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Abstract

In this paper we provide a method for calculating the implied volatility of the outcome of

a sports game. We base our analysis on Stern’s stochastic model for the evolution of sports

scores (Stern, 1994). Using bettors’ point spread and moneyline odds, we extend the model

to calculate the market-implied volatility of the game’s score. The model can also be used

to calculate the time-varying implied volatility during the game using inputs from real-time,

online betting and to identify betting opportunities. We illustrate our methodology on data

from Super Bowl XLVII between the Baltimore Ravens and the San Francisco 49ers and show

how the market-implied volatility of the outcome varied as the game progressed.
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1 Introduction

One of the most exciting aspects of a sporting event is the uncertainty of the outcome. Even

when one team is heavily favored, there is a chance that the other team will win and that likeli-

hood varies by the particular sport as well as the particular teams involved. This paper provides

an assessment of the uncertainty of the game outcome as measured by a “market” assessment

using the point spread and probability of one team winning typically quoted by betting mar-

kets or sports pundits as inputs. We calculate this measure using Stern’s 1994 model for the

evolution of the game score. We extend this result to estimate the market-implied volatility of

the outcome and show how to update the volatility during the game with real-time changes in

bettors’ assessments that a particular team will win.

We measure the uncertainty of the outcome as the variation associated with the final score of

the game. We model the outcome between two teams as a random process, X(t), which denotes

the lead of team A over team B at time t. Negative values indicate that team A is behind. To

simply things, we assume that the game begins at time zero with X(0) = 0 and ends at time

one with X(1) determining the final score. The possibility of overtime is not considered. For our

analysis we develop a probabilistic specification of the distribution of X(1) and, more generally,

of X(t), as the game evolves. Given this probabilistic model we then define the notion of the

implied volatility of the outcome for the whole game or the remainder of the game such as the

second half.

Our market-implied game outcome volatility is based on bettors’ or analysts’ assessments

of the game outcomes. In recent years there has been an explosion of online betting markets

that provide market-based assessments for the outcomes of many sporting events. The point

spread provides an assessment of the expected margin of victory, which we will denote by µ. The

moneyline odds provide an assessment of the probability that team A wins, which we denote as

p. We show that these are sufficient to define the implied volatility which we denote as σIV . This

implied volatility is a market-based assessment of the amount of uncertainty in the difference of
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scores between the two teams.

The rest of the paper proceeds as follows. Section 2 presents Stern’s 1994 model for the

evolution of X(t). We then show how the point spread and money-line determine the implied

volatility of the outcome. We extend this result to calculate a dynamic, time-varying game time

implied volatility using real-time online trading market data for the win probability. In section

3 we illustrate our methodology using SuperBowl XLVII between the Baltimore Ravens and the

San Francisco 49ers. Finally, Section 4 concludes with directions for future research.

2 The Implied Volatility of a the Outcome of a Sports Game

2.1 A Model for Sports Scores

In order to define the implied volatility of a sports game we begin with a distributional model for

the evolution of the outcome in a sports game which we develop from Stern (1994). The model

specifies the distribution of the lead of team A over team B, X(t) for any t as a Brownian motion

process. If B(t) denotes a standard Brownian motion with distributional property B(t) ∼ N(0, t)

and we incorporate drift, µ, and volatility, σ, terms, then the evolution of the outcome X(t) is

given by:

X(t) = µt + σB(t) ∼ N(µt, σ2t).

This distribution of the game outcome is a Brownian motion model where dXt = µdt + σdBt

rather than the geometric Brownian motion model used in the Black-Scholes model of the dis-

tribution of a stock price (Hull, 2005). However, in a similar manner we can use our model as a

lens to measure the implied volatility of the outcome as we describe in Section 2.2. Section 2.4

considers extensions that include discrete jumps which can be more realistic in certain sports.

This specification results in closed-form solutions for a number of probabilities of interest.

The distribution of the final score follows a normal distribution, X(1) ∼ N(µ, σ2). We can cal-

culate the probability of team A winning, denoted p = P(X(1) > 0), from a given point spread
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(or drift) µ, a given standard deviation (or volatility) σ and the assumed probability distribution.

