Accounting Information, Renegotiation, and Debt Contracts

Pingyang Gao Pierre Liang
Chicago Booth CMU Tepper

Minnesota

September 21, 2018
The incomplete contracting approach

- Contractual incompleteness is the distance between the state and its measurement.
The incomplete contracting approach

- contractual incompleteness is the distance between the state and its measurement
- indirect solutions: institutional design
The incomplete contracting approach

- contractual incompleteness is the distance between the state and its measurement
- indirect solutions: institutional design
- direct solutions: better accounting measurement
Marry two literatures in debt contracts
Marry two literatures in debt contracts

- endogenous accounting measurement in debt contracting
Marry two literatures in debt contracts

- endogenous accounting measurement in debt contracting
 - joint determination hypothesis
Marry two literatures in debt contracts

- endogenous accounting measurement in debt contracting
 - joint determination hypothesis
 - managerial opportunism in accounting choices
Marry two literatures in debt contracts

- endogenous accounting measurement in debt contracting
 - joint determination hypothesis
 - managerial opportunism in accounting choices
 - ex-ante contractual distortion
Marry two literatures in debt contracts

- endogenous accounting measurement in debt contracting
 - joint determination hypothesis
 - managerial opportunism in accounting choices
 - ex-ante contractual distortion

- we marry two literatures: endogenous measurement in an incomplete debt-contracting model
Three empirical patterns in debt contracts
Three empirical patterns in debt contracts

- ex-ante accounting-based covenants
Three empirical patterns in debt contracts

- ex-ante accounting-based covenants
- ex-post accounting manipulation
Three empirical patterns in debt contracts

- ex-ante accounting-based covenants
- ex-post accounting manipulation
- ex-post renegotiation
Three empirical patterns in debt contracts

- ex-ante accounting-based covenants
- ex-post accounting manipulation
- ex-post renegotiation
- joint determination
Main result 1: endogenous measurement
Main result 1: endogenous measurement

Manipulation is decreasing in renegotiation cost
Main result 1: endogenous measurement

Manipulation is decreasing in renegotiation cost

| Exogenous measurement | Firm value is decreasing in renegotiation cost |
Main result 1: endogenous measurement

Manipulation is decreasing in renegotiation cost

<table>
<thead>
<tr>
<th></th>
<th>Firm value is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous measurement</td>
<td>decreasing in renegotiation cost</td>
</tr>
<tr>
<td>Endogenous measurement</td>
<td>increasing</td>
</tr>
<tr>
<td></td>
<td>if and only if c > (\hat{c}) and (\kappa > \hat{\kappa})</td>
</tr>
</tbody>
</table>
Main result 2: endogenous contractual design
Main result 2: endogenous contractual design

Contractual reliance on measurement is increasing in accounting quality
Main result 2: endogenous contractual design

Contractual reliance on measurement is increasing in accounting quality

| Exogenous contractual design | manipulation is decreasing in accounting quality |
Main result 2: endogenous contractual design

Contractual reliance on measurement is increasing in accounting quality

<table>
<thead>
<tr>
<th></th>
<th>manipulation is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous contractual design</td>
<td>decreasing in accounting quality</td>
</tr>
<tr>
<td>Endogenous contractual design</td>
<td>decreasing if and only if $c > \tilde{c}$</td>
</tr>
</tbody>
</table>
The model
Aghion and Bolton 1992 + accounting manipulation
at date 0, the owner-manager chooses a financial contract to raise capital for a project
Aghion and Bolton 1992

- at date 0, the owner-manager chooses a financial contract to raise capital for a project
 - cash flow rights \((R, r)\)
Aghion and Bolton 1992

- at date 0, the owner-manager chooses a financial contract to raise capital for a project
 - cash flow rights \((R, r)\)
 - non-plegible private benefit \(X\)

- at date 1, non-contractible state \(\theta\) is observed
- initial control rights are assigned
- costly renegotiation \((\lambda)\), if any, takes place
- action is taken at date 2, cash flows are allocated.
Aghion and Bolton 1992

- at date 0, the owner-manager chooses a financial contract to raise capital for a project
 - cash flow rights \((R, r)\)
 - non-plegible private benefit \(X\)
 - control rights \((\sigma_g, \delta \equiv \sigma_g - \sigma_b)\)
Aghion and Bolton 1992

