Quantifying Liquidity and Default Risks of Corporate Bonds over the Business Cycle

Hui Chen (MIT Sloan and NBER)
Rui Cui (Chicago Booth)
Zhiguo He (Chicago Booth and NBER)
Konstantin Milbradt (Northwestern Kellogg and NBER)

Tel Aviv, May 2014 – 25min
Motivation

- Default risk only accounts for part of corp bond spread (bond yield minus treasury)
 - Longstaff, Mithal, Neis (2005), default part: Aaa/Aa, 50%; Baa, 70%
 - Structural models with time-varying macroeconomic risks target default component of corporate bonds:
 Chen, Collin-Dufresne, Goldstein (2009); Bhamra, Kuehn, Strebulaev (2010); Chen (2010)

- This paper: structural model to explain total credit spread
 - Introducing time-varying search frictions and macroeconomic risks into a structural corporate bond pricing models

- Match cross-sectionally (ratings) and over the business cycle:
 1. Historical moments of (conditional) total credits spreads
 2. Historical moments of (unconditional) default probabilities
 3. Historical moments of (conditional) non-default risk: bond-CDS spreads and bid-ask spreads

- Model-based decomposition highlights interactions between liquidity and default, allows framework for policy evaluation
Literature Overview

Structural Credit Models:
▶ Leland (1994b): optimal default with “random” maturity
▶ Huang, Huang (2013): “credit risk puzzle” – matching default and recovery, models have trouble matching credit spreads
▶ Chen, Collin-Dufresne, Goldstein (2009); Bhamra, Kuehn, Strebulaev (2010); Chen (2010): Macroeconomic states with countercyclical risk-premium

Liquidity Models:
▶ Amihud, Mendelson (1986): Liquidity shocks & fixed trans. costs
▶ Duffie, Garleanu, Pedersen (2005): Liquidity shocks & fixed holding costs in OTC search market

Empirical liquidity & yield estimations:
▶ Edwards Harris Piwowar (2007): estimates of BA spreads
▶ Bao Pan Wang (2009): Roll’s measure estimates of liquidity of corporate bonds
▶ Very recent liquidity estimations in the crisis:
 ▶ Dick-Nielsen, Feldhuetter, Lando (2011)
 ▶ Friewald, Jankowitsch, Subrahmanym (2012)
Model Setup

Structural credit model in Leland tradition with OTC bond market:

1. Valuation done under **risk-neutral pricing** kernel (physical probabilities recovered via change-of-measure)
2. **Fixed principal** p and **finite maturity** debt leads to continuous debt-rollover
3. Equity holders **optimally default** when option value of keeping firm alive too costly
4. **Liquidity shocks** force bond holders to trade via **OTC search** market

Aggregate shocks to parameters:

1. **2-state Markov chain**: Normal/Good (G) and Recession/Bad (B) periods
2. Jumps in pricing kernel and volatilites (**shocks to real production process, price of risk**)
3. Jumps in secondary market intermediation parameters & borrowing costs (**shocks to financial system**)
Basic Model: Leland-Toft ’96, Leland ’94b

Rollover gain/loss = \[m \left[D_H (y_t) - p \right] \]

\(D_H \): bond price; \(p \): face value repayment; \(y = \log(Y) \): log CFs

Firm:
\[dy = \mu dt + \sigma dZ \]

Default at \(y_b \)
Idiosyncratic Liquidity Shocks

Firm:
\[dy = \mu dt + \sigma dZ \]

Reissue

\[D_H: \]
\[c \ dt \]

Maturity

\[D_L: \]
\[(c - hc) dt \]

Default at \(y_b \)

Liq. Shock

Maturity
Secondary Market and Trading Prices: Bid and Ask

Firm: dy = \mu dt + \sigma dZ

Maturity

Default at \(y_b \)

Reissue

\(D_H: \) c dt

\(D_L: (c-hc) dt \)

Liq.
Shock

\(\xi \)

Interdealer
Market

\(A = D_H \)