Given the normality assumption, X(1) ∼ N(µ, σ2), we have

p = P(X(1) > 0) = Φ
(µ

σ

)
where Φ is the standard normal cdf. Table 1 uses Φ to convert team A’s advantage µ to a proba-

bility scale using the information ratio µ/σ.

µ/σ 0 0.25 0.5 0.75 1 1.25 1.5 2

p = Φ(µ/σ) 0.5 0.60 0.69 0.77 0.84 0.89 0.93 0.977

Table 1: Probability of winning p versus the ratio µ/σ

If teams are evenly matched and µ/σ = 0 then p = 0.5. Table 1 provides a list of probabilities as

a function of µ/σ. For example, if the point spread µ = −4 and volatility is σ = 10.6, then team

A has a µ/σ = −4/10.6 = −0.38 volatility point disadvantage. The probability of winning is

Φ(−0.38) = 0.353 < 0.5. A common scenario is that team A has an edge equal to half a volatility,

in that case µ/σ = 0.5 and then p = 0.69.

Of particular interest here are conditional probability assessments made as the game pro-

gresses. For example, suppose that the current lead at time t is l points and so X(t) = l. The

model can then be used to update your assessment of the distribution of the final score with the

conditional distribution (X(1)|X(t) = l). To see this, we can re-write the distribution of X(1)

given X(t) by noting that X(1) = X(t) + (X(1)− X(t)). As X(t) = µt + σB(t) and under the

conditioning X(t) = l, this simplifies to

X(1) = l + µ(1− t) + σ(B(1)− B(t)).

Here B(1)− B(t) D= B(1− t) which is independent of X(t) with distribution N(0, 1− t).

To determine the conditional distribution, we first note that there are 1− t time units leftin the

game together with a drift µ so that the conditional mean is the current lead l plus the remain-

ing expected advantage (or disadvantage) associated with the drift µ(1 − t). The conditional
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uncertainty can be modeled as σB(1− t) which is N(0, σ2(1− t)). Therefore, we can write the

distribution of the final outcome after time t has elapsed with a current lead of l for team A as

the conditional distribution:

(X(1)|X(t) = l) = (X(1)− X(t)) + l ∼ N(l + µ(1− t), σ2(1− t))

From the conditional distribution (X(1)|X(t) = l) ∼ N(l + µ(1− t), σ2(1− t)), we can calculate

the conditional probability of winning as the game evolves. The probability of team A winning

at time t given a current lead of l points is:

pt = P(X(1) > 0|X(t) = l) = Φ

(
l + µ(1− t)
σ
√

(1− t)

)
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Figure 1: Score Evolution on a Discretised Grid

Figure 1 illustrates our methodology with an example. Suppose we are analyzing data for a

Super Bowl football game between teams A and B with team A favored. The left panel presents

the information available at the beginning of the game from the perspective of the underdog

team B. If the initial point spread–or the markets’ expectation of the expected outcome–is−4 and

5



the volatility is 10.6–assumed given for the moment (more on this below)–then the probability

that the underdog team wins is p = Φ(µ/σ) = Φ(−4/10.6) = 35.3%. This result relies on our

assumption of a normal outcome distribution on the outcome as previously explained. Another

way of saying this is P(X(1) > 0) = 0.353 for an outcome distribution X(1) ∼ N(−4, 10.62).

This is illustrated with the shaded red area under the curve.

The right panel illustrates the information and potential outcomes at half-time. Here we

show the evolution of the actual score until half time as the solid black line. From half-time

onwards we simulate a set of possible Monte Carlo paths to the end of the game. The volatility

plays a key role in turning the point spread into a probability of winning as the greater the

volatility of the distribution of the outcome, X(1), the greater the range of outcomes projected

in the Monte Carlo simulation. Essentially the volatility provides a scale which calibrates the

advantage implied by a given point spread.

We can use this relationship to determine how volatility decays over the course of the game.