- at date 0, the owner-manager chooses a financial contract to raise capital for a project
 - cash flow rights \((R, r)\)
 - non-plegible private benefit \(X\)
 - control rights \((\sigma_g, \delta \equiv \sigma_g - \sigma_b)\)

- at date 1
Aghion and Bolton 1992

- at date 0, the owner-manager chooses a financial contract to raise capital for a project
 - cash flow rights \((R, r)\)
 - non-plegible private benefit \(X\)
 - control rights \((\sigma_g, \delta \equiv \sigma_g - \sigma_b)\)

- at date 1
 - non-contractible state \(\theta\) is observed
at date 0, the owner-manager chooses a financial contract to raise capital for a project

- cash flow rights \((R, r)\)
- non-plegible private benefit \(X\)
- control rights \((\sigma_g, \delta \equiv \sigma_g - \sigma_b)\)

at date 1

- non-contractible state \(\theta\) is observed
- initial control rights are assigned
Aghion and Bolton 1992

- at date 0, the owner-manager chooses a financial contract to raise capital for a project
 - cash flow rights \((R, r)\)
 - non-plegible private benefit \(\mathbb{X}\)
 - control rights \((\sigma_g, \delta \equiv \sigma_g - \sigma_b)\)

- at date 1
 - non-contractible state \(\theta\) is observed
 - initial control rights are assigned
 - costly renegotiation \((\lambda)\), if any, takes place
Aghion and Bolton 1992

- at date 0, the owner-manager chooses a financial contract to raise capital for a project
 - cash flow rights \((R, r)\)
 - non-plegible private benefit \(X\)
 - control rights \((\sigma_g, \delta \equiv \sigma_g - \sigma_b)\)

- at date 1
 - non-contractible state \(\theta\) is observed
 - initial control rights are assigned
 - costly renegotiation \((\lambda)\), if any, takes place
 - action is taken
at date 0, the owner-manager chooses a financial contract to raise capital for a project
 - cash flow rights \((R, r)\)
 - non-plegible private benefit \(X\)
 - control rights \((\sigma_g, \delta \equiv \sigma_g - \sigma_b)\)

at date 1
 - non-contractible state \(\theta\) is observed
 - initial control rights are assigned
 - costly renegotiation \((\lambda)\), if any, takes place
 - action is taken

at date 2, cash flows are allocated.
The project continues converts cash flows to private benefit. The continuation is optimal in and only in the good state.
The project

- continuation converts cash flows to private benefit
continuation converts cash flows to private benefit
continuation is optimal in and only in the good state
Pecking-order of financial contracts in AB

Cash flow rights and control rights are substitutes.
Pecking-order of financial contracts in AB

Cash flow rights and control rights are substitutes.
Pecking-order of financial contracts in AB

Cash flow rights and control rights are substitutes.
Pecking-order of financial contracts in AB

Cash flow rights and control rights are substitutes.
Pecking-order of financial contracts in AB

Cash flow rights and control rights are substitutes.
Pecking-order of financial contracts in AB

Cash flow rights and control rights are substitutes.
Pecking-order of financial contracts in AB

Cash flow rights and control rights are substitutes.
Pecking-order of financial contracts in AB

Cash flow rights and control rights are substitutes.

We focus on the region in which contingent debt is optimal.

- face value d
- measurement-based covenants σ_s
Departure: endogenous measurement

- the manager can choose manipulation m to improve the report s

$$\Pr(s = g | s' = g, m) = 1 \quad \text{and} \quad \Pr(s = g | s' = b, m) = m.$$
Departure: endogenous measurement

- the manager can choose manipulation m to improve the report s

\[\Pr(s = g|s' = g, m) = 1 \quad \text{and} \quad \Pr(s = g|s' = b, m) = m. \]

- in AB, m is exogenous
Departure: endogenous measurement

- the manager can choose manipulation m to improve the report s
 \[
 \Pr(s = g | s' = g, m) = 1 \quad \text{and} \quad \Pr(s = g | s' = b, m) = m.
 \]

- in AB, m is exogenous

- the misallocation of control rights
 \[
 \Gamma(m) \equiv m\sigma_g + (1 - m)\sigma_b
 \]
The equilibrium definition $\langle \delta^*, \sigma^*_g, d^*, m^*, a^* \rangle$

1. On date 2, the action a^* is chosen to maximize the joint surplus with possible renegotiation;
The equilibrium definition $\langle \delta^*, \sigma^*_g, d^*, m^*, a^* \rangle$