\(B = D_L + \beta(D_H - D_L) \)

Intermediation

\(\lambda \)
Degrees of Freedom

Firm:
\[dy = \mu^s dt + \sigma^s dZ \]

Default at \(y_b^s \):
\[D_H = \alpha_H^{s} v_b^s \]
\[D_L = \alpha_L^{s} v_b^s \]

\(D_H \):
\[c \, dt \]

\(D_L \):
\[(c-hc^s) dt \]

Reissue

Maturity

Liq. Shock

\(\xi^s \)

Interdealer Market

\(\lambda^s + \beta(D_H-D_L) \)

A = D_H

B = D_L

Intermediation
Microfoundations Holding Costs

Interpretation of liquidity shock

- Liquidity shock leads to a higher borrowing rate: $r_s + \chi_s$
- Bond can be used for collateralized borrowing at rate r_s
- **Haircut** on bond h (can be function of price, return volatility, ...)

Borrowing costs

- Let $P^s(y) = \frac{A^s(y) + B^s(y)}{2}$ be the mid-point price
- Marginal benefit of bond: $\chi_s [1 - h(y)] P^s(y)$
- Consider following haircut function decreasing in $P^s(y)$

$$h(y) = \frac{\chi N + rN - c}{rP^s(y)} - \frac{\chi}{r}$$

- Plugging in, we have linear price-dependent holding cost

$$hc^s = \chi_s [N - P^s(y)]$$
Calibration: Secondary Bond Market

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Interpretation</th>
<th>G</th>
<th>B</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ</td>
<td>Liquidity Shock Int.</td>
<td>2</td>
<td></td>
<td>Bond-CDS & Turnover</td>
</tr>
<tr>
<td>β</td>
<td>Investor’s Bargaining</td>
<td>0.05</td>
<td></td>
<td>Literature</td>
</tr>
<tr>
<td>λ</td>
<td>Intermediation Int.</td>
<td>50</td>
<td>20</td>
<td>Anecdotal</td>
</tr>
<tr>
<td>α_H</td>
<td>Recovery rate of H</td>
<td>58.71%</td>
<td>32.56%</td>
<td>Literature</td>
</tr>
<tr>
<td>α_L</td>
<td>Recovery rate of L</td>
<td>57.49%</td>
<td>30.50%</td>
<td>Literature</td>
</tr>
<tr>
<td>N</td>
<td>Holding Cost Intercept</td>
<td>107</td>
<td></td>
<td>Bond-CDS sprd, Baa in G</td>
</tr>
<tr>
<td>χ</td>
<td>Holding Cost Slope</td>
<td>0.12</td>
<td>0.17</td>
<td>Investment BA spread</td>
</tr>
</tbody>
</table>
Calibration: Fundamental and Aggregate Shocks

\[
\frac{d\Lambda_t}{\Lambda_t} = -r(s_t) \, dt - \eta(s_t) \, dZ_t^m + \sum_{s_t \neq s_t'} \left(e^{\kappa(s_{t-}, s_t)} - 1 \right) \, dM_t^{(s_{t-}, s_t)}
\]

<table>
<thead>
<tr>
<th>Model Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>(r)</td>
</tr>
<tr>
<td>(\zeta)</td>
</tr>
<tr>
<td>(e^\kappa)</td>
</tr>
<tr>
<td>(\mu)</td>
</tr>
<tr>
<td>(\eta)</td>
</tr>
<tr>
<td>(\sigma_m)</td>
</tr>
<tr>
<td>(\sigma_i)</td>
</tr>
<tr>
<td>(m)</td>
</tr>
<tr>
<td>(\omega)</td>
</tr>
</tbody>
</table>
Default Probabilities (5 year bonds)

- Default Prob: 1920-2011 (unconditional)