The conditional distribution of the outcome given the score at time t, is (X(1)|X(t) = l) with

a variance of σ2(1 − t) and volatility of σ
√

1− t. The volatility is a decreasing function of t,

illustrating that the volatility dissipates over the course of a game. For example, if there is an

initial volatility of σ = 10.6, then at half-time when t = 1
2 , the volatility is 10.6/

√
2 = 7.5

volatility points left. Table 2, below, illustrates this relationship for additional points over the

game.

t 0 1
4

1
2

3
4 1

σ
√

1− t 10.6 9.18 7.50 5.3 0

Table 2: Volatility Decay over Time

To provide insight into the final outcome given the current score, Tables 1 and 2 can be combined

to measure the current outcome, l, in terms of standard deviations of the outcome. For example,

suppose that you have Team B, an underdog, so from their perspective µ = −4 and at half-time
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team B has a lead of 15, l = 15. Team B’s expected outcome as presented earlier is l + µ(1−

t) or 15 − 4 × 1
2 = 13. If initial volatility is σ = 10.60 then the remaining volatility at half-

time is 10.6/
√

2 = 7.50 and team B’s expected outcome of 13 in terms of standard deviations is

13/7.5 = 1.73. Thus team B’s expected outcome is at the 96th percentile of the distribution, as

Φ(1.73) = 0.96, implying a 96% chance of winning.

2.2 Implied Volatility

The previous discussion assumed that the variance (or volatility) parameter σ was a known

constant. We return to this important quantity now. We are now in a position to define the

implied volatility implicit in the two betting lines that are available. Given our model, we will

use the money-line odds to provide a market assessment of the probability of winning, p, and

the point spread to assess the expected margin of victory, µ. The money line odds are shown for

each team A and B and provide information on the payoff from a bet on the team winning. As

shown in the example in section 3, this calculation will also typically require an adjustment for

the bookmaker’s spread. With these we can infer the implied volatility, σIV , by solving

σIV : p = Φ

(
µ

σIV

)
which gives σIV =

µ

Φ−1(p)
.

Here Φ−1(p) denotes the standard normal quantile function such that the area under the stan-

dard normal curve to the left of Φ−1(p) is equal to p. In our example we calculate this using the

qnorm in R. Note that when µ = 0 and p = 1
2 there’s no market information about the volatility

as µ/Φ−1(p) is undefined. This is the special case where the teams are seen as evenly matched–

the expected outcome has a zero point spread and there is an equal probability that either team

wins.

2.3 Time Varying Implied Volatility

Up to this point the volatility rate has been assumed constant through the course of the game,

i.e., that the same value of σ is relevant. The amount of volatility remaining in the game is
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not constant because time has elapsed but the basic underlying parameter has been assumed

constant. This need not be true and more importantly the betting markets may provide some

information about the best estimate of the volatility parameter at a given point of time. This is

important because time-varying volatility provides an interpretable quantity that can allow one

to assess the value of a betting opportunity.

With the advent of on-line betting there is a virtually continuously traded contract avail-

able to assesses implied expectations of the probability of team A winning at any time t. The

additional information available from the continuous contract allows for further update of the

implied conditional volatility. We assume that the online betting market gives us a current as-

sessment of pt, that is the current probability that team A will win. We can use our previously

defined expression for the conditional probability of A winning to solve for an estimate of the

time-varying implied volatility, σIV,t :

pt,l = Φ

(
l + µ(1− t)
σIV,t

√
1− t

)
which gives σIV,t =

l + µ(1− t)
Φ−1(pt)

√
1− t

where we indicate that the conditional win probability pt,l depends on both the current time and

lead.

We will use our methodology in the next Section to find evidence of time-varying volatility

in the Super Bowl XLVII probabilities.

2.4 Model Extensions

One of the main assumptions in the Stern model is the Brownian motion of normality assump-

tion. This is not realistic in sports such as baseball or soccer. For example, Thomas (2007) pro-

vides an analysis of the inter-arrival times between goals in hockey. We now show how to add an

additional jump component to allow for discrete shocks to the expected score difference between

the teams. The equivalent in finance is Merton’s (1976) jump model. Specifically, we model

dXt = µdt + σdBt + ξtdJt
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where ξt ∼ N
(

µJ , σ2
J

)
and Jt is a Jump process where P (dJt = 1) = λdt with a rate of jumps

governed by λ. We now have a five parameter model parameterised by (µ, σ, λ, µJ , σJ) and with

only two pieces of market information (the point spread and moneyline) we have an ill-posed

inverse problem. This makes it harder to implement than the vanilla Brownian motion mdoel

and we either have to subjectively assess the jump component parameters (µJ , σJ , λ) or estiamte

them from historical data before calibrating (µ, σ) to the betting line. The win probability can be

computing by noting that there’s a Poisson number of jumps, J ∼ Poi(λ) implied by this model

and by the law of iterated expectation

P (X(1) > 0) = EJ (P (X(1) > 0|J)) where P (X(1) > 0|J) = Φ

 µ + JµJ√
σ2 + Jσ2

J

 .

