1. (a) Akaike’s approach: The dimension of state vector is \(m = \max\{2, 1+1\} = 2 \) so that \(S_t = (z_t, z_{t+1})' \) and, from the model, \(\psi_1 = 1.8 \). Thus,

\[
\begin{bmatrix}
 z_{t+1} \\
 z_{t+2|t+1} \\
 z_t
\end{bmatrix} = \begin{bmatrix}
 1 & 0 \\
 -0.4 & 1.3 \\
 1 & 1.8
\end{bmatrix}
\begin{bmatrix}
 z_t \\
 z_{t+1|t} \\
 a_{t+1}
\end{bmatrix}
\]

Aoki’s approach: The state vector is \(S_t = (z_{t-1}, z_{t-2}, a_{t-1})' \) and the model is

\[
\begin{bmatrix}
 z_t \\
 z_{t-1} \\
 a_t
\end{bmatrix} = \begin{bmatrix}
 1.3 & -0.4 & 0.5 \\
 1 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 z_{t-1} \\
 z_{t-2} \\
 a_{t-1}
\end{bmatrix} + \begin{bmatrix}
 1 \\
 0 \\
 1
\end{bmatrix} a_t
\]

Harvey’s approach: The dimension of the state vector is \(m = \max\{2\} = 2 \) and the state vector is \(S_t(z_{t|t-1}, z_{t+1|t-1})' \). The model becomes

\[
\begin{bmatrix}
 z_{t+1|t} \\
 z_{t+2|t} \\
 z_t
\end{bmatrix} = \begin{bmatrix}
 1 & 0 \\
 -0.4 & 1.3 \\
 1 & 1.94
\end{bmatrix}
\begin{bmatrix}
 z_{t-1} \\
 z_{t+1|t-1} \\
 a_t
\end{bmatrix}
\]

2. There are several ways to derive the result that the distribution of \(X \) given \(Y = y \) is multivariate normal with mean \(\mu_x + \Sigma_{xy} \Sigma_{yy}^{-1}(y - \mu_y) \) and covariance matrix \(\Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx} \). See, for instance, the multivariate statistics book by Johnson and Wichern (2007, 6th ed.) One approach is to use density function. Here one makes use of the identities: (a) \(|\Sigma| = |\Sigma_{yy}| |\Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx}| \), where \(\Sigma \) is the covariance matrix of \((X', Y')'\). (b) \([(X - \mu_x)', (Y - \mu_y)'] \Sigma^{-1} [(X - \mu_x)', (Y - \mu_y)']' = [X - \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (Y - \mu_y)] [(\Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx})^{-1} [X - \mu_x - \Sigma_{xy} \Sigma_{yy}^{-1} (Y - \mu_y)] + (Y - \mu_y) \Sigma_{yy}^{-1} (Y - \mu_y) \).

These two identities allow us to partition the joint density function of \(X \) and \(Y \) into the marginal density of \(Y \) and the conditional density of \(X \) given \(Y = y \).
3. The conditional distribution of X given $Y = y$ and $Z = z$ is multivariate normal with mean $\mu_x + \Sigma_{xy} \Sigma_{yy}^{-1} (y - \mu_y) + \Sigma_{xz} \Sigma_{zz}^{-1} (z - \mu_z)$ and covariance matrix $\Sigma_{xx} - \Sigma_{xy} \Sigma_{yy}^{-1} \Sigma_{yx} - \Sigma_{xz} \Sigma_{zz}^{-1} \Sigma_{zx}$. This result can be obtained by using result of Problem 2 and the independence between Y and Z under normality.

4. Among the equations (6) to (10), the only one that needs modification is (10), which becomes

$$C_{t+1|t} = H P_{t+1|t} + W.$$

Eq. (11) and (12) becomes

$$S_{t+1|t+1} = S_{t+1|t} + \left[P_{t+1|t} H' + W \right] [H P_{t+1|t} H' + R]^{-1} (Z_{t+1} - Z_{t+1|t})$$

$$P_{t+1|t+1} = P_{t+1|t} - \left[P_{t+1|t} H' + W \right] [H P_{t+1|t} H' + R]^{-1} (H P_{t+1|t} + W).$$

5. Again, there are multiple solutions. One of them is given below.

$$\begin{bmatrix}
\beta \\
z_t \\
z_{t-1}
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0.5 & 0.24 \\
0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
\beta \\
z_{t-1} \\
z_{t-2}
\end{bmatrix} + \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix} a_t.$$

$$y_t = [x_t, 1, 0] S_t.$$