Seasonal Time Series: TS with periodic patterns and useful in

- predicting quarterly earnings
- pricing weather-related derivatives
- analysis of transactions data (high-frequency data), e.g., U-shaped pattern in intraday data

Example Demand of electricity of a manufacturing sector of U.S. from 1972 to 1993. The data are logged usage on the 15th day of each month. See Figure 1.

Example. Quarterly earnings of Johnson & Johnson
See the time plot, Figures 2 and 3, and sample ACFs

Another example. Quarterly earning per share of FedEx from the fourth quarter of 1991 to the fourth quarter of 2006.

Multiplicative model

Airline model (for quarterly series)

- Form:

\[r_t - r_{t-1} - r_{t-4} + r_{t-5} = a_t - \theta_1 a_{t-1} - \theta_4 a_{t-4} + \theta_1 \theta_4 a_{t-5} \]

or

\[(1 - B)(1 - B^4)r_t = (1 - \theta_1 B)(1 - \theta_4 B^4)a_t \]
Figure 1: Time plot of electricity demand of an industrial sector: 15th day of each month from 1972 to 1993.

Figure 2: Time plot of quarterly earnings of Johnson and Johnson: 1960-1980
Figure 3: Time plot of quarterly logged earnings of Johnson and Johnson: 1960-1980

Figure 4: Time plot of quarterly earnings per share of FedEx: 1991.IV to 2006.IV
• Define the differenced series w_t as

$$w_t = r_t - r_{t-1} - r_{t-4} + r_{t-5} = (r_t - r_{t-1}) - (r_{t-4} - r_{t-5}).$$

It is called *regular* and *seasonal* differenced series.

• ACF of w_t has a nice symmetric structure (see the text), i.e. $\rho_{s-1} = \rho_{s+1} = \rho_1 \rho_s$. Also, $\rho_\ell = 0$ for $\ell > s + 1$.

• This model is widely applicable to many many seasonal time series.

• Multiplicative model means that the regular and seasonal dependences are roughly orthogonal to each other.

• Forecasts: exhibit the same pattern as the observed series. See Figure 5.

Example Detailed analysis of J&J earnings.

R Demonstration: output edited.

```r
> library(fSeries)
> setwd("C:/Users/rst/teaching/bs41202/sp2009")
> x=ts(scan("jnj.dat"),frequency=4,start=c(1960,1)) # Load data into a time series object.
> plot(x,type='l') # Plot data with calendar time
> y=log(x) # Natural log transformation
> plot(y,type='l') # plot data
> points(y) # put circles on data points.
> par(mfcol=c(2,1)) # two plots per page
> acf(y,lag.max=16)
> y1=as.vector(y) # Creates a sequence of data in R
> acf(y1,lag.max=16)
> dy1=diff(y1) # regular difference
> acf(dy1,lag.max=16)
> sdy1=diff(dy1,4) # seasonal difference
> acf(sdy1,lag.max=12)
>
> m1=arima(y1,order=c(0,1,1),seasonal=list(order=c(0,1,1),period=4)) # Airline
```
Figure 5: Forecast plot for the quarterly earnings of Johnson and Johnson. Data: 1960-1980, Forecasts: 1981-82.

% model in R.

> m1
Call:
arima(x = y1, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 4))

Coefficients:
ma1 sma1
-0.6809 -0.3146 % The fitted model is (1-B^4)(1-B)R(t) =
s.e. 0.0982 0.1070 % (1-0.68B)(1-0.31B^4)a(t), var[a(t)] = 0.00793.

sigma^2 estimated as 0.00793: log likelihood = 78.38, aic = -150.75
> par(mfcol=c(1,1)) % One plot per page
> tsdiag(m1) % Model checking
> f1=predict(m1,8) % prediction
> names(f1)
[1] "pred" "se"
> f1

$pred % Point forecasts
Time Series:
Start = 85
End = 92
Frequency = 1
se % standard errors of point forecasts

Time Series:
Start = 85
End = 92
Frequency = 1

> s1=c(y1,f1$pred) % Join data with forecasts
> lcl=c(y1,f1$pred-2*f1$se) % Lower limit for 95% interval
> ucl=c(y1,f1$pred+2*f1$se) % Upper limit for 95% interval
> max(ucl)
[1] 3.346211
> min(y1)
[1] -0.8209806
> plot(s1,type='l',ylim=c(-1,3.5)) % Forecast plot
> lines(1:92,ucl,lty=2)
> lines(1:92,lcl,lty=2)

S-Plus Demonstration: output edited.

