CHICAGO BOOTH BUS 41100
MIDTERM SAMPLE #3
INSTRUCTOR: MAX H. FARRELL

This exam is designed to be TWICE as long your midterm.

Name: ________________________________ Section (circle): { 01 – Morning 02 – Afternoon 03 – Evening

I pledge my honor that I have not violated the Chicago Booth Honor Code during this exam:

Signed: ________________________________

• You have 3 hours to complete the exam.
• This exam has 13 pages.
• Do not spend an inordinate amount of time on any one problem. Some questions are harder than others. Many questions on the exam are independent of each other.
• The exam is meant to be too long for everyone to finish. Don’t worry.
• You may use a calculator and one 8.5 × 11 size (both sides) “cheat sheet” of your own notes, otherwise the exam is closed book, closed notes, etc.
• Throughout, when calculating probabilities or intervals, you can assume that:
 – 95% of observations will fall within 2 standard deviations of the mean.
 – 90% of observations will fall within 1.6 standard deviations of the mean.
• Present your answers in a clear and concise manner.
• Do not write your name on any page except this one.

GOOD LUCK!!
1 Short Answer & Multiple Choice

(a) Which of the following best describes the least-squares line fit to the data shown in the plot?

(i) $b_0 = 0, b_1 = -1$
(ii) $b_0 = -3, b_1 = 1$
(iii) $b_0 = -5, b_1 = 2$
(iv) $b_0 = -3, b_1 = -1$
(v) $b_0 = 0, b_1 = -3$

(b) Suppose you estimate a simple linear regression model and the slope coefficient has a t-value equal to -3.1. Based on this, which of the following statements are WRONG? (Circle all that apply.)

(i) A 95% confidence interval for the true slope would exclude 0.
(ii) It is possible that the point estimate for the slope is $b_1 = 4$.
(iii) At the 10% level you fail to reject the null hypothesis that the true slope is equal to 0.
(iv) The probability that the true slope is negative is greater than the probability that the true slope is positive.

(c) Suppose we form a 95% confidence interval based on a simple linear regression. Explain in words what is meant by “95%.”
(d) Suppose that in the population $Y = 2 - X - 3X^3 + \log(X) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 5X^2)$, so the true conditional expectation is $E[Y|X] = 2 - X - 3X^3 + \log(X)$. In your sample, you run a simple linear regression of Y on X and obtain $\hat{Y}_i = b_0 + b_1X_i$ and residuals e_i for each point. Then you will have $\text{corr}(X, \epsilon) \neq 0$ because the linear regression model is incorrect. TRUE or FALSE? Justify your answer.

(e) We have data on three variables: Y, X_1, and X_2. Then we create a new variable by adding together the two X variables: $X_3 = X_1 + X_2$. We now regress Y on X_1, X_2, and X_3. Explain why we can’t find the regression coefficient on X_3 even though $\text{corr}(X_1, X_3)$ and $\text{corr}(X_2, X_3)$ are not 1.

(f) We have data on two variables: Y and X. A positive correlation between X and the residuals from a simple linear fit would indicate that the slope is too small relative to the least squares regression line. TRUE or FALSE? Justify your answer.
2 Plots & Diagnostics

(a) For the plot below, use the space to the right to describe what you think is problematic. Which of our standard linear regression assumptions are violated, if any? If there is a potential problem, what would your next step(s) be?

![Studentized Residuals vs. X plot]

(b) Plotted below are data on 3 variables: a continuous Y and X and a binary variable $D \in \{0, 1\}$.

(i) Based on these two plots, what model specification would you recommend where Y is the outcome and X and D are the independent variables?

(ii) Based on these two plots, which, if any, of our standard linear regression assumptions are violated?
3 Simple Linear Regression

The Capital Asset Pricing Model relates the returns of an asset, given by R_A, to the returns of the market, R_M through a linear regression equation

$$R_A = \alpha + \beta R_M + \varepsilon.$$

Assume that all our standard simple linear regression assumptions are met. We estimate the regression and obtain

$$R_A = 0.03 - 0.6R_M + \varepsilon,$$

where the sample mean of $R_M = 0.5$, the standard error of the intercept is 0.01, the standard error of the slope is 0.25, the sample variance of $R_M = 1$, and the residual standard error is 0.02.

(a) Is the slope coefficient statistically significant at the 0.05 level?

(b) Compute the correlation between R_M and e.