<table>
<thead>
<tr>
<th></th>
<th>Aaa/Aa</th>
<th>A</th>
<th>Baa</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity = 5 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Default probability (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>0.7</td>
<td>1.3</td>
<td>3.1</td>
<td>9.8</td>
</tr>
<tr>
<td>model</td>
<td>0.5</td>
<td>1.5</td>
<td>3.7</td>
<td>9.9</td>
</tr>
</tbody>
</table>
Credit spreads (5 year bonds)

- Credit spread: 1994-2012, merge FISD and TRACE

<table>
<thead>
<tr>
<th></th>
<th>Aaa/Aa</th>
<th>A</th>
<th>Baa</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>State G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>55.7</td>
<td>85.7</td>
<td>149</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>(3.7)</td>
<td>(6.6)</td>
<td>(15.5)</td>
<td>(33.8)</td>
</tr>
<tr>
<td>model</td>
<td>72.9</td>
<td>103</td>
<td>170</td>
<td>341</td>
</tr>
<tr>
<td>State B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>107</td>
<td>171</td>
<td>275</td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>(5.8)</td>
<td>(10.5)</td>
<td>(23.9)</td>
<td>(29.8)</td>
</tr>
<tr>
<td>model</td>
<td>99</td>
<td>148</td>
<td>243</td>
<td>459</td>
</tr>
</tbody>
</table>
Bid-Ask Spread (5 year bonds)

<table>
<thead>
<tr>
<th>Bid-Ask spreads (bps)</th>
<th>State G</th>
<th>State B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Superior</td>
<td>Investment</td>
</tr>
<tr>
<td>data</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>model</td>
<td>38</td>
<td>50</td>
</tr>
</tbody>
</table>

Calibration Results on Bid-Ask Spread (in bps)

- State B bid-ask spread is normal time numbers multiplied by ratio of bid-ask spread implied by Roll’s measure as in Bao et al (2012)

Translating to Haircuts:

- Model implied haircut: Aaa/Aa, 9.0%; A, 10%, Baa, 12%, Ba, 18%.
- BIS (2010): Aaa/Aa 6.7%, Baa 12%, higher yield 23%.
Bond-CDS Spread (5 year bonds)

- Sample: 2005-2012, firms with CDS, 5- and 10-year bonds
- Note: Empirical evidence sheds doubt on “CDS perfectly liquid” assumption
- Crisis: 08Q4 to 09Q1

<table>
<thead>
<tr>
<th>Bond-CDS spreads (bps) 5 years</th>
<th>Aaa/Aa</th>
<th>A</th>
<th>Baa</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>State G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>27.7</td>
<td>44.4</td>
<td>74.6</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>(6.6)</td>
<td>(5.8)</td>
<td>(8.7)</td>
<td>(11.2)</td>
</tr>
<tr>
<td>model</td>
<td>55.5</td>
<td>62.1</td>
<td>78.6</td>
<td>99.6</td>
</tr>
<tr>
<td>State B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td>76.0</td>
<td>125</td>
<td>182</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>(5.1)</td>
<td>(2.1)</td>
<td>(18.0)</td>
<td>(39.2)</td>
</tr>
<tr>
<td>model</td>
<td>74.5</td>
<td>90.6</td>
<td>116</td>
<td>160</td>
</tr>
</tbody>
</table>
Counterfactual: Perfect Liquidity (5 year bonds)

- Setting holding cost $hc = 0$ or liquidity shock $\xi = 0$

<table>
<thead>
<tr>
<th>Maturity = 5 years</th>
<th>Aaa/Aa</th>
<th>A</th>
<th>Baa</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Default probability (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>model</td>
<td>0.5</td>
<td>1.5</td>
<td>3.7</td>
<td>9.9</td>
</tr>
<tr>
<td>$hc = 0$</td>
<td>0.4</td>
<td>1.0</td>
<td>2.8</td>
<td>8.2</td>
</tr>
</tbody>
</table>
Counterfactual: Perfect Liquidity (5 year bonds)

