Expertise Development, Network Effects, and Global Accounting Standards

Pingyang Gao*, Xu Jiang†, Gaoqing Zhang§

*University of Chicago
†Duke University
§University of Minnesota

2018 Columbia Workshop
March 23, 2018
Motivation: global accounting standard adoptions

- over 100 countries have switched to IFRS
Motivation: global accounting standard adoptions

- over 100 countries have switched to IFRS
- debate on economic consequences of IFRS adoption
Motivation: global accounting standard adoptions

- over 100 countries have switched to IFRS
- debate on economic consequences of IFRS adoption
- advocates of IFRS promote it as a global language of business and its associated network effects
Motivation: global accounting standard adoptions

- over 100 countries have switched to IFRS
- debate on economic consequences of IFRS adoption
- advocates of IFRS promote it as a global language of business and its associated network effects
- IFRS differs from local accounting standards in how precise it is in representing firms’ financial conditions
Motivation: global accounting standard adoptions

- over 100 countries have switched to IFRS
- debate on economic consequences of IFRS adoption
- advocates of IFRS promote it as a global language of business and its associated network effects
- IFRS differs from local accounting standards in how precise it is in representing firms’ financial conditions
- we develop a model to explicate network effect and precision effect and examine the consequences of adopting global accounting standards for firm value and liquidity
Motivation (continued): empirical identification

- IFRS adoption often occurs with other institutional and market changes, e.g., enforcement
Motivation (continued): empirical identification

- IFRS adoption often occurs with other institutional and market changes, e.g., enforcement.

 ![Diagram](image)

 - explicating network/precision effects helps to identify IFRS adoption’s consequences different from other changes.

 ![Diagram](image)
Preview of main results

- two prerequisites for the network effects
Preview of main results

- two prerequisites for the network effects
 - investors need expertise in accounting standards to extract information from financial reports
Preview of main results

- two prerequisites for the network effects
 - investors need expertise in accounting standards to extract information from financial reports
 - it is costly to develop expertise
Preview of main results

- two prerequisites for the network effects
 - investors need expertise in accounting standards to extract information from financial reports
 - it is costly to develop expertise

- accounting standard precision and expertise development are complements: the benefit of expertise is increasing in precision
two prerequisites for the network effects

- investors need expertise in accounting standards to extract information from financial reports
- it is costly to develop expertise

accounting standard precision and expertise development are complements: the benefit of expertise is increasing in precision

adoption may affect the switcher's liquidity and firm value in different directions
Preview of main results

- two prerequisites for the network effects
 - investors need expertise in accounting standards to extract information from financial reports
 - it is costly to develop expertise

- accounting standard precision and expertise development are complements: the benefit of expertise is increasing in precision

- adoption may affect the switcher’s liquidity and firm value in different directions

- adoption generates positive externality on earlier adopters
Related literatures

- global financial reporting literature
- information acquisition literature
The model
Timeline

- two economies each with a representative firm, indexed as the early adopter E and the switcher S
Timeline

- two economies each with a representative firm, indexed as the early adopter E and the switcher S
 - firm E has been using the global accounting standard
Timeline

- two economies each with a representative firm, indexed as the early adopter E and the switcher S
 - firm E has been using the global accounting standard
 - firm S switching from local standard to global standard, $A \in \{0, 1\}$
Timeline

- two economies each with a representative firm, indexed as the early adopter E and the switcher S
 - firm E has been using the global accounting standard
 - firm S switching from local standard to global standard, $A \in \{0, 1\}$

- at date 0,
Timeline

- two economies each with a representative firm, indexed as the early adopter E and the switcher S
 - firm E has been using the global accounting standard
 - firm S switching from local standard to global standard, $A \in \{0, 1\}$
- at date 0,
 - each firm’s entrepreneur chooses unobservable investment K_j
Timeline

- two economies each with a representative firm, indexed as the early adopter E and the switcher S
 - firm E has been using the global accounting standard
 - firm S switching from local standard to global standard, $A \in \{0, 1\}$

- at date 0,
 - each firm’s entrepreneur chooses unobservable investment K_j
 - traders decide on developing expertise in accounting standards
Timeline

- two economies each with a representative firm, indexed as the early adopter E and the switcher S
 - firm E has been using the global accounting standard
 - firm S switching from local standard to global standard, $A \in \{0, 1\}$

- at date 0,
 - each firm’s entrepreneur chooses unobservable investment K_j
 - traders decide on developing expertise in accounting standards

- at date 1, firm j issues report under its accounting standard
Timeline

- two economies each with a representative firm, indexed as the early adopter \(E \) and the switcher \(S \)
 - firm \(E \) has been using the global accounting standard
 - firm \(S \) switching from local standard to global standard, \(A \in \{0, 1\} \)

- at date 0,
 - each firm’s entrepreneur chooses unobservable investment \(K_j \)
 - traders decide on developing expertise in accounting standards

- at date 1, firm \(j \) issues report under its accounting standard
- at date 2, stock market opens and the entrepreneur sells at \(p_j \)
Timeline

