A state space model consists of two equations:

\begin{align*}
S_{t+1} &= FS_t + G \epsilon_{t+1}, \\
Z_t &= HS_t + \epsilon_t
\end{align*}

where \( S_t \) is a state vector of dimension \( m \), \( Z_t \) is the observed time series, \( F, G, H \) are matrices of parameters, \( \{e_t\} \) and \( \{\epsilon_t\} \) are iid random vectors satisfying

\[ E(e_t) = 0, \quad E(\epsilon_t) = 0, \quad \text{Cov}(e_t) = Q, \quad \text{Cov}(\epsilon_t) = R \]

and \( \{e_t\} \) and \( \{\epsilon_t\} \) are independent. In the engineering literature, a state vector denotes the unobservable vector that describes the "status" of the system. Thus, a state vector can be thought of as a vector that contains the necessary information to predict the future observations (i.e., minimum mean squared error forecasts).

**Remark:** In some applications, a state-space model is written as

\begin{align*}
S_{t+1} &= FS_t + G \epsilon_t, \\
Z_t &= HS_t + \epsilon_t.
\end{align*}

Is there any difference between the two parameterizations?

In this course, \( Z_t \) is a scalar and \( F, G, H \) are constants. A general state space model in fact allows for vector time series and time-varying parameters. Also, the independence requirement between \( \epsilon_t \) and \( \epsilon_t \) can be relaxed so that \( \epsilon_{t+1} \) and \( \epsilon_t \) are correlated.

To appreciate the above state space model, we first consider its relation with ARMA models.

The basic relations are

- an ARMA model can be put into a state space form in "infinite" many ways;
- for a given state space model in (1)-(2), there is an ARMA model.

**A. State space model to ARMA model:**

The key here is the Cayley-Hamilton theorem, which says that for any \( m \times m \) matrix \( F \) with characteristic equation

\[ c(\lambda) = |F - \lambda I| = \lambda^m + \alpha_1 \lambda^{m-1} + \alpha_2 \lambda^{m-2} + \cdots + \alpha_{m-1} \lambda + \alpha_0, \]

we have \( c(F) = 0 \). In other words, the matrix \( F \) satisfies its own characteristic equation, i.e.

\[ F^m + \alpha_1 F^{m-1} + \alpha_2 F^{m-2} + \cdots + \alpha_{m-1} F + \alpha_m I = 0. \]
Next, from the state transition equation, we have

\[
\begin{align*}
S_t &= S_t \\
S_{t+1} &= FS_t + Ge_{t+1} \\
S_{t+2} &= F^2S_t + FGe_{t+1} + Ge_{t+2} \\
S_{t+3} &= F^3S_t + F^2Ge_{t+1} + FGe_{t+2} + Ge_{t+3} \\
&\quad\vdots \\
S_{t+m} &= F^mS_t + F^{m-1}Ge_{t+1} + \cdots + FGe_{t+m-1} + Ge_{t+m}.
\end{align*}
\]

Multiplying the above equations by \(\alpha_m, \alpha_{m-1}, \ldots, \alpha_1, 1\), respectively, and summing, we obtain

\[
S_{t+m} + \alpha_1S_{t+m-1} + \cdots + \alpha_{m-1}S_{t+1} + \alpha_mS_t = Ge_{t+m} + \beta_1e_{t+m-1} + \cdots + \beta_{m-1}e_{t+1}. \quad (3)
\]

In the above, we have used the fact that \(c(F) = 0\).

Finally, two cases are possible. First, assume that there is no observational noise, i.e. \(\epsilon_t = 0\) for all \(t\) in (2). Then, by multiplying \(H\) from the left to equation (3) and using \(Z_t = HS_t\), we have

\[
Z_{t+m} + \alpha_1Z_{t+m-1} + \cdots + \alpha_{m-1}Z_{t+1} + \alpha_mZ_t = a_{t+m} - \theta_1a_{t+m-1} - \cdots - \theta_{m-1}a_{t+1},
\]

where \(a_t = HGe_t\). This is an ARMA(\(m, m-1\)) model.