1. On date 2, the action a^* is chosen to maximize the joint surplus with possible renegotiation;

2. On date 1, the manager chooses manipulation m^* to maximize his expected payoff, condition on his private signal $\langle s' \rangle$ and state θ;
The equilibrium definition $\langle \delta^*, \sigma_g^*, d^*, m^*, a^* \rangle$

1. On date 2, the action a^* is chosen to maximize the joint surplus with possible renegotiation;

2. On date 1, the manager chooses manipulation m^* to maximize his expected payoff, condition on his private signal $\langle s' \rangle$ and state θ;

3. On date 0, the manager designs debt contract $\langle \delta^*, \sigma_g^*, d^* \rangle$ to maximize his expected payoff at date 0, subject to the lender’s participation constraint.
The solution
Renegotiation and action

- renegotiation always takes place when misallocation of control rights occurs
Renegotiation and action

- renegotiation always takes place when misallocation of control rights occurs
- the first-best continuation policy is implemented at a cost
Renegotiation and action

- renegotiation always takes place when misallocation of control rights occurs
- the first-best continuation policy is implemented at a cost
- the private value of control rights to the manager:

\[\pi \equiv X + \kappa (1 - \lambda) L_B \]
Renegotiation and action

- renegotiation always takes place when misallocation of control rights occurs
- the first-best continuation policy is implemented at a cost
- the private value of control rights to the manager:

\[\pi \equiv X + \kappa (1 - \lambda) L_B \]

- ↓ in renegotiation cost \(\lambda \)
Renegotiation and action

- renegotiation always takes place when misallocation of control rights occurs
- the first-best continuation policy is implemented at a cost
- the private value of control rights to the manager:

\[\pi \equiv X + \kappa (1 - \lambda) L_B \]

- ↓ in renegotiation cost \(\lambda \)
- ↑ in bargaining power \(\kappa \)
Renegotiation and action

- renegotiation always takes place when misallocation of control rights occurs
- the first-best continuation policy is implemented at a cost
- the private value of control rights to the manager:

\[\pi \equiv X + \kappa (1 - \lambda) L_B \]

- ↓ in renegotiation cost \(\lambda \)
- ↑ in bargaining power \(\kappa \)
- ↑ in \(L_B = (1 - \gamma_B) r - X \)
Ex-post manipulation

- the first-order condition for manipulation

\[m^{BR}(\delta) = \frac{\pi \delta}{c} \]
Ex-post manipulation

- the first-order condition for manipulation

\[m^{BR}(\delta) = \frac{\pi \delta}{c} \]

- Lemma 3: determinants of manipulation for given contracts

<table>
<thead>
<tr>
<th></th>
<th>(\frac{dm^*}{dc})</th>
<th>(\frac{dm^*}{d\lambda})</th>
<th>(\frac{dm^*}{d\kappa})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous (\delta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c > \bar{c}))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c \leq \bar{c}))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The lender’s ex-ante price protection

- the lender’s ex-ante participation constraint

\[K = \gamma d^{BR} + p (1 - \gamma_B) r - p \Gamma \gamma_B \Delta d_B + (1 - p) (1 - \sigma_g) \gamma_G \Delta d_G \]
The lender’s ex-ante price protection

- the lender’s ex-ante participation constraint

\[K = \gamma d^{BR} + p (1 - \gamma_B) r - p \Gamma \gamma_B \Delta d_B + (1 - p) (1 - \sigma_g) \gamma_G \Delta d_G \]

- base cash flow \(\gamma d^{BR} + p (1 - \gamma_B) r \)
The lender’s ex-ante price protection

- the lender’s ex-ante participation constraint
 \[K = \gamma d^{BR} + p (1 - \gamma_B) r - p\Gamma\gamma_B \Delta d_B + (1 - p) (1 - \sigma_g)\gamma_G \Delta d_G \]
- base cash flow \(\gamma d^{BR} + p (1 - \gamma_B) r \)
- renegotiation in the bad state \(-p\Gamma\gamma_B \Delta d_B\)
The lender’s ex-ante price protection

- the lender’s ex-ante participation constraint
 \[K = \gamma d^{BR} + p (1 - \gamma_B) r - p \Gamma \gamma_B \Delta d_B + (1 - p) (1 - \sigma_g) \gamma_G \Delta d_G \]