- Setting holding cost $hc = 0$ or liquidity shock $\xi = 0$

<table>
<thead>
<tr>
<th>Maturity = 5 years</th>
<th>Aaa/Aa</th>
<th>A</th>
<th>Baa</th>
<th>Ba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Default probability (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>model</td>
<td>0.5</td>
<td>1.5</td>
<td>3.7</td>
<td>9.9</td>
</tr>
<tr>
<td>$hc = 0$</td>
<td>0.4</td>
<td>1.0</td>
<td>2.8</td>
<td>8.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State G</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>72.9</td>
<td>103</td>
<td>170</td>
<td>341</td>
</tr>
<tr>
<td>$hc = 0$</td>
<td>10.1</td>
<td>26.5</td>
<td>68.8</td>
<td>194</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State B</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>99</td>
<td>148</td>
<td>243</td>
<td>459</td>
</tr>
<tr>
<td>$hc = 0$</td>
<td>12.9</td>
<td>33.8</td>
<td>84.0</td>
<td>221</td>
</tr>
</tbody>
</table>
Structural Decomposition

Standard View:
- CDS spread measures “Default component”
- Bond-CDS spread = Credit spread - CDS spread measures “Non-default” component

Our view:
- Split **default component** based on investor w/o liquidity shocks but s.t. same y_b into (i) **pure default** part based illiquidity free model (w. different y_b^{LT}) and (ii) residual of **liquidity-driven default**
- Split **liquidity component**, which is yield spread minus default component, into (i) **pure liquidity** part based on same search frictions but risk-free bonds and (ii) residual **default-driven liquidity**

Concentrate on 5 year bonds; pick y so that bonds has avg credit spread of rating class in G state
Structural Decomposition: G State

- Aaa/Aa 72.9 bps
- A 103 bps
- Baa 170 bps
- Ba 341 bps

Components:
- Pure Default
- Liq-driven Default
- Pure Liq
- Default-driven Liq
Structural Decomposition: B State

Aaa/Slash1 Aa
99 bps
A 148 bps
Baa 243 bps
Ba 459 bps

Default/Minus driven Liq
Pure Liq
Liq/Minus driven Default
Pure Default

Default–driven Liq
Liq–driven Default
Pure Liq
Ba 459 bps
Structural Decomposition: Change $G \rightarrow B$

- Aaa/Slash1Aa: 26.2 bps
- A: 45 bps
- Baa: 73.5 bps
- Ba: 118 bps

- Default/Minus driven Liq
- Pure Liq
- Liq-driven Default
- Pure Default
- Default-driven Liq
Injecting liquidity means improving dealer contact intensity λ^s and decreasing un-collateralized borrowing premium χ^s.
Liquidity Provision

- **Policy evaluation:** What are the effects of “injecting liquidity” on lowering “borrowing cost”?

- **Experiment:** Improve secondary market \((\lambda_B, \chi_B)\) to \((\lambda_G, \chi_G)\): Improved liquidity \(\rightarrow\) safer bond \(\rightarrow\) better liquidity

<table>
<thead>
<tr>
<th></th>
<th>Credit Spread w/o policy</th>
<th>Credit Spread w policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa/Aa G</td>
<td>72.9</td>
<td>54.7</td>
</tr>
<tr>
<td>Aaa/Aa B</td>
<td>99.1</td>
<td>59.2</td>
</tr>
<tr>
<td>Ba G</td>
<td>341</td>
<td>295</td>
</tr>
<tr>
<td>Ba B</td>
<td>459</td>
<td>347</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Contributions to Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LIQ→DEF</td>
</tr>
<tr>
<td>Aaa/Aa G</td>
<td>30</td>
</tr>
<tr>
<td>Aaa/Aa B</td>
<td>30</td>
</tr>
<tr>
<td>Ba G</td>
<td>62</td>
</tr>
<tr>
<td>Ba B</td>
<td>67</td>
</tr>
</tbody>
</table>
Conclusion

- Tractable structural model that embeds aggregate liquidity effects in a capital structure model

- Ability to explain total credit spread, i.e., credit risk premium and liquidity premium, cross-sectionally (across rating classes) and over the business cycle (across aggregate states)

- Holding costs motivated by cost of collateralized vs un-collateralized borrowing (haircuts)

- Counterfactual analysis reveals sizable benefits of injecting liquidity in bad times through default-liquidity interaction terms
Calibration

1. Solve the model for “random maturity” bonds to solve for default boundaries \(\mathbf{y}_b = [y_b(G), y_b(B)]^\top \) (system of equations).