> x=ts(scan('jnj.dat'),frequency=4,start=c(1960,1)) % Load data into Splus
> plot(x,type='l') % Plot the data
> title(main='Quarterly earnings of JNJ: 1960-1980') % title of the plot
> y=log(x) % natural log transformation
> plot(y,type='l')
> par(mfcol=c(2,1)) % put two plots on a page
> acf(y,lag.max=16) % 16 lags of ACF
> acf(diff(y),lag.max=16)

> y1=as.vector(y) % creates a sequence in Splus, not a time-series object.
> acf(y1,lag.max=16)

Autocorrelation matrix:

<table>
<thead>
<tr>
<th>lag</th>
<th>y1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1000</td>
</tr>
<tr>
<td>2</td>
<td>0.9566</td>
</tr>
<tr>
<td>3</td>
<td>0.9260 % Indicates 1st difference is needed.</td>
</tr>
<tr>
<td>4</td>
<td>0.8978</td>
</tr>
<tr>
<td>5</td>
<td>0.8723</td>
</tr>
<tr>
<td>6</td>
<td>0.8285</td>
</tr>
<tr>
<td>....</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.4578</td>
</tr>
</tbody>
</table>
> acf(diff(y1),lag.max=16)
```r
> dy1 = diff(y1)
> sdy1 = diff(dy1, 4)
> acf(sdy1, lag.max = 12)
> tra = mean(sdy1)/sqrt(var(sdy1)/length(sdy1)) % Compute t-ratio of the mean.
> tra
[1] 0.3101582

> air = list(list(order = c(0, 1, 1)), list(order = c(0, 1, 1), period = 4)) % Define the airline model.

> m1 = arima.mle(y1, model = air) % estimation

> summary(m1)
Call: arima.mle(x = y1, model = air)
Method: Maximum Likelihood with likelihood conditional on 5 observations

Multiplicative ARIMA model --
Model component 1
ARIMA order: 0 1 1

Model component 2
ARIMA order: 0 1 1
Period: 4

    Value Std. Error t-value % Fitted model (1-B^4)(1-B)R(t) =
ma(1) 0.6809   0.08582  7.934 % (1-0.68B)(1-0.31B^4)a(t),
ma(4) 0.3146   0.11120  2.828 % with var[a(t)] = 0.0079.

Variance-Covariance Matrix:

    ma(1)     ma(4)
ma(1)  0.007364341 -0.002665339
ma(4) -0.002665339  0.012370336

Estimated innovations variance: 0.0079

Optimizer has converged
Convergence Type: relative function convergence
AIC: -152.7529

> arima.diag(m1) % Model checking

> f1 = arima.forecast(y1, model = m1$model, 8) % Forecasts of the next two years
> names(f1)
[1] "mean" "std.err"
> f1
$mean:
```
Consider monthly series with period 12. Airline model becomes

$$(1 - B)(1 - B^{12})r_t = (1 - \theta_1 B)(1 - \theta_{12} B^{12})a_t.$$

What is the pattern of ACF?
Regression Models with Time Series Errors

- Has many applications

- Impact of serial correlations in regression is often overlooked. It may introduce biases in estimates and in standard errors, resulting in unreliable t-ratios.

- Detecting residual serial correlation: Use Q-stat instead of DW-statistic, which is not sufficient!

- Joint estimation of all parameters is preferred.

- Proper analysis: see the illustration below.

Example. U.S. weekly interest rate data: 1-year and 3-year constant maturity rates. Data are shown in Figure 6.

