td>0.004536</td>
</tr>
<tr>
<td>3</td>
<td>0.01219</td>
<td>0.004106</td>
</tr>
<tr>
<td>4</td>
<td>0.01225</td>
<td>0.003716</td>
</tr>
<tr>
<td>5</td>
<td>0.01226</td>
<td>0.003363</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.01226</td>
<td>0.00124</td>
</tr>
</tbody>
</table>

** TESTS **

<table>
<thead>
<tr>
<th></th>
<th>Statistic</th>
<th>t-Test</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skewness</td>
<td>0.0051867</td>
<td>0.062348</td>
<td>0.95029</td>
</tr>
<tr>
<td>Excess Kurtosis</td>
<td>0.98490</td>
<td>5.9264</td>
<td>3.0957e-009</td>
</tr>
<tr>
<td>Jarque-Bera</td>
<td>34.925</td>
<td>.NaN</td>
<td>2.6070e-008</td>
</tr>
</tbody>
</table>

Information Criterion (to be minimized)
Akaike -2.690430 Shibata -2.690526
Schwarz -2.657364 Hannan-Quinn -2.677774

Q-Statistics on Standardized Residuals
---> P-values adjusted by 1 degree(s) of freedom
Q(10) = 6.42925 [0.6963067]
Q(15) = 12.4119 [0.5732594]
Q(20) = 20.8502 [0.3451387]

Q-Statistics on Squared Standardized Residuals
---> P-values adjusted by 2 degree(s) of freedom
Q(10) = 2.87912 [0.9417129]
Q(15) = 8.19737 [0.8305081]
Q(20) = 10.4124 [0.9176103]
For the series of monthly IBM log returns, the fitted GJR model is
\[
\begin{align*}
 r_t &= 0.012 + 0.108 r_{t-1} + a_t, \quad a_t = \sigma_t \epsilon_t \\
 \sigma_t^2 &= 3.98 \times 10^{-4} + (.053 + .091N_{t-1})a_{t-1}^2 + .806 \sigma_{t-1}^2,
\end{align*}
\]
where all estimates are significant, and model checking indicates that the fitted model is adequate.

The sample variance of the IBM log returns is about 0.005 and the empirical 2.5% percentile of the data is about -0.119. If we use these two quantities for σ_{t-1}^2 and a_{t-1}, respectively, then we have
\[
\frac{\sigma_t^2(-)}{\sigma_t^2(+)} = \frac{0.0004 + 0.144 \times 0.119^2 + 0.806 \times 0.005}{0.0004 + 0.051 \times 0.119^2 + 0.806 \times 0.005} = 1.26.
\]
In this particular case, the negative prior return has about 26% higher impact on the conditional variance.

The CHARMA model

Make use of “interaction” btw past shocks

A CHARMA model is defined as
\[
 r_t = \mu_t + a_t, \quad a_t = \delta_1 a_{t-1} + \delta_2 a_{t-2} + \cdots + \delta_m a_{t-m} + \eta_t,
\]
where $\{\eta_t\}$ is iid $N(0, \sigma_\eta^2)$, $\{\delta_t\} = \{(\delta_1, \cdots, \delta_m)\}'$ is a sequence of iid random vectors $D(\mathbf{0}, \Omega)$, $\{\delta_t\} \perp \{\eta_t\}$.

The model can be written as
\[
 a_t = a'_{t-1} \delta_t + \eta_t,
\]
with conditional variance
\[
\begin{align*}
 \sigma_t^2 &= \sigma_\eta^2 + a'_{t-1} \text{Cov}(\delta_t) a_{t-1} \\
 &= \sigma_\eta^2 + (a_{t-1}, \cdots, a_{t-m}) \Omega (a_{t-1}, \cdots, a_{t-m})'.
\end{align*}
\]

Example: Monthly excess returns of S&P 500 index (26-91).
A fitted model is
\[r_t = 0.0068 + a_t, \]
\[\sigma^2_t = .00136 + (a_{t-1}, a_{t-2}, a_{t-3})' \tilde{\Omega}(a_{t-1}, a_{t-2}, a_{t-3})' \]
where, std errors in parentheses,
\[\tilde{\Sigma} = \begin{bmatrix}
0.121(.036) & -0.062(.028) & 0 \\
-0.062(.028) & 0.191(.025) & 0 \\
0 & 0 & 0.299(0.042)
\end{bmatrix}. \]

Effects of explanatory variables
Can be used in the same manner, i.e. with random coefs.

RCA model
A time series \(r_t \) is a RCA(\(p \)) model if
\[r_t = \phi_0 + \sum_{i=1}^{p} (\phi_i + \delta_{it})r_{t-i} + a_t. \]
For the model, we have
\[\mu_t = E(a_t\|F_{t-1}) = \sum_{i=1}^{p} \phi_i a_{t-i}, \]
\[\sigma^2_t = \sigma^2_a + (r_{t-1}, \ldots, r_{t-p})' \Omega_\delta (r_{t-1}, \ldots, r_{t-p})'. \]

Stochastic volatility model
A (simple) SV model is
\[a_t = \sigma_t \epsilon_t, (1 - \alpha_1 B - \cdots - \alpha_m B^m) \ln(\sigma^2_t) = \alpha_0 + v_t \]
where \(\epsilon_t \)'s are iid \(N(0, 1) \), \(v_t \)'s are iid \(N(0, \sigma_v^2) \), \(\{\epsilon_t\} \) and \(\{v_t\} \) are independent.

Long-memory SV model
A simple LMSV is
\[a_t = \sigma_t \epsilon_t, \quad \sigma_t = \sigma \exp(u_t/2), \quad (1 - B)^d u_t = \eta_t \]
where $\sigma > 0$, ϵ_t’s are iid $N(0, 1)$, η_t’s are iid $N(0, \sigma^2_\eta)$ and independent of ϵ_t, and $0 < d < 0.5$.

The model says

$$\ln(a_t^2) = \ln(\sigma^2) + u_t + \ln(\epsilon_t^2)$$

$$= [\ln(\sigma^2) + E(\ln \epsilon_t^2)] + u_t + [\ln(\epsilon_t^2) - E(\ln \epsilon_t^2)]$$

$$\equiv \mu + u_t + \epsilon_t.$$

Thus, the $\ln(a_t^2)$ series is a Gaussian long-memory signal plus a non-Gaussian white noise; see Breidt, Crato and de Lima (1998).

Application

see Examples 3.4 & 3.5