- base cash flow \(\gamma d^{BR} + p (1 - \gamma_B) r \)

- renegotiation in the bad state \(-p \Gamma \gamma_B \Delta d_B\)

- renegotiation in the good state \((1 - p) (1 - \sigma_g) \gamma_G \Delta d_G\)
The ex-ante contractual design

The problem

\[
\max_{(\sigma_g, \delta)} V(\sigma_g, \delta) \equiv V^{FB} - (1 - p)(1 - \sigma_g)\lambda L_G - p\Gamma \lambda L_B - \frac{c}{2}m^2
\]

s.t. \quad m = \min\{1, \frac{\pi \delta}{c}\}

\quad 0 \leq \delta \leq \sigma_g \leq 1
The ex-ante contractual design

- the problem

$$\max_{(\sigma_g, \delta)} V(\sigma_g, \delta) \equiv V^{FB} - (1 - p)(1 - \sigma_g)\lambda \lambda_G - p\Gamma \lambda \Lambda_B - \frac{c}{2} \lambda^2$$

s.t.
$$m = \min\{1, \frac{\pi \delta}{c}\}$$

$$0 \leq \delta \leq \sigma_g \leq 1$$

- the central trade-off for using measurement:

$$\frac{dV}{d\delta} \bigg/ p = \frac{\partial \Gamma}{\partial \delta} \lambda \Lambda_B$$

improve allocation
The ex-ante contractual design

- the problem

$$\max_{(\sigma_g, \delta)} V(\sigma_g, \delta) \equiv V^{FB} - (1 - p) (1 - \sigma_g) \lambda L_G - p \Gamma \lambda L_B - p \frac{c}{2} m^2$$

s.t. \(m = \min\{1, \frac{\pi \delta}{c}\} \)

\(0 \leq \delta \leq \sigma_g \leq 1 \)

- the central trade-off for using measurement:

$$\frac{dV}{d\delta} / p = \frac{\partial \Gamma}{\partial \delta} \lambda L_B$$

improve allocation
The ex-ante contractual design

- the problem

\[
\max_{(\sigma_g, \delta)} V(\sigma_g, \delta) \equiv V^{FB} - (1 - p)(1 - \sigma_g)\lambda L_G - p\Gamma\lambda L_B - p\frac{c}{2}m^2
\]

s.t. \[m = \min\{1, \frac{\pi\delta}{c}\} \]

\[0 \leq \delta \leq \sigma_g \leq 1 \]

- the central trade-off for using measurement:

\[
\frac{dV}{d\delta} / p = \underbrace{\frac{\partial\Gamma}{\partial \delta} \lambda L_B}_{\text{improve allocation}} - \left(\frac{\partial\Gamma}{\partial m} \lambda L_B + cm \right) \frac{\partial m^{BR}(\delta)}{\partial \delta} \underbrace{\text{induce manipulation}}_{\text{improve allocation}}
\]
The ex-ante contractual design

- the problem

\[
\max_{(\sigma_g, \delta)} V(\sigma_g, \delta) \equiv V^{FB} - (1 - p)(1 - \sigma_g)\lambda L_G - p\Gamma\lambda L_B - p\frac{c}{2}m^2
\]

\[
s.t. \quad m = \min\left\{1, \frac{\pi \delta}{c}\right\} \quad 0 \leq \delta \leq \sigma_g \leq 1
\]

- the central trade-off for using measurement:

\[
\frac{dV}{d\delta}/p = \left[\frac{\partial \Gamma}{\partial \delta} \lambda L_B \right] \quad \text{improve allocation} \quad - \left(\frac{\partial \Gamma}{\partial m} L_B + cm\right) \frac{\partial m^{BR}(\delta)}{\partial \delta} \quad \text{induce manipulation}
\]

- Proposition 1:

\[
\delta^* = \min\left\{\frac{c}{C}, 1\right\}, \sigma_g^* = 1
\]
The comparative statics
The firm value

\[V(\sigma_g^*, \delta^*) = V^{FB} - p\Gamma^* \lambda L_B - p\frac{c}{2} (m^*)^2 \]
The firm value

\[V(\sigma_g^*, \delta^*) = V^{FB} - p\Gamma^* \lambda L_B - p\frac{c}{2} (m^*)^2 \]