- two economies each with a representative firm, indexed as the early adopter E and the switcher S
 - firm E has been using the global accounting standard
 - firm S switching from local standard to global standard, $A \in \{0, 1\}$

- at date 0,
 - each firm’s entrepreneur chooses unobservable investment K_j
 - traders decide on developing expertise in accounting standards

- at date 1, firm j issues report under its accounting standard
- at date 2, stock market opens and the entrepreneur sells at p_j
- at date 3, firms pay out
The payoffs

- firm’s terminal cash flow

\[\nu_j = K_j + \theta_j \]
The payoffs

- firm’s terminal cash flow

\[v_j = K_j + \theta_j \]

- unobservable investment \(K_j \)
The payoffs

- firm’s terminal cash flow

\[\nu_j = K_j + \theta_j \]

- unobservable investment \(K_j \)

- fundamentals \(\theta_j \sim N \left(0, \sigma_{\theta}^2 \right) \) independent across firms
The payoffs

- firm’s terminal cash flow

\[\nu_j = K_j + \theta_j \]

- unobservable investment \(K_j \)

- fundamentals \(\theta_j \sim N(0, \sigma_{\theta}^2) \) independent across firms

- entrepreneur’s payoff (ex-ante firm value)

\[V_j = E_0[p_j] - \frac{\kappa}{2} K_j^2 \]
The expertise development

- trader decides on developing expertise in accounting standards
The expertise development

- trader decides on developing expertise in accounting standards
 - cost c to learn one standard and $2c$ to learn both standards
The expertise development

- trader decides on developing expertise in accounting standards
 - cost c to learn one standard and $2c$ to learn both standards
- expertise enables traders to receive a signal from reports

$$r_j = v_j + (1 + 1_{j=S}A) \epsilon_j$$
The expertise development

- trader decides on developing expertise in accounting standards
 - cost c to learn one standard and $2c$ to learn both standards
- expertise enables traders to receive a signal from reports
 \[r_j = v_j + (1 + 1_{j=S}A)\varepsilon_j \]
- $\varepsilon_j \sim N(0, \sigma^2_{\varepsilon})$ and independent everywhere

<table>
<thead>
<tr>
<th></th>
<th>pre-adoption ($A = 0$)</th>
<th>post-adoption ($A = 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>firm E</td>
<td>ε_E</td>
<td>ε_E</td>
</tr>
<tr>
<td>firm S</td>
<td>ε_S</td>
<td>$(1 + m)\varepsilon_S$</td>
</tr>
</tbody>
</table>
The expertise development

- trader decides on developing expertise in accounting standards
 - cost c to learn one standard and $2c$ to learn both standards
- expertise enables traders to receive a signal from reports
 \[r_j = \nu_j + (1 + 1_{j=S} A \epsilon) \epsilon_j \]
- $\epsilon_j \sim N(0, \sigma^2_\epsilon)$ and independent everywhere

<table>
<thead>
<tr>
<th></th>
<th>pre-adoption ($A = 0$)</th>
<th>post-adoption ($A = 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>firm E</td>
<td>ϵ_E</td>
<td>ϵ_E</td>
</tr>
<tr>
<td>firm S</td>
<td>ϵ_S</td>
<td>$(1 + m) \epsilon_S$</td>
</tr>
</tbody>
</table>

- $m \geq -1$: global standard can be more or less precise than local standard
The stock market

- three types of traders
The stock market

- three types of traders
 - N_j expert traders in firm j’s standard choose demand d_j
The stock market

- three types of traders
 - N_j expert traders in firm j’s standard choose demand d_j
 - non-expert traders don’t trade
The stock market

- three types of traders
 - \(N_j \) expert traders in firm \(j \)'s standard choose demand \(d_j \)
 - non-expert traders don't trade
 - liquidity traders \(\xi_j \sim N(0, \sigma_{\xi_j}^2) \) with the relative size of economy \(\chi = \frac{\sigma_{\xi_E}}{\sigma_{\xi_S}} \)
The stock market

- three types of traders
 - N_j expert traders in firm j’s standard choose demand d_j
 - non-expert traders don’t trade
 - liquidity traders $\xi_j \sim N(0, \sigma_{\xi_j}^2)$ with the relative size of economy $\chi = \frac{\sigma_{\xi_E}}{\sigma_{\xi_S}}$

- market maker observes total order flow $q_j = N_jd_j + \xi_j$ and sets stock price $p_j = E \left[v_j \mid q_j \right]$
Equilibrium concept

an equilibrium is a set of decisions $\left\{ K_j^*, N_j^*, d_j^*, p_j^* \right\}$ such that

- entrepreneur chooses unobservable K_j^* to maximize V_j
- trader earns zero profit after expertise cost c
- expert trader chooses d_j^* to maximize trading profit and
 market maker sets stock price p_j^* to break even
The equilibrium
Expert traders’ information

- expert traders’ estimate of firm value \(v_j \):

\[
E[v_j|r_j] = \tau_j r_j + (1 - \tau_j) K_j^*
\]

\[
\tau_j = \frac{\sigma^2_\theta}{\sigma^2_\theta + (1 + 1_{j=Am})^2 \sigma^2_\epsilon}
\]
Expert traders’ information

