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1 Simulating GARCH models

In the session, we will be working with the daily return series for the S&P 500. Begin by
loading the sp500daily.xls file into EViews. Estimate a T-GARCH(1,1,1) model for the
data. To do this, use the following code:

equation tgarch11.arch(1,1,thrsh=1) return

To save the conditional variances, use:

tgarch11.makegarch tgarch11var ’save the conditional GARCH variance

series tgarch11vol=@sqrt(tgarch11var) ’compute the corresponding vol

series tgarch11err=return/tgarch11vol ’compute the standardized residuals

’graph errhist.distplot tgarch11err

The histogram of the standardized residuals is presented in Fig. 1. Consider now simu-

Figure 1: Standardized residuals
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lating the model for k periods into the future, using normally distributed errors. To do
this, we will follow the procedure described in the homework. Let the last observation in
your sample be at time T . The first draw (rT+1) will be obtained by randomly drawing
a value from a Normal(0,1) distribution and multiplying it by

√
ℎT+1 (which is the last

conditional variance estimated in your model). You now have a simulated draw of rT+1

that can be used to update and get ℎT+2. Again, take another random draw from a
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Normal(0,1) and multiply it by
√

ℎT+2 to get a simulated value for rT+2. Continue this
out through rT+30 and sum them up to get the cumulative return over the 30- day period.
This is one realization (possible outcome) of the 30-day return obtained by simulating the
model. We repeat this 2000 times and plot the histogram in Fig. 2. The code for this is
below.

scalar omega=c(1)

scalar alpha=c(2)

scalar beta=c(3)

scalar gamma=c(4)

scalar T=7329 ’last date in the sample

scalar nperiods=30

scalar nsim=2000

matrix(nperiods+1, nsim) ht_norm_for=tgarch11var(T) ’pre-create a matrix for ht

matrix(nperiods, nsim) rt_norm_for ’pre-create a matrix for the simulations of rt

matrix eps=@mnrnd(nperiods, nsim) ’pre-simulate the matrix of random errors

vector(nsim) ret_cum_norm=0 ’pre-create the vector of cumulative returns

for !j=1 to nsim

for !i=1 to nperiods

rt_norm_for(!i, !j)=eps(!i, !j)*ht_norm_for(!i, !j)

ht_norm_for(!i+1, !j)=omega+alpha*rt_norm_for(!i,!j)ˆ2+beta*ht_norm_for(!i, !j)

+gamma*rt_norm_for(!i,!j)*(rt_norm_for(!i,!j)-@abs(rt_norm_for(!i,!j)))/2

ret_cum_norm(!j)=ret_cum_norm(!j)+rt_norm_for(!i,!j)

next

next

Once we have the distribution of 30-day returns, we can use the quantile function to
compute the cut-off levels for different probabilities. For example, to compute the 1%
VaR, we would use

scalar VaR_norm=@quantile(ret_cum_norm,0.01)

Consider now repeating the above exercise but using the bootstrapped errors. The
first draw (rT+1) will be obtained by randomly selecting a single value of the zts obtained
from your fitted model above and multiplying it by

√
ℎT+1. You now have a simulated

draw of rT+1 that can be used to update and get ℎT+2. Again, take another random draw
from the zts and multiply it by

√
ℎT+2 to get a simulated value for rT+2. Continue this

out through rT+30 and sum them up to get the cumulative return over the 30- day period.
This is one realization (possible outcome) of the 30-day return obtained by simulating the
model. We repeat this 2000 times and plot the histogram in Fig. 3. The code for this is
below.

3



Figure 2: 30-day cumulated return, Normal errors
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matrix u=@round((T-1)*@mrnd(nperiods, nsim))+1

matrix(nperiods+1, nsim) ht_boot_for=tgarch11var(T) ’pre-create a matrix for ht

matrix(nperiods, nsim) rt_boot_for ’pre-create a matrix for the simulations of rt

vector(nsim) ret_cum_boot=0 ’pre-create the vector of cumulative returns

for !j=1 to nsim

for !i=1 to nperiods

rt_boot_for(!i, !j)=tgarch11err(u(!i, !j))*ht_boot_for(!i, !j)

ht_norm_for(!i+1, !j)=omega+alpha*rt_boot_for(!i,!j)ˆ2+beta*ht_boot_for(!i, !j)

+gamma*rt_boot_for(!i,!j)*(rt_boot_for(!i,!j)-@abs(rt_boot_for(!i,!j)))/2

ret_cum_boot(!j)=ret_cum_boot(!j)+rt_boot_for(!i,!j)

next

next

2 Estimating Vector Autoregressions

For this part of the session, we will be working the T-bills data, contained in Tbill.xls.
For simplicity, rename the series yield3m, yield6m, yield1y, yield5y. To estimate a
VAR, use:
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Figure 3: 30-day cumulated return, Empirical errors
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varest 1 2 yield3m yield6m yield1y yield5y

This creates a var object in your EViews workfile. Most of the diagnostics concerning the
model can be done directly from the object. For example, to examine the impulse response
functions for the time series, we select the Impulse tab and select the appropriate options
for the output. For the graph in Fig. 4, I selected the Combined Graphs option. Notice
that, by default, EViews calculates the non-cumulated impulse response function. To get
the cumulated impulse response function, select Accumulated Responses (Fig. 5).
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Figure 4: Impulse response functions
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Figure 5: Cumulated impulse response functions
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