The second possibility is that there is an observational noise. Then, the same argument gives

\[
(1 + \alpha_1B + \cdots + \alpha_mB^m)(Z_{t+m} - \epsilon_{t+m}) = (1 - \theta_1B - \cdots - \theta_{m-1}B^{m-1})a_{t+m}.
\]

By combining \(\epsilon_t\) with \(a_t\), the above equation is an ARMA(\(m, m\)) model.

B. ARMA model to state space model:

We begin the discussion with some simple examples. Three general approaches will be given later.

**Example 1**: Consider the AR(2) model

\[
Z_t = \phi_1Z_{t-1} + \phi_2Z_{t-2} + \epsilon_t.
\]

For such an AR(2) process, to compute the forecasts, we need \(Z_{t-1}\) and \(Z_{t-2}\). Therefore, it is easily seen that

\[
\begin{bmatrix}
Z_{t+1} \\
Z_t
\end{bmatrix} =
\begin{bmatrix}
\phi_1 & \phi_2 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
Z_t \\
Z_{t-1}
\end{bmatrix} +
\begin{bmatrix}
1 \\
0
\end{bmatrix}a_{t+1}
\]

and

\[
Z_t = [1, 0]S_t
\]
where \( S_t = (Z_t, Z_{t-1})' \) and there is no observational noise.

**Example 2:** Consider the MA(2) model

\[
Z_t = a_t - \theta_1 a_{t-1} - \theta_2 a_{t-2}.
\]

**Method 1:**

\[
\begin{bmatrix}
  a_t \\
  a_{t-1}
\end{bmatrix} = \begin{bmatrix}
  0 & 0 \\
  1 & 0
\end{bmatrix} \begin{bmatrix}
  a_{t-1} \\
  a_{t-2}
\end{bmatrix} + \begin{bmatrix}
  1 \\
  0
\end{bmatrix} a_t
\]

\[
Z_t = [-\theta_1, -\theta_2] S_t + a_t.
\]

Here the innovation \( a_t \) shows up in both the state transition equation and the observation equation. The state vector is of dimension 2.

**Method 2:** For an MA(2) model, we have

\[
\begin{align*}
Z_{t|t} &= Z_t \\
Z_{t+1|t} &= -\theta_1 a_t - \theta_2 a_{t-1} \\
Z_{t+2|t} &= -\theta_2 a_t.
\end{align*}
\]

Let \( S_t = (Z_t, -\theta_1 a_t - \theta_2 a_{t-1}, -\theta_2 a_t)' \). Then,

\[
S_{t+1} = \begin{bmatrix}
  0 & 1 & 0 \\
  0 & 0 & 1 \\
  0 & 0 & 0
\end{bmatrix} S_t + \begin{bmatrix}
  1 \\
  -\theta_1 \\
  -\theta_2
\end{bmatrix} a_{t+1}
\]

and

\[
Z_t = [1, 0, 0] S_t.
\]

Here the state vector is of dimension 3, but there is no observational noise.

**Exercise:** Generalize the above result to an MA(\( q \)) model.

Next, we consider three general approaches.

**Akaike’s approach:** For an ARMA(\( p, q \)) process, let \( m = \max\{p, q + 1\} \), \( \phi_i = 0 \) for \( i > p \) and \( \theta_j = 0 \) for \( j > q \). Define \( S_t = (Z_t, Z_{t+1|t}, Z_{t+2|t}, \ldots, Z_{t+m-1|t})' \) where \( Z_{t+\ell|t} \) is the conditional expectation of \( Z_{t+\ell} \) given \( \Psi_t = \{Z_{t}, Z_{t-1}, \ldots\} \). By using the updating equation of forecasts (recall what we discussed before)

\[
Z_{t+1}(\ell - 1) = Z_t(\ell) + \psi_{\ell-1} a_{t+1},
\]

it is easy to show that

\[
S_{t+1} = FS_t + G a_{t+1}
\]

\[
Z_t = [1, 0, \ldots, 0] S_t
\]
where
\[
F = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\phi_m & \phi_{m-1} & \cdots & \phi_2 & \phi_1
\end{bmatrix}, \quad G = \begin{bmatrix}
1 \\
\psi_1 \\
\psi_2 \\
\vdots \\
\psi_{m-1}
\end{bmatrix}.
\]

The matrix \( F \) is call a companion matrix of the polynomial \( 1 - \phi_1 B - \cdots - \phi_m B^m \).