<table>
<thead>
<tr>
<th>Exogenous measurement</th>
<th>(\frac{dV^*}{d\lambda})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
The firm value

\[V(\sigma_g^*, \delta^*) = V^{FB} - p \Gamma^* \lambda L_B - p \frac{c}{2} (m^*)^2 \]

<table>
<thead>
<tr>
<th></th>
<th>(\frac{dV^*}{d\lambda})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous measurement</td>
<td>-</td>
</tr>
<tr>
<td>Endogenous measurement</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>if and only if (c > \hat{c}) and (\kappa > \hat{\kappa})</td>
</tr>
</tbody>
</table>
The firm value

\[V(\sigma^*_g, \delta^*) = V^{FB} - p\Gamma^* \lambda L_B - p\frac{c}{2} (m^*)^2 \]

<table>
<thead>
<tr>
<th></th>
<th>(\frac{dV^*}{d\lambda})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous measurement</td>
<td>-</td>
</tr>
<tr>
<td>Endogenous measurement</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>if and only if (c > \hat{c}) and (\kappa > \hat{\kappa})</td>
</tr>
</tbody>
</table>

▶ a lower \(\lambda \) reduces renegotiation cost
The firm value

\[V(\sigma_g^*, \delta^*) = V^{FB} - p \Gamma^* \lambda L_B - p \frac{c}{2} (m^*)^2 \]

<table>
<thead>
<tr>
<th></th>
<th>[\frac{dV^*}{d\lambda}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous measurement</td>
<td>-</td>
</tr>
<tr>
<td>Endogenous measurement</td>
<td>+ if and only if (c > \hat{c}) and (\kappa > \hat{\kappa})</td>
</tr>
</tbody>
</table>

- a lower \(\lambda \) reduces renegotiation cost
- a lower \(\lambda \) also increases manipulation, which lowers firm value
The firm value

\[V(\sigma^*, \delta^*) = V^{FB} - p\Gamma^* \lambda L_B - p \frac{c}{2} (m^*)^2 \]

<table>
<thead>
<tr>
<th></th>
<th>(\frac{dV^*}{d\lambda})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous measurement</td>
<td>(-)</td>
</tr>
<tr>
<td>Endogenous measurement</td>
<td>(+) if and only if (c > \hat{c}) and (\kappa > \hat{\kappa})</td>
</tr>
</tbody>
</table>

- a lower \(\lambda \) reduces renegotiation cost
- a lower \(\lambda \) also increases manipulation, which lowers firm value
- the former is decreasing in \(c \), while the latter increasing in \(\kappa \)
The firm value

\[V(\sigma^*_g, \delta^*) = V^{FB} - p\Gamma^* \lambda L_B - p \frac{c}{2} (m^*)^2 \]

<table>
<thead>
<tr>
<th></th>
<th>(\frac{dV^*}{d\lambda})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous measurement</td>
<td>-</td>
</tr>
<tr>
<td>Endogenous measurement</td>
<td>+ if and only if
(c > \hat{c}) and (\kappa > \hat{\kappa})</td>
</tr>
</tbody>
</table>

- a lower \(\lambda \) reduces renegotiation cost
- a lower \(\lambda \) also increases manipulation, which lowers firm value
- the former is decreasing in \(c \), while the latter increasing in \(\kappa \)
- \(V^* \) is increasing in \(c \) and decreasing in \(\kappa \)
The equilibrium use of accounting measurement

\[\delta^* = \min \left\{ \frac{c}{\bar{c}}, 1 \right\} = \min \left\{ \frac{c\lambda L_B}{\pi(\pi + 2\lambda L_B)}, 1 \right\} \]
The equilibrium use of accounting measurement

\[\delta^* = \min\left\{ \frac{c}{\bar{c}}, 1 \right\} = \min\left\{ \frac{c\lambda L_B}{\pi(\pi + 2\lambda L_B)}, 1 \right\} \]

- \(\delta^* > 0 \) for any \(c > 0 \).
The equilibrium use of accounting measurement

\[\delta^* = \min\left\{ \frac{c}{\bar{c}}, 1 \right\} = \min\left\{ \frac{c\lambda L_B}{\pi(\pi + 2\lambda L_B)}, 1 \right\} \]

- \(\delta^* > 0 \) for any \(c > 0 \).
- induced by \(\delta \), manipulation is secondary
The equilibrium use of accounting measurement

\[\delta^* = \min\left\{ \frac{c}{\bar{c}}, 1 \right\} = \min\left\{ \frac{c\lambda L_B}{\pi (\pi + 2\lambda L_B)}, 1 \right\} \]