2. Calculate prices of fixed maturity (5 years) bonds numerically given \(\mathbf{y}_b \) above. Compute the implied CDS spread assuming CDS contracts are immune to liquidity problems.

3. Within each rating class, map the observed distribution of market leverage into a distribution of initial cash-flow states \(y \) to circumvent Jensen’s inequality problems (David, 2008; Bhamra et al., 2010).

4. Compute conditional aggregate model implied moments of
 - Total credit spread, (unconditional) default probabilities
 - Measures of bond illiquidity that are endogenous to the model (bid-ask spreads, Bond-CDS spreads)

One set of parameters to explain the entire ratings cross-section.
Jensen’s Inequality: Heterogeneity in the Data

- Rating class defined by the *empirical distribution* of market leverages as given by distribution $d\mathbb{P}_{\text{rating}}$ for each quarter.
Jensen’s Inequality: Implementation

- David (2008), Burma et al. (2010): map each firm-quarter to its model counterpart, then aggregate within each rating class
 - Perfectly match *empirical leverage distribution* for any rating class

- Market leverage: $ML = \frac{D}{D+E}$, so if $ML' > 0$, then 1-to-1 mapping between ML and y

- Each ML then implies a cash-flow state y, which in turn implies a credit-spread, liquidity measure and default probability

- Average credit spread for each rating class:
 \[
 cs_{rating} = \int_0^1 cs (y (ML)) \, d\mathbb{P}_{rating}
 \]

- Given rating, we explain average credit spread across firms, **not** credit spread of an average firm because strong non-linearities
Calibration: Post-Default Bond Market

- For counterfactual analysis, we need bond recovery w/o post-default illiquidity. So need **ultimate recovery**
- Moody's *Default and Recovery Database* covering 1987-2012
- Risk adjust: discounting these return with a public market benchmark (*SP500*) over the same horizon, known as Public Market Equivalent (PME)

<table>
<thead>
<tr>
<th>Default Time</th>
<th># Def. Bonds</th>
<th>Net PME</th>
<th>Emergence (Yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Recession</td>
<td>512</td>
<td>0.3126</td>
<td>1.37</td>
</tr>
<tr>
<td>Recession</td>
<td>130</td>
<td>0.5537</td>
<td>1.31</td>
</tr>
<tr>
<td>Full Sample</td>
<td>642</td>
<td>0.3613</td>
<td>1.35</td>
</tr>
</tbody>
</table>

- Ultimate recovery rate $\hat{\alpha}$: $\hat{\alpha}_G = 87.96\%$, $\hat{\alpha}_B = 64.68\%$.
CDS Spread

- Assuming CDS contracts are perfectly liquid
- A CDS contract with maturity T requires a flow payment f that solves

$$\mathbb{E}^Q \left[\int_0^{\min\{\tau, T\}} e^{-rt} f \cdot dt \right] = \mathbb{E}^Q \left[1_{\{\tau \leq T\}} e^{-r\tau} LGD (s) \right]$$

where

- τ is the first time the firm defaults
- loss-given-default $LGD (s)$: face-value p minus recovery value right at default at state s

- CDS spread:

$$CDS_Spread = \frac{f}{p} = \frac{\mathbb{E}^Q \left[1_{\{\tau \leq T\}} e^{-r\tau} LGD (s) \right]}{p \cdot \mathbb{E}^Q \left[\int_0^{\min\{\tau, T\}} e^{-rt} dt \right]}$$

- Bond-CDS spread: Bond credit spread minus CDS spread