**Aoki’s Method:** This is a two-step procedure. First, consider the MA(\( q \)) part. Letting \( W_t = a_t - \theta_1 a_{t-1} - \cdots - \theta_q a_{t-q} \), we have
\[
\begin{bmatrix}
a_t \\
a_{t-1} \\
\vdots \\
a_{t-q+1}
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 1 & 0 & 0
\end{bmatrix} \begin{bmatrix}
a_{t-1} \\
a_{t-2} \\
\vdots \\
a_{t-q}
\end{bmatrix} + \begin{bmatrix}
1 \\
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_q
\end{bmatrix} \begin{bmatrix}
a_t \\
a_{t-1} \\
\vdots \\
a_{t-q+1}
\end{bmatrix}.
\]

\( W_t = [-\theta_1, -\theta_2, \ldots, -\theta_q] S_t + a_t. \)

In the next step, we use the usual AR(\( p \)) format for
\[
Z_t - \phi_1 Z_{t-1} - \cdots - \phi_p Z_{t-p} = W_t.
\]

Consequently, define the state vector as
\[
S_t = (Z_{t-1}, Z_{t-2}, \ldots, Z_{t-p}, a_{t-1}, \ldots, a_{t-q})'.
\]

Then, we have
\[
\begin{bmatrix}
Z_t \\
Z_{t-1} \\
\vdots \\
Z_{t-p+1}
\end{bmatrix} = \begin{bmatrix}
\phi_1 & \phi_2 & \cdots & \phi_p & -\theta_1 & -\theta_1 & \cdots & -\theta_q \\
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & 0 & 0 & \cdots & 0
\end{bmatrix} \begin{bmatrix}
Z_{t-1} \\
Z_{t-2} \\
\vdots \\
Z_{t-p}
\end{bmatrix} + \begin{bmatrix}
1 \\
\theta_1 \\
\theta_2 \\
\vdots \\
\theta_q
\end{bmatrix} \begin{bmatrix}
a_t \\
a_{t-1} \\
\vdots \\
a_{t-q+1}
\end{bmatrix}.
\]

and
\[
Z_t = [\phi_1, \cdots, \phi_p, -\theta_1, \cdots, -\theta_q] S_t + a_t.
\]

**Third approach:** The third method is used by some authors, e.g. Harvey and his associates. Consider an ARMA(\( p, q \)) model
\[
Z_t = \sum_{i=1}^{p} \phi_i Z_{t-i} + a_t - \sum_{j=1}^{q} \theta_j a_{t-j}.
\]
Let $m = \max\{p, q\}$. Define $\phi_i = 0$ for $i > p$ and $\theta_j = 0$ for $j > q$. The model can be written as

$$Z_t = \sum_{i=1}^{m} \phi_i Z_{t-i} + a_t - \sum_{i=1}^{m} \theta_i a_{t-i}.$$ 

Using $\psi(B) = \theta(B) / \phi(B)$, we can obtain the $\psi$-weights of the model by equating coefficients of $B^j$ in the equation

$$(1 - \theta_1 B - \cdots - \theta_m B^m) = (1 - \phi_1 B - \cdots - \phi_m B^m) (\psi_0 + \psi_1 B + \cdots + \psi_m B^m + \cdots),$$

where $\psi_0 = 1$. In particular, consider the coefficient of $B^m$, we have

$$-\theta_m = -\phi_m \psi_0 - \phi_{m-1} \psi_1 - \cdots - \phi_1 \psi_{m-1} + \psi_m.$$