One interesting feature of this model is that the jump component is added to the difference in score

of the two teams. An alternative approach is a bivariate Poisson distribution for the number of

goals/points scored for each team; see, for example, theoretical results of Keller (1994), Dixon

and Coles (1997) and empirical analysis of Lee (1997), Kaslis and Ntzoufras (2003), Speigelhalter

and Ng (2009). Our approach applies equally well here and we can infer the implied mean

number of goals to be scored given the probability associated with a betting contract.

We have only consider using a model to provide an implied volatility from the bettors’ odds-

making. An informative discussion of how the point spread markets are set in practice is pro-

vided in Stern (1999). Another area of statistical interest is in models that provide assessments

of point spreads from historical data, see, for example, Glickman and Stern (1998). When es-

timation is the main aim, there is a clear need to allow for more flexible statistical modeling.

Rosenfeld (2012) provides a detailed extension of the Stern model for updating in-game win

probabilities and tackles the interesting problem of end-of-game assessment where the normal-

ity assumption is least palatable.
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3 Super Bowl XLVII: Ravens vs San Francisco 49ers

Super Bowl XLVII was held at the Superdome in New Orleans on February 3, 2013 and featured

the San Francisco 49ers against the Baltimore Ravens. Going into Super Bowl XLVII the San

Francisco 49ers were favorites to win which was not surprising following their impressive sea-

son. It was a fairly bizarre Super Bowl with a 34 minute power outage affecting the game and

ultimately an exciting finish with the Ravens causing an upset victory 34− 31. We will build our

model from the viewpoint of the Ravens. We will track X(t) which corresponds to the Raven’s

lead over the 49ers at each point in time. Table 3 provides the score at the end of each quarter.

t 0 1
4

1
2

3
4 1

Ravens 0 7 21 28 34

49ers 0 3 6 23 31

X(t) 0 4 15 5 3

Table 3: SuperBowl XLVII by Quarter

To determine the parameters of our model we first use the initial point spread which was set at

the Ravens being a four point underdog, µ = −4. This sets the mean of our outcome, X(1), as

µ = E (X(1)) = −4.

In reality, it was an exciting game with the Ravens upsetting the 49ers by 34− 31. Hence, the

realized outcome is X(1) = 34− 31 = 3 with the point spread being beaten by 7 points.

To determine the markets’ assessment of the probability that the Ravens would win at the

beginning of the game we use the money-line odds. These odds were quoted as San Francisco

−175 and Baltimore Ravens +155. This implies that a bettor would have to place $175 to win

$100 on the 49ers and a bet of $100 on the Ravens would lead to a win of $155. We can convert

both of these money-lines to implied probabilities of the each team winning, by the equations

pSF =
175

100 + 175
= 0.686 and pBal =

100
100 + 155

= 0.392
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Figure 2: Superbowl XLVII: Ravens vs 49ers: TradeSports contracts traded and dynamic market

probabilities, pmkt
t , of the Ravens winning

The probabilities do not sum to one. This ”excess” probability is in fact the mechanism by which

the oddsmakers derive their compensation. The probabilities actually sum to one plus a quantity

known as the ”market vig”, also known as the bookmaker’s edge. In this example,

pSF + pBal = 0.686 + 0.392 = 1.078

providing a 7.8% edge for the bookmakers. Put differently, if bettors place money proportionally

across both teams then the bookies will make 7.8% of the total staked no matter the outcome of

the game. To account for this edge in our model, we use the mid-point of the spread to determine

p implying that

p =
1
2

pBal +
1
2
(1− pSF) = 0.353

From the Ravens perspective we have the initial probability of a win p = P(X(1) > 0) = 0.353.