- \(\delta^* > 0 \) for any \(c > 0 \).
- induced by \(\delta \), manipulation is secondary
- for interior \(\delta \), \(\frac{d\delta^*}{dc} > 0 \), \(\frac{d\delta^*}{d\lambda} > 0 \), \(\frac{d\delta^*}{d\kappa} < 0 \)
The equilibrium manipulation

\[m^* = \min \left\{ \frac{\pi}{\bar{c}}, \frac{\pi}{c} \right\} = \min \left\{ \frac{\pi \lambda L_B}{\pi(\pi + 2\lambda L_B)}, \frac{\pi}{c} \right\} \]
The equilibrium manipulation

\[m^* = \min\left\{ \frac{\pi}{\bar{c}}, \frac{\pi}{c} \right\} = \min\left\{ \frac{\pi \lambda L_B}{\pi (\pi + 2\lambda L_B)}, \frac{\pi}{c} \right\} \]

- \(m^* \) has an upper bound of \(\frac{\pi}{\bar{c}} \)
The equilibrium manipulation

\[m^* = \min \left\{ \frac{\pi}{\bar{c}}, \frac{\pi}{c} \right\} = \min \left\{ \frac{\pi \lambda L_B}{\pi (\pi + 2\lambda L_B)}, \frac{\pi}{c} \right\} \]

- \(m^* \) has an upper bound of \(\frac{\pi}{\bar{c}} \)
The equilibrium manipulation

\[m^* = \min\left\{ \frac{\pi}{\bar{c}}, \frac{\pi}{c} \right\} = \min\left\{ \frac{\pi \lambda L_B}{\pi (\pi + 2\lambda L_B)}, \frac{\pi}{c} \right\} \]

- \(m^* \) has an upper bound of \(\frac{\pi}{\bar{c}} \)

<table>
<thead>
<tr>
<th>Exogenous (\delta)</th>
<th>(\frac{dm^*}{dc})</th>
<th>(\frac{dm^*}{d\lambda})</th>
<th>(\frac{dm^*}{d\kappa})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
The equilibrium manipulation

\[m^* = \min\left\{ \frac{\pi}{\bar{c}}, \frac{\pi}{c} \right\} = \min\left\{ \frac{\pi \lambda L_B}{\pi (\pi + 2\lambda L_B)}, \frac{\pi}{c} \right\} \]

- \(m^* \) has an upper bound of \(\frac{\pi}{\bar{c}} \)

<table>
<thead>
<tr>
<th></th>
<th>(\frac{dm^*}{dc})</th>
<th>(\frac{dm^*}{d\lambda})</th>
<th>(\frac{dm^*}{d\kappa})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous (\delta)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c > \bar{c}))</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
The equilibrium manipulation

\[m^* = \min \left\{ \frac{\pi}{\bar{c}}, \frac{\pi}{c} \right\} = \min \left\{ \frac{\pi \lambda L_B}{\pi (\pi + 2\lambda L_B)}, \frac{\pi}{c} \right\} \]

- \(m^* \) has an upper bound of \(\frac{\pi}{\bar{c}} \)

<table>
<thead>
<tr>
<th>(\frac{dm^*}{dc})</th>
<th>(\frac{dm^*}{d\lambda})</th>
<th>(\frac{dm^*}{d\kappa})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous (\delta)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c > \bar{c}))</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c \leq \bar{c}))</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>
The equilibrium manipulation

\[m^* = \min\left\{ \frac{\pi}{\bar{c}}, \frac{\pi}{c} \right\} = \min\left\{ \frac{\pi \lambda L_B}{\pi (\pi + 2 \lambda L_B)}, \frac{\pi}{c} \right\} \]

- \(m^* \) has an upper bound of \(\frac{\pi}{\bar{c}} \)

<table>
<thead>
<tr>
<th></th>
<th>(\frac{dm^*}{dc})</th>
<th>(\frac{dm^*}{d\lambda})</th>
<th>(\frac{dm^*}{d\kappa})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous (\delta)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c > \bar{c}))</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c \leq \bar{c}))</td>
<td>0</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