Consequently,

$$\psi_m = \sum_{i=1}^{m} \phi_i \psi_{m-i} - \theta_m. \tag{4}$$

Next, from the $\psi$-weight representation

$$Z_{t+m-i} = a_{t+m-i} + \psi_1 a_{t+m-i-1} + \psi_2 a_{t+m-i-2} + \cdots,$$

we obtain

$$Z_{t+m-i|t} = \psi_m a_t + \psi_{m-i+1} a_{t-1} + \psi_{m-i+2} a_{t-2} + \cdots,$$

$$Z_{t+m-i|t-1} = \psi_{m-i+1} a_{t-1} + \psi_{m-i+2} a_{t-2} + \cdots.$$

Consequently,

$$Z_{t+m-i|t} = Z_{t+m-i|t-1} + \psi_m a_t, \quad m - i > 0. \tag{5}$$

We are ready to setup a state space model. Define $S_t = (Z_{t|t-1}, Z_{t+1|t-1}, \cdots, Z_{t+m-1|t-1})'$. Using $Z_t = Z_{t|t-1} + a_t$, the observational equation is

$$Z_t = [1, 0, \cdots, 0] S_t + a_t.$$

The state-transition equation can be obtained by Equations (5) and (4). First, for the first $m - 1$ elements of $S_{t+1}$, Equation (5) applies. Second, for the last element of $S_{t+1}$, the model implies

$$Z_{t+m|t} = \sum_{i=1}^{m} \phi_i Z_{t+m-i|t} - \theta_m a_t.$$

Using Equation (5), we have

$$Z_{t+m|t} = \sum_{i=1}^{m} \phi_i (Z_{t+m-i|t-1} + \psi_m a_t) - \theta_m a_t$$

$$= \sum_{i=1}^{m} \phi_i Z_{t+m-i|t-1} + (\sum_{i=1}^{m} \phi_i \psi_m - \theta_m) a_t$$

$$= \sum_{i=1}^{m} \phi_i Z_{t+m-i|t-1} + \psi_m a_t,$$
where the last equality uses Equation (4). Consequently, the state-transition equation is

\[ S_{t+1} = FS_t + G a_t \]

where

\[
F = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\phi_m & \phi_{m-1} & \cdots & \phi_2 & \phi_1
\end{bmatrix},
G = \begin{bmatrix}
\psi_1 \\
\psi_2 \\
\psi_3 \\
\vdots \\
\psi_m
\end{bmatrix}.
\]

Note that for this third state space model, the dimension of the state vector is \( m = \max\{p, q\} \), which may be lower than that of the Akaike’s approach. However, the innovations to both the state-transition and observational equations are \( a_t \).

**Kalman Filter**

Kalman filter is a set of recursive equation that allows us to update the information in a state space model. It basically decomposes an observation into conditional mean and predictive residual sequentially. Thus, it has wide applications in statistical analysis.

The simplest way to derive the Kalman recursion is to use normality assumption. It should be pointed out, however, that the recursion is a result of the least squares principle (or projection) not normality. Thus, the recursion continues to hold for non-normal case. The only difference is that the solution obtained is only optimal within the class of linear solutions. With normality, the solution is optimal among all possible solutions (linear and nonlinear).

Under normality, we have

- that normal prior plus normal likelihood results in a normal posterior,
- that if the random vector \((X, Y)\) are jointly normal

\[
\begin{bmatrix}
X \\
Y
\end{bmatrix} \sim N\left(\begin{bmatrix}
\mu_x \\
\mu_y
\end{bmatrix}, \begin{bmatrix}
\Sigma_{xx} & \Sigma_{xy} \\
\Sigma_{yx} & \Sigma_{yy}
\end{bmatrix}\right),
\]

then the conditional distribution of \(X\) given \(Y = y\) is normal

\[ X|Y = y \sim N[\mu_x + \Sigma_{xy}\Sigma_{yy}^{-1}(y - \mu_y), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}]. \]

Using these two results, we are ready to derive the Kalman filter. In what follows, let \(P_{t+j|t}\) be the conditional covariance matrix of \(S_{t+j}\) given \(\{Z_t, Z_{t-1}, \cdots\}\) for \(j \geq 0\) and \(S_{t+j|t}\) be the conditional mean of \(S_{t+j}\) given \(\{Z_t, Z_{t-1}, \cdots\}\).