(c) What is the average return of the asset in this sample?

(d) Estimate the variance of R_A.

(e) Estimate the R^2 for this regression.
4 Multiple Linear Regression

Researchers at General Motors collected data on 60 U.S. Standard Metropolitan Statistical Areas (SMSA’s) in a study of whether or not air pollution contributes to mortality. The dependent variable for analysis is age adjusted Mortality rate and the explanatory variable is HCPot, the HydroCarbons pollution potential index.

(a) Consider first a linear regression of log(Mortality) on log(HCPot), given by the summary below.

Call:
 lm(formula = log(Mortality) ~ log(HCPot))

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.82220 0.02190 311.2 <2e-16 ***
log(HCPot) 0.00789 0.00733 1.10 0.3000

Residual standard error: 0.066 on 58 degrees of freedom
Multiple R-squared: 0.02, Adjusted R-squared: 0.0029
F-statistic: 1.2 on 1 and 58 DF, p-value: 0.28

(i) Provide a complete description of the linear regression model and assumptions that are implicitly used by this output.

(ii) Explain in detail what the parameter estimated by the coefficient on log(HCPot) represents. Then, in that context, interpret the estimate numerically.
(b) We now consider the second pollution measure, NOxPot. Consider the following summary.

Call:
\texttt{lm(formula = log(Mortality) ~ log(NOxPot))}

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|----------|
| (Intercept) | 6.8081 | 0.0178 | 382.1 | <2e-16 *** |
| log(NOxPot) | 0.0156 | 0.0069 | 2.3 | 0.03 * |

Residual standard error: 0.064 on 58 degrees of freedom
Multiple R-squared: 0.082, Adjusted R-squared: 0.066
F-statistic: 5.2 on 1 and 58 DF, p-value: 0.026

Compare to the summary from part (a). Which pollution potential is a better predictor of Mortality and why? Can you tell by comparing the two regression outputs?

(c) Consider now using both pollution measures in the same regression model.

Call:
\texttt{lm(formula = log(Mortality) ~ log(HCPot) + log(NOxPot))}

Coefficients:

| | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|----------|
| (Intercept) | 6.850 | 0.021 | 328.1 | <2e-16 *** |
| log(HCPot) | -0.064 | 0.019 | -3.3 | 0.002 ** |
| log(NOxPot) | 0.074 | 0.019 | 3.9 | 2e-04 *** |

Residual standard error: 0.059 on 57 degrees of freedom
Multiple R-squared: 0.23, Adjusted R-squared: 0.2
F-statistic: 8.5 on 2 and 57 DF, p-value: 6e-04

(i) Explain in detail what the parameter estimated by the coefficient on log(HCPot) represents. Explicitly compare to part (a)(ii). Then interpret the estimate numerically, again comparing to (a)(ii).
(ii) Explain the change in the standard errors for the coefficients on $\log(HCPot)$ (comparing to part (a)) and $\log(NOxPot)$ (comparing to part (b)).

(d) Let us now consider demographic information, beginning with HighSchool, for which a simple linear regression gives the summary below.

Call:
`lm(formula = log(Mortality) ~ HighSchool)`

Coefficients:
```
                        Estimate Std. Error   t value  Pr(>|t|)  
(Intercept)             6.8602      0.0084    815.5     <2e-16 ***
HighSchoolTRUE          -0.0806      0.0188     -4.3      7e-05 ***
```

Residual standard error: 0.058 on 58 degrees of freedom
Multiple R-squared: 0.24, Adjusted R-squared: 0.23
F-statistic: 18 on 1 and 58 DF, p-value: 6.9e-05

(i) Provide a complete description of the linear regression model and assumptions that are implicitly used by this output.

(ii) Explain in detail what the parameter estimated by the coefficient on HighSchool represents. Then, in that context, interpret the estimate numerically.
(e) Consider the summary below.

Call:
 lm(formula = log(Mortality) ~ HighSchool * log(HCPot))

Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.757 0.020 339.7 <2e-16 ***
HighSchoolTRUE 0.030 0.043 0.7 0.5
log(HCPot) 0.041 0.007 5.5 9e-07 ***
HighSchoolTRUE:log(HCPot) -0.043 0.012 -3.6 7e-04 ***

Residual standard error: 0.05 on 56 degrees of freedom
Multiple R-squared: 0.5, Adjusted R-squared: 0.5
F-statistic: 2e+01 on 3 and 56 DF, p-value: 1e-08

(i) Provide a complete description of the linear regression model and assumptions that are
implicitly used by this output.