Figure 2 shows the evolution of the markets’ assessment of the conditional probability of the

Ravens winning as the game progresses, which we denote by pmkt
t . These prices are obtained

from the online betting website TradeSports.com. The contract volumes (amount of betting) are
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displayed along the x-axis. Baltimore’s win probability started trading at pmkt
0 = 0.38 (similar to

the initial estimate derived from the money odds above) and the dynamic probabilities fluctu-

ated dramatically throughout the course of an exciting game. The Ravens took a commanding

21− 6 lead at half time and the market was trading at pmkt
1
2

= 0.90. During the 34 minute black-

out 42760 contracts changed hands with Baltimore’s win probability ticking down from 95 to 94.

The win probability peak of 95% occured again after a third-quarter kickoff return for a touch-

down. At the end of the four quarter, however, when the 49ers nearly went into the lead with a

touchdown, Baltimore’s win probability had dropped to 30%.

Our model allows us to provide answers for a number of important questions:

What implied volatility is consistent with pre-game market expectations?

To calculate the implied volatility of the Superbowl we substitute the pair (µ, p) = (−4, .353)

into our definition and solve for σIV . We obtain

σIV =
µ

Φ−1(p)
=

−4
−0.377

= 10.60

where we have used Φ−1(p) = qnorm(0.353) = −0.377. So on a volatility scale the 4 point

advantage assessed for the 49ers is under a 1
2 σ favorite. Another finding is that the inferred

σ = 10.6 is historically low, as the typical volatility of an NFL game is approximately 14 points

(see Stern, 1991). One possible explanation is that for a competitive game like this, one might

expect a lower than usual volatility. In reality, the outcome X(1) = 3 was within one standard

deviation of the pregame model which had an expectation of µ = −4 and volatility of σ = 10.6.

As the game progresses our framework can be used to address a variety of additional questions.

What’s the probability of the Ravens winning given their lead at half time?

At half time Baltimore led by 15 points, 21 to 6. There are two ways to approach estimating

the probability that Baltimore will win the game given this half time lead. Stern (1994) assumes

the volatility parameter is constant during the course of the game (and equal to the pre-game

value). If so, then we can apply the formula derived earlier. The conditional mean for the
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final outcome is 15 + 0.5 ∗ (−4) = 13 and the conditional volatility is 10.6
√

1− t. These imply a

probability of .96 for Baltimore to win the game.

A second estimate of the probability of winning given the half time lead can be obtained

directly from the betting market. From the online betting market we also have traded contracts

on TradeSports.com that yield a half time probability of p 1
2

= 0.90. There is a notable difference

in the two estimates. One possible explanation for the difference is that the market assesses

time varying volatility and the market price (probability) reflects a more accurate underlying

probability. This leads to further study of the implied volatility.

What’s the implied volatility for the second half of the game?

If we assume that pmkt
t reflects all available information, we can use it to determine the mar-

ket’s assessment of implied volatility. For example, at half-time t = 1
2 we would update

σIV,t= 1
2

=
l + µ(1− t)

Φ−1(pt)
√

1− t
=

15− 2
Φ−1(0.9)/

√
2

= 14

where qnorm(0.9) = 1.28. As 14 > 10.6, the market was expecting a more volatile second half–

possibly anticipating a comeback from the 49ers. It is interesting to note that the implied half

time volatility parameter is more consistent with the value typical for regular season games.

How can we use this framework to form a valid betting strategy?

The model provides a method for identifying good betting opportunities. If you believe that

the initial moneyline and point spread identify an appropriate value for the volatility (10.6 points

in the Super Bowl example) –and this stays constant throughout the game–opportunities arise

when there’s a difference between the dynamic market probabilities and the model. This can

be a reasonable assumption unless there has been some new material information such as a key

injury. For example, given the initial implied volatility σ = 10.6, at half time with the Ravens

having a l + µ(1− t) = 13 points edge we would assess a

p 1
2

= Φ
(

13/(10.6/
√

2)
)

= 0.96
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probability of winning versus the pmkt
1
2

= 0.90 rate. This suggests a bet on the Ravens is in order.

