 (a) Plot both the daily VIX index and its log series on the same page.
 The plots are in Figure 1.
 (b) Is there a unit root in the log VIX series? Why?
 Yes, the series has a unit root. The ADF test, with lags = 11, shows the test statistic is -0.67 with p-value 0.40 so that the null hypothesis cannot be rejected. Note that I used the subcommand type='nc' in the ADF test because there should be no drift in the VIX index.
 (c) Let z_t be the growth rate of VIX index, i.e. $z_t = \log(V_t) - \log(V_{t-1})$. Test $H_0 : E(z_t) = 0$ versus $H_a : E(z_t) \neq 0$. Draw your conclusion.
 The one-sample t-test shows $t = -0.024$ with p-value 0.98. As mentioned before, VIX should not have drift. [Otherwise, there exists arbitrage opportunity in VIX futures.]
 (d) Compute ACF and PACF of the z_t series. Plot them on the same page.
 See Figure 2.
 (e) Consider the z_t series. Test $H_0 : \rho_1 = \cdots = \rho_{10} = 0$ versus $H_a : \rho_i \neq 0$ for some $1 \leq i \leq 10$. Draw the conclusion.
 The Ljung-Box statistics give $Q(10) = 142.95$ with p-value close to zero. Therefore, there are serial correlations in the z_t series.

2. Again, consider the growth rate series z_t of Problem 1.
 (a) Use the ar command with subcommand method=''mle'' to identify an AR model for the z_t series. Fit the specified AR model, perform model checking, and write down the fitted model.
 The order selected is 11. The fitted model is
 $$z_t = -.12 z_{t-1} - 0.09 z_{t-2} - 0.07 z_{t-3} - 0.07 z_{t-4} - 0.06 z_{t-5} - 0.06 z_{t-6} - 0.05 z_{t-7} - 0.04 z_{t-8} - 0.02 z_{t-9} + 0.04 z_{t-10} - 0.04 z_{t-11} + a_t$$
 with $\sigma^2 = 0.0037$. Model checking indicates the model is adequate. See Figure 3.
 (b) Next, return to the log series of VIX index, say $y_t = \log(V_t)$. Based on the AR model in part (a), fit a AR model for y_t. Use the fitted model to compute 1-step to 3-step ahead point forecasts of the log VIX index at the forecast origin March 31, 2015.
 The fitted model is the same as that of part 1. The forecasts are 2.715, 2.713, and 2.703, respectively. The forecast standard errors are 0.061, 0.081, and 0.095, respectively.
(c) Compute the 1-step to 3-step ahead 95% interval forecasts for y_t.

The 95% interval forecasts are given below:

```r
> p3=predict(m3,3)
> up=p3$pred+1.96*p3$se
> lb=p3$pred-1.96*p3$se
> pintv=cbind(lb,up)
> print(round(pintv,3))
```

Time Series:
Start = 6360
End = 6362
Frequency = 1
```
<table>
<thead>
<tr>
<th></th>
<th>lb</th>
<th>up</th>
</tr>
</thead>
<tbody>
<tr>
<td>6360</td>
<td>2.595</td>
<td>2.834</td>
</tr>
<tr>
<td>6361</td>
<td>2.553</td>
<td>2.872</td>
</tr>
<tr>
<td>6362</td>
<td>2.517</td>
<td>2.889</td>
</tr>
</tbody>
</table>
```

3. Consider, again, the log VIX index y_t of Problem 2.

(a) Fit an ARIMA(1,1,1) model to y_t. Write down the fitted model.

The fitted model is

$$(1 - 0.73B)(1 - B)y_t = (1 - 0.84B)a_t, \quad \sigma^2 = 0.0037.$$

(b) Is the model adequate? Why? Which residual ACF is significantly different from zero, if any?

The model is not adequate. See Figure 4. The lag-10 ACF of the residuals is different from zero.

(c) Fit a refine model using the following R command:

```r
mm = arima(yt,order=c(1,1,1),seasonal=list(order=c(0,0,1),period=10))
```

Perform model checking. Is the model adequate? Why? Refer to this model as `mm`.

The fitted model is

$$(1 - 0.78B)(1 - B)y_t = (1 - 0.88B)(1 + 0.07B^{10})a_t, \quad \sigma^2 = 0.0037.$$

The model is adequate. See Figure 5.

(d) Compare the `mm` model with the AR model built in Problem 2 for y_t. In terms of in-sample fitting, which model is preferred? Why?

The model `mm` is preferred by the AIC criterion.

(e) Use `backtest` to compare the AR and `mm` models. You may use the initial forecast origin at $t = 6329$. Which model is preferred? Why?

Again, the `mm` model is preferred as its has lower RMSE (0.0539 versus 0.0540) and lower MAE (0.0409 versus 0.0411). The difference, however, is small.