First, by the state space model, we have

\[ S_{t+1|t} = FS_{t|t} \quad (6) \]
\[ Z_{t+1|t} = H S_{t+1|t} \quad (7) \]
\[ P_{t+1|t} = F P_{t|t} F' + G Q G' \quad (8) \]
\[ V_{t+1|t} = H P_{t+1|t} H' + R \quad (9) \]
\[ C_{t+1|t} = H P_{t+1|t} \quad (10) \]

where \( V_{t+1|t} \) is the conditional variance of \( Z_{t+1} \) given \( \{Z_t, Z_{t-1}, \cdots\} \) and \( C_{t+1|t} \) denotes the conditional covariance between \( Z_{t+1} \) and \( S_{t+1} \). Next, consider the joint conditional distribution between \( S_{t+1} \) and \( Z_{t+1} \). The above results give

\[
\begin{bmatrix} S_{t+1} \\ Z_{t+1} \end{bmatrix}_t \sim N\left( \begin{bmatrix} S_{t+1|t} \\ Z_{t+1|t} \end{bmatrix}, \begin{bmatrix} P_{t+1|t} & P_{t+1|t} H' \\ H P_{t+1|t} & H P_{t+1|t} H' + R \end{bmatrix} \right).
\]

Finally, when \( Z_{t+1} \) becomes available, we may use the property of normality to update the distribution of \( S_{t+1} \). More specifically,

\[
S_{t+1|t+1} = S_{t+1|t} + P_{t+1|t} H' [H P_{t+1|t} H' + R]^{-1} (Z_{t+1} - Z_{t+1|t}) \quad (11)
\]

and

\[
P_{t+1|t+1} = P_{t+1|t} - P_{t+1|t} H' [H P_{t+1|t} H' + R]^{-1} H P_{t+1|t}.
\]

Obviously,

\[
r_{t+1|t} = Z_{t+1} - Z_{t+1|t} = Z_{t+1} - H S_{t+1|t}
\]

is the predictive residual for time point \( t + 1 \). The updating equation in (11) says that when the predictive residual \( r_{t+1|t} \) is non-zero there is new information about the system so that the state vector should be modified. The contribution of \( r_{t+1|t} \) to the state vector, of course, needs to be weighted by the variance of \( r_{t+1|t} \) and the conditional covariance matrix of \( S_{t+1} \).

In summary, the Kalman filter consists of the following equations:

- Prediction: (6), (7), (8) and (9)
- Updating: (11) and (12).

In practice, one starts with initial prior information \( S_{0|0} \) and \( P_{0|0} \), then predicts \( Z_{1|0} \) and \( V_{1|0} \). Once the observation \( Z_1 \) is available, uses the updating equations to compute \( S_{1|1} \) and \( P_{1|1} \), which in turns serve as prior for the next observation. This is the Kalman recursion.

**Applications of Kalman Filter**

Kalman filter has many applications. They are often classified as *filtering*, *prediction*, and *smoothing*. Let \( F_{t-1} \) be the information available at time \( t - 1 \), i.e., \( F_{t-1} = \sigma\text{-filed}\{Z_{t-1}, Z_{t-2}, \ldots\} \).

- Filtering: make inference on \( S_t \) given \( F_t \).
- Prediction: draw inference about \( S_{t+h} \) with \( h > 0 \), given \( F_t \).
• Smoothing: make inference about $S_t$ given the data $F_T$, where $T \geq t$ is the sample size.

We shall briefly discuss some of the applications. A good reference is Chapter 11 of Tsay (2005, 2nd ed.).