To determine our optimal bet size, ωbet, we might appeal to the Kelly criterion (Kelly, 1956)

which yields

ωbet = p 1
2
−

q 1
2

Omkt = 0.96− 0.1
1/9

= 0.60

where p 1
2

is our assessment of the probability of winning at half time (0.96), q 1
2

= 1− p 1
2

and the

market offered odds are given by

Omkt = (1− pmkt)/pmkt = (1− 0.9)/0.9 = 1/9.

This would imply a bet of 60% of capital. The Kelly criterion is the optimal bet size for long-term

capital appreciation. In this setting the bet size seems high - it is mathematically correct since we

believe we have a 96% chance of earning a 10% return but it is very sensitive to pur estimated

probability of winning. For this reason and others it is common to bet less than the optimal

Kelly bet size. The fractional Kelly criterion scales one’s bet by a risk aversion parameter, γ,

often γ = 2 or γ = 3. Here with γ = 3, the bet size would then be 0.60/3 = 0.02, or 20% of

capital.

Alternate strategies for assessing betting opportunties are possible. The assumption of con-

stant volatility in the previous paragraph is often reasonable but not always. There may be new

information available such as a key injury. If so, the implied volatility calculation demonstrated

above provides a useful way for bettors to evaluate their opportunities. In the Super Bowl one

might judge that the half time implied volatility (14 points) is in fact more realistic than the pre-

game value (10.6 points). This would leads one to conclude that the market probability pmkt
1
2

is the more accurate estimate and there would not be a betting opportunity at half time of the

game.

4 Discussion

By combining information from Stern’s model for the evolution of sports scores and information

from betting and prediction markets we are able to define the implied volatility of a sporting
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event. Given the explosion of online betting and predictions markets there is an opportunity

to learn from market-based information through the lens of a probabilistic model. There are

two questions of interest. First, is the model reasonable? and, secondly, how informative is the

market-information?

There are a number of features of the modeling assumptions that can be relaxed. One is

the Markov nature of the probabilistic information. Is it really the case that the only relevant

conditioning information is the current lead: X(t) = l and not the past history? Interestingly,

this was one of the original criticisms of the Black-Scholes model. However, in a competitive

sporting situation one could imagine that this is a more realistic assumption than many people

would initially think. Of course, there are exceptions. For example, Jackson (1993) considers the

non-Markovian nature of tennis games and the effect of non-independence on the assessment of

rare event probabilities.

There have been many studies of the informational content of betting and prediction mar-

kets. See Snowberg et al (2012) for a recent discussion. Avery and Chevalier (1999) ask whether

you can identify sentiment from price paths in football betting. In many markets this is the is-

sue of noise traders who are not necessarily providing any extra new information to the bettor.

Camerer (1989) asks whether the point spread in basketball provides evidence of whether the

market believes in the hot hand. He finds that extreme underdogs, teams that have been on a

long losing streak, are under-priced by the market. There are also other forms of market infor-

mation that are useful for measuring volatility. One area to analyze are index betting spreads

(Jackson, 1994) where bettors provide assessments of over-under lines. These lines are used to

make bets about the total number of points score in the game. For example, in SuperBowl XLVII

the over-under line was 48 with the true score being 34 + 31 = 65 > 48. The line 48 provides

information about how high the market thinks the score will be. In the future, there might be

other betting markets that open up. The win market is essentially a binary option on the out-

come with a zero-one payout depending on who wins. Therefore, introducing payouts that are

proportional to the magnitude of the points victory are more sensitive to the volatility of the
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game and hence provide more information about volatility.

Our approach also sheds light on the relationship between the point spread and the money-

line odds. There is no one-to-one mapping as commonly thought. For example, it is not uncom-

mon in college basketball to have two games both with a heavy favourite where the moneyline

odds are the same but the point spread in one game is significantly higher than the other. Our

explanation for this difference is a simple one–the market has an expectation that the volatility

of the latter game is much higher.

We should remark that as with the Black-Scholes model for option prices, our definition of

implied volatility doesn’t rely on our model being true per se. It is merely a lens through which

to communicate the bettors information about current expectations about the future course of

the sporting event in the form of an implied volatility.
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