(ii) Explain in detail what the parameter estimated by the coefficient on HighSchoolTRUE:log(HCPot)
represents. Then, in that context, interpret the estimate numerically.
(f) Consider the plot below which is based on the regression reported in part (e).

Explain briefly what is shown in this plot. Describe both what information the plot represents and what you conclude from it.

Using the summary output from part (e) above, compute the numeric values for the points on the Y-axis labeled on the graph as:

(i) = ?

(ii) = ?

(iii) (the difference) = ?
(g) Now consider adding PopDensity to the regression in part (e), which yields this summary.

```
Call:
  lm(formula = log(Mortality) ~ HighSchool * log(HCPot) + log(PopDensity))

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)        6.664083   0.153146  43.56 <2e-16 ***
HighSchoolTRUE  0.024827   0.044301   0.56  0.5740
log(HCPot)        0.038396   0.009310   4.13 4.2e-05 ***
log(PopDensity)  0.012303   0.020180   0.61  0.5419
HighSchoolTRUE:log(HCPot) -0.041412   0.013139  -3.16  0.0022 **
```

Residual standard error: 0.0501 on 55 degrees of freedom
Multiple R-squared: 0.5, Adjusted R-squared: 0.5
F-statistic: 10e+01 on 4 and 55 DF, p-value: 4e-08

Based on this output, should we add log(PopDensity) to the regression? Why or why not? Cite specific numerical values from the output to support your argument.

(h) What assumptions would you need to make about the regression in part (g) to conclude that HCPot causes an increase in Mortality? Comment on the reasonableness of each assumption in this context.
5 Understanding Simple Linear Regression

This question is about how parameter estimates change as the data changes, but the underlying model is fixed. Throughout, assume that \(Y = \beta_0 + \beta_1 X + \varepsilon \), where \(\varepsilon \sim N(0, \sigma^2) \). The parameters \(\beta_0, \beta_1 \), and \(\sigma^2 \) are fixed but our estimates of them change as the data changes. We start with an i.i.d. sample of \(n = 30 \) points and obtain the following summary:

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|-----------|------------|---------|----------|
| (Intercept)| 1.81 | 0.57 | 3.2 | 0.004 ** |
| X | 2.59 | 0.39 | 6.6 | 4e-07 *** |

Residual standard error: 0.91 on 28 degrees of freedom
Multiple R-squared: 0.61, Adjusted R-squared: 0.6
F-statistic: 44 on 1 and 28 DF, p-value: 3.6e-07

The 30 data points (grey circles) and the least squares fit (black line) are plotted below. **One at a time** we add a new data point at one of the four spots labeled (a), (b), (c), and (d). X marks the spot! E.g., point (a) is at \((\bar{X}, \bar{Y})\).

![Plot of data points and regression line]

Using the plot and the summary above, indicate the effect of adding the new data point on each parameter estimate by circling exactly one of \{up / dn / same / ?\} in each cell of the table below. Circle “up” if the estimate will be higher with the new point, “dn” if it will be lower, “same” for unchanged, and “?” if the effect is uncertain given the information.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_0)</td>
<td>up / dn / same / ?</td>
</tr>
<tr>
<td>(se(b_0))</td>
<td>up / dn / same / ?</td>
</tr>
<tr>
<td>(b_1)</td>
<td>up / dn / same / ?</td>
</tr>
<tr>
<td>(se(b_1))</td>
<td>up / dn / same / ?</td>
</tr>
</tbody>
</table>
Justify/explain your answers for point (c):

\[b_0 : \]

\[\text{se}(b_0) : \]

\[b_1 : \]

\[\text{se}(b_1) : \]

Consider your answers for points (a) and (d). For each parameter estimate:
• If you marked different answers, explain why.
 \[\text{[e.g. the slope estimate goes up in (a) but down in (d) because]} \]
• If you marked identical answers, explain why. In addition, if you marked “up” or “dn”,
 explain which change would be larger, or that the changes would be the same, and why.
 \[\text{[e.g. se(b_0) stays the same in both because]} \]
 \[\text{[e.g. se(b_0) goes up in both, but increases by more in (a) because]} \]

\[b_0 : \]

\[\text{se}(b_0) : \]

\[b_1 : \]

\[\text{se}(b_1) : \]