R Demonstration: output edited.

```r
> library(fSeries)
> setwd("C:/Users/rst/teaching/bs41202/sp2009")
> da=read.table("w-gs1n36299.txt") % load the data
> r1=da[,1]  % 1-year rate
> r3=da[,2]  % 3-year rate
> plot(r1,type='l')  % Plot the data
> lines(1:1967,r3,lty=2)
> plot(r1,r3)  % scatter plot of the two series

> m1=lm(r3~r1)  % Fit a regression model with likelihood method.
> summary(m1)

Call:
  lm(formula = r3 ~ r1)
Residuals:
   Min      1Q  Median      3Q     Max
-1.812147 -0.402280  0.003097  0.402588  1.338746

Coefficients:
```

9
Figure 6: Time plots of U.S. weekly interest rates: 1-year constant maturity rate (solid line) and 3-year rate (dashed line).

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.910687 0.032250 28.24 <2e-16 ***
r1 0.923854 0.004389 210.51 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.538 on 1965 degrees of freedom
Multiple R-Squared: 0.9575, Adjusted R-squared: 0.9575
F-statistic: 4.431e+04 on 1 and 1965 DF, p-value: < 2.2e-16

> acf(m1$residuals)
> c3=diff(r3)
> c1=diff(r1)
> plot(c1,c3)

> m2=lm(c3~c1) # Fit a regression with likelihood method.
> summary(m2)

Call:
 lm(formula = c3 ~ c1)

Residuals:
 Min 1Q Median 3Q Max
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0002475 0.0015380 0.161 0.872
 c1 0.7810590 0.0074651 104.628 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06819 on 1964 degrees of freedom
Multiple R-Squared: 0.8479, Adjusted R-squared: 0.8478
F-statistic: 1.095e+04 on 1 and 1964 DF, p-value: < 2.2e-16

> acf(m2$residuals)
> plot(m2$residuals,type='l')

> m3=arima(c3,xreg=c1,order=c(0,0,1)) % Residuals follow an MA(1) model
> m3

Call:
arima(x = c3, order = c(0, 0, 1), xreg = c1)

Coefficients:
 ma1 intercept c1 % Fitted model is
 0.2115 0.0002 0.7824 % c3 = 0.0002 + 0.782c1 + a(t) + 0.212a(t-1)
s.e. 0.0224 0.0018 0.0077 % with var[a(t)] = 0.00446.

sigma^2 estimated as 0.004456: log likelihood = 2531.84, aic = -5055.69
> acf(m3$residuals)
> tsdiag(m3)

> m4=arima(c3,xreg=c1,order=c(1,0,0)) % Residuals follow an AR(1) model.
> m4

Call:
arima(x = c3, order = c(1, 0, 0), xreg = c1)

Coefficients:
 ar1 intercept c1 % Fitted model is
 0.1922 0.0003 0.7829 % c3 = 0.0003 + 0.783c1 + a(t),
s.e. 0.0221 0.0019 0.0077 % a(t) = 0.192a(t-1)+e(t).

sigma^2 estimated as 0.004474: log likelihood = 2527.86, aic = -5047.72

S-Plus Demonstration

> module(finmetrics)
> da=read.table("w-gs1n3.dat")
> dim(da)
> r3=da[,2]
> r1=da[,1]
> plot(r1,type='l') % plot the data
> lines(1:1967,r3,lty=2)
> plot(r1,r3)
>
> m1=OLS(r3~r1) % Least-square regression
> summary(m1)

Call:
OLS(formula = r3 ~ r1)

Residuals:
 Min 1Q Median 3Q Max
-1.8121 -0.4023 0.0031 0.4026 1.3387

Coefficients: Value Std. Error t value Pr(>|t|)
(Intercept) 0.9107 0.0323 28.2380 0.0000 % Fitted model is
 r1 0.9239 0.0044 210.5084 0.0000 % r3=0.911+0.924r1 + e

Regression Diagnostics:

 R-Squared 0.9575 % R-square is 96%!!! Any good?
Adjusted R-Squared 0.9575
Durbin-Watson Stat 0.0190 % What is the ‘‘ideal’’ value of DW?

