Some alternative methods:

- Moving window estimates
- Use of high-frequency financial data
- Use of daily open, high, low and closing prices

Moving window
A simple approach to capture time-varying feature of the volatility. There is no simple answer to the choice of window size.

Demonstration: Consider the daily log returns of the S&P 500 index from 1950 to 2008. A R script, `r-mvwindow.txt`, is available on the course web. [In class demonstration.]

Use of High-Frequency Data
Purpose: monthly volatility
Data: Daily returns
Let r_t^m be the t-th month log return.
Let $\{r_{t,i}\}_{i=1}^n$ be the daily log returns within the t-th month.
Using properties of log returns, we have

$$r_t^m = \sum_{i=1}^n r_{t,i}.$$

Assuming that the conditional variance and covariance exist, we have

$$\text{Var}(r_t^m|F_{t-1}) = \sum_{i=1}^n \text{Var}(r_{t,i}|F_{t-1}) + 2 \sum_{i<j} \text{Cov}[(r_{t,i}, r_{t,j})|F_{t-1}],$$

where $F_{t-1} = \text{the information available at month } t-1 \text{ (inclusive).}$

Further simplification possible under additional assumptions.
If \(\{r_{t,i}\} \) is a white noise series, then

\[
\text{Var}(r_t^m | F_{t-1}) = n \text{Var}(r_{t,1}),
\]

where \(\text{Var}(r_{t,1}) \) can be estimated from the daily returns \(\{r_{t,i}\}_{i=1}^n \) by

\[
\hat{\sigma}^2 = \frac{\sum_{i=1}^n (r_{t,i} - \bar{r}_t)^n}{n - 1},
\]

where \(\bar{r}_t \) is the sample mean of the daily log returns in month \(t \) (i.e.,

\[
\bar{r}_t = \frac{\sum_{i=1}^n r_{t,i}}{n}.
\]

The estimated monthly volatility is then

\[
\hat{\sigma}_m^2 = \frac{n}{n - 1} \sum_{i=1}^n (r_{t,i} - \bar{r}_t)^2.
\]

If \(\{r_{t,i}\} \) follows an MA(1) model, then

\[
\text{Var}(r_t^m | F_{t-1}) = n \text{Var}(r_{t,1}) + 2(n - 1)\text{Cov}(r_{t,1}, r_{t,2}),
\]

which can be estimated by

\[
\hat{\sigma}_m^2 = \frac{n}{n - 1} \sum_{i=1}^n (r_{t,i} - \bar{r}_t)^2 + 2 \sum_{i=1}^{n-1} (r_{t,i} - \bar{r}_t)(r_{t,i+1} - \bar{r}_t).
\]

Advantage: Simple

Weaknesses:

- Model for daily returns \(\{r_{t,i}\} \) is unknown.
- Typically, 21 trading days in a month, resulting in a small sample size.

See Figure 1 for an illustration; Ex 3.6 of the text.

Realized integrated volatility

If the sample mean \(\bar{r}_t \) is zero, then \(\hat{\sigma}_m^2 \approx \sum_{i=1}^n r_{t,i}^2. \)

\(\Rightarrow \) Use cumulative sum of squares of daily log returns within a month as an estimate of monthly volatility.
Figure 1: Time plots of estimated monthly volatility for the log returns of S&P 500 index from January 1980 to December 1999: (a) assumes that the daily log returns form a white noise series, (b) assumes that the daily log returns follow an MA(1) model, and (c) uses monthly returns from January 1962 to December 1999 and a GARCH(1,1) model.
Apply the idea to *intradaily log returns* and obtain realized integrated volatility.

Assume daily log return $r_t = \sum_{i=1}^{n} r_{t,i}$. The quantity

$$RV_t = \sum_{i=1}^{n} r_{t,i}^2,$$

is called the *realized* volatility of r_t.

Advantages: simplicity and using intraday information

Weaknesses:
- Effects of market microstructure (noises)
- Overlook overnight return

Further discussion

1. In-filled asymptotic argument. Let Δ be the sampling interval, as $\Delta \to 0$, the sample size goes to infinity.

 Under the assumption that the Δ-interval log returns, e.g. 5-minute returns, are independent and identically distributed, then $\sum_{j=1}^{n} r_{t,j}^2$ converges to the variance of the daily log return r_t.

2. In practice, however, there are microstructure noises that affect the estimate such as the bid-ask bounce. In fact, it can be shown that as Δ goes to zero, the observed sum of squares of Δ-interval returns goes to infinity.

What next? Two approaches have been proposed:

(a) Optimal sampling interval: Bandi and Russell (2006). Find an optimal Δ. Or equivalently, the optimal sample size n^*
= 6.5 hours/\Delta \text{ can be chosen as }
\[n^* \approx \left[\frac{Q}{(\hat{\sigma}_{\text{noise}}^2)^2} \right]^{1/3}, \]
where \(Q = \frac{M}{3} \sum_{j=1}^{M} r_{t,j}^4 \) and \(\hat{\sigma}_{\text{noise}}^2 = \frac{1}{M} \sum_{j=1}^{M} r_{t,j}^2 \), where \(M \) is the number of daily quotes available for the underlying stock and the returns \(r_{t,j} \) are computed from the mid-point of the bid and ask quotes.