- the direct effect with exogenous measurement
The equilibrium manipulation

\[m^* = \min \left\{ \frac{\pi}{\bar{c}}, \frac{\pi}{c} \right\} = \min \left\{ \frac{\pi \lambda L_B}{\pi(\pi + 2\lambda L_B)}, \frac{\pi}{c} \right\} \]

- \(m^* \) has an upper bound of \(\frac{\pi}{\bar{c}} \)

<table>
<thead>
<tr>
<th></th>
<th>(\frac{dm^*}{dc})</th>
<th>(\frac{dm^*}{d\lambda})</th>
<th>(\frac{dm^*}{d\kappa})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous (\delta)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c > \bar{c}))</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c \leq \bar{c}))</td>
<td>0</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

- the direct effect with exogenous measurement
- the indirect effect: the reliance on accounting measurement is reduced to counter manipulation
The equilibrium manipulation

\[m^* = \min \left\{ \frac{\pi}{\bar{c}}, \frac{\pi}{c} \right\} = \min \left\{ \frac{\pi \lambda L_B}{\pi (\pi + 2\lambda L_B)}, \frac{\pi}{c} \right\} \]

- \(m^* \) has an upper bound of \(\frac{\pi}{\bar{c}} \)

<table>
<thead>
<tr>
<th>(\text{Exogenous } \delta)</th>
<th>(\frac{dm^*}{dc})</th>
<th>(\frac{dm^*}{d\lambda})</th>
<th>(\frac{dm^*}{d\kappa})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous (\delta)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c > \bar{c}))</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Endogenous (\delta^*) ((c \leq \bar{c}))</td>
<td>0</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

- the direct effect with exogenous measurement
- the indirect effect: the reliance on accounting measurement is reduced to counter manipulation
- the indirect effect dominates the direct effect: manipulation is induced by the reliance on measurement
The equilibrium manipulation

\[m^* = \min\left\{ \frac{\pi}{\bar{c}}, \frac{\pi}{c} \right\} = \min\left\{ \frac{\pi \lambda L_B}{\pi (\pi + 2\lambda L_B)}, \frac{\pi}{c} \right\} \]

- \(m^* \) has an upper bound of \(\frac{\pi}{\bar{c}} \)

<table>
<thead>
<tr>
<th>(\frac{dm^*}{dc})</th>
<th>(\frac{dm^*}{d\lambda})</th>
<th>(\frac{dm^*}{d\kappa})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous (\delta)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Endogenous (\delta^* (c > \bar{c}))</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Endogenous (\delta^* (c \leq \bar{c}))</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>

- the direct effect with exogenous measurement
- the indirect effect: the reliance on accounting measurement is reduced to counter manipulation
- the indirect effect dominates the direct effect: manipulation is induced by the reliance on measurement
- the joint determination hypothesis
The equilibrium misallocation of control rights (renegotiation frequency)

\[\Gamma^* = 1 - (1 - m^*) \delta^* \]
The equilibrium misallocation of control rights (renegotiation frequency)

\[\Gamma^* = 1 - (1 - m^*) \delta^* \]

- decreasing in accounting quality \(c \)
The equilibrium misallocation of control rights
(renegotiation frequency)

\[\Gamma^* = 1 - (1 - m^*) \delta^* \]

- decreasing in accounting quality \(c \)
- decreasing in renegotiation cost \(\lambda \)
The equilibrium misallocation of control rights (renegotiation frequency)

\[\Gamma^* = 1 - (1 - m^*) \delta^* \]

- decreasing in accounting quality \(c \)
- decreasing in renegotiation cost \(\lambda \)
- increasing in managerial bargaining power \(\kappa \)
The equilibrium interest rate

\[
\frac{d^*}{K} = \frac{K - p(1 - \gamma_B) r}{\gamma K} + \frac{p \Gamma^* \gamma_B (\pi + \lambda L_B)}{\gamma K}
\]
The equilibrium interest rate

\[
\frac{d^*}{K} = \frac{K - p(1 - \gamma_B) r}{\gamma K} + \frac{p\Gamma^* \gamma_B (\pi + \lambda L_B)}{\gamma K}
\]

- decreasing in accounting quality \(c \)
The equilibrium interest rate

\[
\frac{d^*}{K} = \frac{K - p (1 - \gamma_B) r}{\gamma K} + \frac{p \Gamma \gamma_B (\pi + \lambda L_B)}{\gamma K}
\]