Residual Diagnostics:

 Stat P-Value
Jarque-Bera 9.0032 0.0111
Ljung-Box 42303.0824 0.0000

Residual standard error: 0.538 on 1965 degrees of freedom
F-statistic: 44310 on 1 and 1965 degrees of freedom, the p-value is 0

> names(m1)
[1] "R" "coef" "df.resid" "fitted" "residuals" "assign"
[7] "contrasts" "ar.order" "terms" "call"

> acf(m1$residuals) % ACF of residuals

> c3=diff(r3) % Take the first difference
> c1=diff(r1)
> m2=OLS(c3~c1) % LS regression of the differenced series
> summary(m2)

Call:
OLS(formula = c3 ~ c1)

Residuals:
 Min 1Q Median 3Q Max
-0.3806 -0.0334 -0.0005 0.0344 0.4742

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) 0.0002 0.0015 0.1609 0.8722 % c3 = 0.002+0.781c 1+e
 c1 0.7811 0.0075 104.6283 0.0000

Regression Diagnostics:

 R-Squared 0.8479
Adjusted R-Squared 0.8478
 Durbin-Watson Stat 1.6158

Residual Diagnostics:

 Stat P-Value
 Jarque-Bera 1508.0683 0.0000
 Ljung-Box 230.5767 0.0000

Residual standard error: 0.06819 on 1964 degrees of freedom
F-statistic: 10949 on 1 and 1964 degrees of freedom, the p-value is 0

> acf(m2$residuals) % Plot not shown

> m3=arima.mle(c3,xreg=c1,model=list(order=c(0,0,1))) % Regression model with
time-series errors

> summary(m3)

Call: arima.mle(x = c3, model = list(order = c(0, 0, 1)), xreg = c1)
Method: Maximum Likelihood with likelihood conditional on 0 observations

ARIMA order: 0 0 1

 Value Std. Error t-value
ma(1) -0.2115 0.02204 -9.594 % Fitted model
 c1 0.7824 NA NA % c3 = 0.782c1 + a(t)+0.212a(t-1).

% Because arima.mle assumes mean of c3
Variance-Covariance Matrix: % is zero, there is no intercept.
 ma(1)
ma(1) 0.0004858961

Estimated innovations variance: 0.0045
Remark: Parameterization in R. With additional explanatory variable X in ARIMA model, R use the model

$$W_t = \phi_1 W_{t-1} + \cdots + \phi_p W_{t-p} + a_t + \theta_1 a_{t-1} + \cdots + \theta_q a_{t-q},$$

where $W_t = Y_t - \beta_0 - \beta_1 X_t$. This is the proper way to handle regression model with time series errors, because W_{t-1} is not subject to the effect of X_{t-1}.

It is different from the model

$$Y_t = \beta_0^* + \beta_1^* X_t + \phi_1 Y_{t-1} + \cdots + \phi_p Y_{t-p} + a_t + \theta_1 a_{t-1} + \cdots + \theta_q a_{t-q},$$

for which the Y_{t-1} contains the effect of X_{t-1}.

Long-memory models

- Meaning? ACF decays to zero very slowly!

- Example: ACF of squared or absolute log returns

 ACFs are small, but decay very slowly.

- How to model long memory? Use “fractional” difference: namely, $(1 - B)^d r_t$, where $-0.5 < d < 0.5$.

- Importance? In theory, Yes. In practice, yet to be determined.
• In R, the package fArma may be used to estimate the fractionally integrated ARMA models, but it requires certain Ox functions to be installed in some specific directories.

Summary of the chapter

• Sample ACF ⇒ MA order

• Sample PACF ⇒ AR order

• Some packages have “automatic” procedure to select a simple model for “conditional mean” of a FTS, e.g., R uses “ar” for AR models.

• Check a fitted model before forecasting, e.g. residual ACF and hetroscedasticity (chapter 3)

• Interpretation of a model, e.g. constant term &

 For an AR(1) with coefficient ϕ_1, the speed of mean reverting as measured by half-life is

 $$k = \frac{\ln(0.5)}{\ln(|\phi_1|)}.$$

 For an MA(q) model, forecasts revert to the mean in $q+1$ steps.

• Make proper use of regression models with time series errors, e.g. regression with AR(1) residuals

 Perform a joint estimation instead of using any two-step procedure, e.g. Cochrane-Orcutt (1949).
Example: Is there a Friday effect on asset returns?

If a daily market index is used, serial correlation may exist.

• Basic properties of a random-walk model

• Multiplicative seasonal models, especially the so-called airline model.