(a) Does the y_t series have a unit root? Why?
The ADF test with lags = 9 and type = ‘nc’ shows that the test statistic is -0.67 with p-value 0.404 so that the unit-root hypothesis cannot be rejected at the 5% level.

(b) Focus on the change series of the claims, i.e. the first differenced series. Denote the change series by r_t. Is r_t serially correlated? Why? [You may use $Q(10)$ statistics.]
The Ljung-Box statistics give $Q(10) = 241.96$ with p-value close to zero so that there are serial correlations in the r_t series.

(c) Build an AR model for the r_t series. Perform model checking using $gof = 24$. Is the model adequate? Why? Denote the model by m_1.
The fitted AR(9) model is
$$ r_t = -0.35r_{t-1} - 0.23r_{t-2} - 0.14r_{t-3} - 0.02r_{t-4} - 0.001r_{t-5} + 0.03r_{t-6} $$
$$ - 0.008r_{t-7} + 0.02r_{t-8} + 0.067r_{t-9} + a_t, \quad \sigma^2 = 298687172. $$
Model checking shows the model is adequate. See Figure 6.

(d) Refine the AR model by removing any estimate with t-ratio less than 1.65 in absolute value. Write down the refined model. Is it adequate? Why? Denote the refined model by m_2.
The simplified model is
$$ r_t = -0.35r_{t-1} - 0.23r_{t-2} - 0.14r_{t-3} + 0.061r_{t-9} + a_t, \quad \sigma^2 = 299204894. $$
The model is also adequate. See Figure 7.

(e) Use backtest with forecast origin $t = 2490$ to compare models m_1 and m_2. Draw your conclusion.
In this particular instance, the RMSE selects the model m_1 whereas the MAE prefers the model m_2.

(f) To obtain the forecasts of the claims, we like to use the y_t series directly. Since $r_t = y_t - y_{t-1}$, an ARIMA($p,0,q$) for r_t implies an ARIMA($p,1,q$) for y_t. Refit a model for y_t. Compare the estimates of AR coefficients with those of the model for r_t. Is there any difference? Why?
The parameter estimates remain unchanged, because differencing simply fixes the coefficient to 1.

(g) Based on the model for y_t, obtain 1-step to 3-step ahead forecasts for y_t at the forecast origin March 21, 2015.
The forecasts are 286383, 289641 and 290092, respectively. The associated standard errors are 17283, 20613 and 22647, respectively.

(a) Obtain the time plot of the gold price.
See top panel Figure 8.

(b) Let r_t be the log return of the daily gold price. Obtain the time plot of r_t.
See the bottom panel of Figure 8.
(c) Are there serial correlations in the r_t series? You may use $Q(10)$ to draw the conclusion. Yes, the Ljung-Box statistics give $Q(10) = 45.83$ with p-value 1.5×10^{-6}.

(d) Build an AR model for r_t. Check the adequacy of the model. The AIC selects an AR(12) model and the fitted model is

$$r_t = -0.05r_{t-1} + 0.01r_{t-2} + 0.01r_{t-3} + 0.00r_{t-4} + 0.04r_{t-5} - 0.01r_{t-6} - 0.05r_{t-7} + 0.02r_{t-8} + 0.01r_{t-9} - 0.02r_{t-10} - 0.02r_{t-11} - 0.02r_{t-12} + a_t, \quad \sigma^2 = 1.096 \times 10^{-4}.$$

The model seems adequate. See Figure 9.

(e) Remove any parameter of the AR model with t-ratio less than 1.645 in absolute value. Write down the final model. The final model is

$$r_t = -0.05r_{t-1} + 0.04r_{t-5} - 0.05r_{t-7} - 0.02r_{t-12} + a_t, \quad \sigma^2 = 1.098 \times 10^{-4}.$$

(f) Use the final model to compute 1-step to 3-step ahead forecasts of r_t at the forecast origin March 31, 2015. The forecasts are $-9.59 \times 10^{-5}, 1.41 \times 10^{-4}, -2.47 \times 10^{-4}$ and the associated standard errors are .0105, .0105, .0105.
Figure 2: Sample ACF and PACF of the log returns of VIX index.

Figure 3: Model checking of an ARMA(11,0,0) model for the log returns of VIX index.
Figure 4: Model checking of an ARIMA(1,1,1) model for the log returns of VIX index.

Figure 5: Model checking of a seasonal ARIMA(1,1,1)\times(0,0,1)_{10} model for the log returns of VIX index.
Figure 6: Model checking of an ARIMA(9,1,0) model for the U.S. weekly initial jobless claims.

Figure 7: Model checking of a simplified ARIMA(9,1,0) model for the U.S. weekly initial jobless claims.
Figure 8: Time plots of daily gold price (top) and log return (bottom) from January 2, 1992 to March 31, 2015.

Figure 9: Model checking for an AR(12) model for the log returns of gold price.