- decreasing in accounting quality \(c\)
- ambiguous in renegotiation cost \(\lambda\)
The equilibrium interest rate

\[
\frac{d^*}{K} = \frac{K - p(1 - \gamma_B) r}{\gamma K} + \frac{p\Gamma^* \gamma_B (\pi + \lambda L_B)}{\gamma K}
\]

- decreasing in accounting quality \(c \)
- ambiguous in renegotiation cost \(\lambda \)
- increasing in managerial bargaining power \(\kappa \)
The joint determination hypothesis
The joint determination hypothesis

<table>
<thead>
<tr>
<th></th>
<th>(V^*)</th>
<th>(\delta^*)</th>
<th>(m^*)</th>
<th>(\Gamma^*)</th>
<th>(d^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>+</td>
<td>+</td>
<td>(-/0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>-</td>
<td>-</td>
<td>(+/-)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>(+/-)</td>
<td>+</td>
<td>(+/-)</td>
<td>-</td>
<td>\textit{Ambiguous}</td>
</tr>
</tbody>
</table>
The joint determination hypothesis

<table>
<thead>
<tr>
<th></th>
<th>V^*</th>
<th>δ^*</th>
<th>m^*</th>
<th>Γ^*</th>
<th>d^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>$+$</td>
<td>$+$</td>
<td>$-/0$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>κ</td>
<td>$-$</td>
<td>$-$</td>
<td>$+/-$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>λ</td>
<td>$+/-$</td>
<td>$+$</td>
<td>$+/-$</td>
<td>$-$</td>
<td>$Ambiguous$</td>
</tr>
</tbody>
</table>

- c: manipulation cost, accounting quality, corporate governance strength, or regulatory enforcement quality
The joint determination hypothesis

<table>
<thead>
<tr>
<th></th>
<th>V^*</th>
<th>δ^*</th>
<th>m^*</th>
<th>Γ^*</th>
<th>d^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>$+$</td>
<td>$+$</td>
<td>$-/+0$</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>κ</td>
<td>$-$</td>
<td>$-$</td>
<td>$+/-+$</td>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>λ</td>
<td>$+/--$</td>
<td>$+$</td>
<td>$+/-$</td>
<td>$-$</td>
<td>Ambiguous</td>
</tr>
</tbody>
</table>

- c : manipulation cost, accounting quality, corporate governance strength, or regulatory enforcement quality
- κ : managerial bargaining power, legal or political institutions favoring management (and/or against lenders), or weaker investor protection
The joint determination hypothesis

<table>
<thead>
<tr>
<th></th>
<th>V^*</th>
<th>δ^*</th>
<th>m^*</th>
<th>Γ^*</th>
<th>d^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>+</td>
<td>+</td>
<td>−/0</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>κ</td>
<td>−</td>
<td>−</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>λ</td>
<td>+/-</td>
<td>+</td>
<td>+/-</td>
<td>−</td>
<td>Ambiguous</td>
</tr>
</tbody>
</table>

- c: manipulation cost, accounting quality, corporate governance strength, or regulatory enforcement quality
- κ: managerial bargaining power, legal or political institutions favoring management (and/or against lenders), or weaker investor protection
- λ: renegotiation cost parameter λ, barriers to renegotiation, public vs. private
The joint determination hypothesis

<table>
<thead>
<tr>
<th></th>
<th>V^*</th>
<th>δ^*</th>
<th>m^*</th>
<th>Γ^*</th>
<th>d^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>+</td>
<td>+</td>
<td>$-\slash 0$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>κ</td>
<td>-</td>
<td>-</td>
<td>$+\slash -$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>λ</td>
<td>$+\slash -$</td>
<td>+</td>
<td>$+\slash -$</td>
<td>-</td>
<td>Ambiguous</td>
</tr>
</tbody>
</table>

- c: manipulation cost, accounting quality, corporate governance strength, or regulatory enforcement quality
- κ: managerial bargaining power, legal or political institutions favoring management (and/or against lenders), or weaker investor protection
- λ: renegotiation cost parameter λ, barriers to renegotiation, public vs. private
- the interaction effects
Take-away

- two solutions to contractual incompleteness
 - directly measuring the state, endogenizing contractual incompleteness
 - indirectly designing institutions as a response

- renegotiation and accounting-based covenants interact as substitutes to deal with incompleteness

- contractual use of measurement and manipulation are jointly determined

- the joint determination changes empirical predictions about manipulation and interest rate
Thank you!