(b) Subsampling: Zhang et al. (2006). Choose \(\Delta \) between 10 to 20 minutes. Compute integrated volatility for each of the possible \(\Delta \)-interval return series. Then, compute the average.

Use of Daily Open, High, Low and Close Prices

Figure 2 shows a time plot of price versus time for the \(t \)th trading day. Define

- \(C_t \) = the closing price of the \(t \)th trading day;
- \(O_t \) = the opening price of the \(t \)th trading day;
- \(f \) = fraction of the day (in interval [0,1]) that trading is closed;
- \(H_t \) = the highest price of the \(t \)th trading period;
- \(L_t \) = the lowest price of the \(t \)th trading period;
- \(F_{t-1} \) = public information available at time \(t - 1 \).

The conventional variance (or volatility) is \(\sigma_t^2 = E[(C_t - C_{t-1})^2|F_{t-1}] \).

Some alternatives:

- \(\hat{\sigma}_{0,t}^2 = (C_t - C_{t-1})^2 ; \)
- \(\hat{\sigma}_{1,t}^2 = \frac{(O_t - C_{t-1})^2}{2f} + \frac{(C_t - O_t)^2}{2(1-f)}, \ 0 < f < 1 ; \)
Figure 2: Time plot of price over time: scale for price is arbitrary.
\[
\begin{align*}
\bullet \hat{\sigma}_{2,t}^2 &= \frac{(H_t - L_t)^2}{4 \ln(2)} \approx 0.3607(H_t - L_t)^2; \\
\bullet \hat{\sigma}_{3,t}^2 &= 0.17 \frac{(O_{t-1} - C_t)^2}{f} + 0.83 \frac{(H_t - L_t)^2}{(1-f)(4\ln(2))}, \quad 0 < f < 1; \\
\bullet \hat{\sigma}_{5,t}^2 &= 0.5(H_t - L_t)^2 - [2 \ln(2) - 1](C_t - O_t)^2, \\
&\quad \text{which is } \approx 0.5(H_t - L_t)^2 - 0.386(C_t - O_t)^2; \\
\bullet \hat{\sigma}_{6,t}^2 &= 0.12 \frac{(O_t - C_{t-1})^2}{f} + 0.88 \frac{\hat{\sigma}_{5,t}^2}{1-f}, \quad 0 < f < 1.
\end{align*}
\]

A more precise, but complicated, estimator \(\hat{\sigma}_{4,t}^2\) was also considered. But it is close to \(\hat{\sigma}_{5,t}^2\).

Defining the efficiency factor of a volatility estimator as

\[
\text{Eff}(\hat{\sigma}_{i,t}^2) = \frac{\text{Var}(\hat{\sigma}_{0,t}^2)}{\text{Var}(\hat{\sigma}_{i,t}^2)},
\]

Garman and Klass (1980) found that \(\text{Eff}(\hat{\sigma}_{i,t}^2)\) is approximately 2, 5.2, 6.2, 7.4 and 8.4 for \(i = 1, 2, 3, 5\) and 6, respectively, for the simple diffusion model entertained.

Define

\[
\begin{align*}
\bullet \ o_t &= \ln(O_t) - \ln(C_{t-1}) \text{ be the normalized open;} \\
\bullet \ u_t &= \ln(H_t) - \ln(O_t) \text{ be the normalized high;} \\
\bullet \ d_t &= \ln(L_t) - \ln(O_t) \text{ be the normalized low;} \\
\bullet \ c_t &= \ln(C_t) - \ln(O_t) \text{ be the normalized close.}
\end{align*}
\]

Suppose that there are \(n\) days of data available and the volatility is constant over the period. Yang and Zhang (2000) recommend the estimate

\[
\hat{\sigma}_{yz}^2 = \hat{\sigma}_o^2 + k \hat{\sigma}_c^2 + (1-k) \hat{\sigma}_{rs}^2
\]
as a robust estimator of the volatility, where

\[
\hat{\sigma}_o^2 = \frac{1}{n-1} \sum_{t=1}^{n} (o_t - \bar{o})^2 \quad \text{with} \quad \bar{o} = \frac{1}{n} \sum_{t=1}^{n} o_t,
\]

\[
\hat{\sigma}_c^2 = \frac{1}{n-1} \sum_{t=1}^{n} (c_t - \bar{c})^2 \quad \text{with} \quad \bar{c} = \frac{1}{n} \sum_{t=1}^{n} c_t,
\]

\[
\hat{\sigma}_{rs}^2 = \frac{1}{n} \sum_{t=1}^{n} \left[u_t(u_t - c_t) + d_t(d_t - c_t) \right],
\]

\[
k = \frac{0.34}{1.34 + (n + 1)/(n - 1)}.
\]

This estimate seems to perform well.

Takeaway

Some alternative approaches to volatility estimation is currently under intensive study. It is rather early to assess the impact of these methods. It is a good idea in general to use more information. However, regulations and institutional effects need to be considered.