- expert traders’ estimate of firm value v_j:

$$E[v_j | r_j] = \tau_j r_j + (1 - \tau_j) K^*_j$$

$$\tau_j = \frac{\sigma^2_\theta}{\sigma^2_\theta + (1 + 1_{j=s} Am)^2 \sigma^2_\epsilon}$$

- τ_j measures expert traders’ information quality
Expert traders’ information

- expert traders’ estimate of firm value v_j:

$$E[v_j|r_j] = \tau_j r_j + (1 - \tau_j) K_j^*$$

$$\tau_j = \frac{\sigma^2_\theta}{\sigma^2_\theta + (1 + 1_{j=SAm})^2 \sigma^2_\epsilon}$$

- τ_j measures expert traders’ information quality
- expert traders’ information advantage

$$E[v_j|r_j] - E[v_j] = \tau_j (r_j - K_j^*)$$
The trading equilibrium

Expert traders set demand $d_j^* = \beta_j^* (E[v_j|r_j] - E[v_j])$
The trading equilibrium

- expert traders set demand \(d_j^* = \beta_j^*(E[v_j|r_j] - E[v_j]) \)
- the market maker sets the price as \(p_j^* = E[v_j] + \lambda_j^* q_j \)
The trading equilibrium

- Expert traders set demand $d_j^* = \beta_j^* (E[v_j | r_j] - E[v_j])$
- The market maker sets the price as $p_j^* = E[v_j] + \lambda_j^* q_j$
- λ_j^* measures the market liquidity

\[
\beta_j^* = \sqrt{\frac{1}{N_j} \frac{\sigma_{\xi_i}^2}{\tau_j \sigma_\theta^2}} \\
\lambda_j^* = \sqrt{\frac{N_j}{(1 + N_j)^2} \frac{\tau_j \sigma_\theta^2}{\sigma_{\xi_i}^2}}
\]
Traders’ expertise development decisions

- expected profit to an expert trader from trading in firm j

$$
\pi_j^* = \frac{\sigma_\xi \sigma_\theta \sqrt{\tau_j}}{\sqrt{N_j}(N_j + 1)}
$$
Traders’ expertise development decisions

- expected profit to an expert trader from trading in firm j

$$\pi_j^* = \frac{\sigma_{\xi_j} \sigma_\theta \sqrt{\tau_j}}{\sqrt{N_j(N_j + 1)}}$$

- $A = 0$: learning either standard earns π_j^*

$$c = \pi_j^* = \frac{\sigma_\theta \sigma_{\xi_j} \sqrt{\tau_j}}{\sqrt{N_j^*(N_j^* + 1)}}$$
Traders’ expertise development decisions

- expected profit to an expert trader from trading in firm j

$$\pi^*_j = \frac{\sigma_{\xi_j} \sigma_\theta \sqrt{\tau_j}}{\sqrt{N_j(N_j + 1)}}$$

- $A = 0$: learning either standard earns π^*_j

$$c = \pi^*_j = \frac{\sigma_\theta \sigma_{\xi_j} \sqrt{\tau_j}}{\sqrt{N_j^*(N_j^* + 1)}}$$

- $A = 1$: both firms use the global standard

$$c = \pi^*_E + \pi^*_S = \frac{\sigma_\theta \sigma_{\xi_S} (\chi \sqrt{\tau_E} + \sqrt{\tau_S})}{\sqrt{N_j^*(N_j^* + 1)}}$$
Entrepreneurs’ investment decisions

- entrepreneur’s FOC on K_j

$$K_j^* = \frac{1}{\kappa} \frac{\partial E_0[p_j^*]}{\partial K_j} < \frac{1}{\kappa}$$
Entrepreneurs’ investment decisions

- entrepreneur’s FOC on K_j

$$K_j^* = \frac{1}{\kappa} \frac{\partial E_0[p_j^*]}{\partial K_j} < \frac{1}{\kappa}$$

- the equilibrium investment and firm value

$$K_j^* = \frac{1}{\kappa} \frac{N_j^*}{N_j^* + 1} \tau_j$$

$$V_j^* = \frac{1}{2\kappa} - \frac{\kappa}{2} \left(\frac{1}{\kappa} - K_j^* \right)^2$$
The consequences of global accounting standard adoption
Stock price informativeness

\[
\frac{\text{Var}[v_j] - \text{Var}[v_j|p_j]}{\text{Var}[v_j]} = \tau_j \rho_j
\]

Expert traders’ information quality

\[
\tau_j = \frac{\sigma^2_\theta}{\sigma^2_\theta + (1 + 1_{j=S Am})^2 \sigma^2_\varepsilon}
\]
Stock price informativeness

\[
\frac{\text{Var} [v_j] - \text{Var} [v_j | p_j]}{\text{Var} [v_j]} = \tau_j \rho_j
\]

- expert traders’ information quality

\[
\tau_j = \frac{\sigma^2_\theta}{\sigma^2_\theta + (1 + 1_{j=SAm})^2 \sigma^2_\varepsilon}
\]

- trading efficiency: the fraction of the experts’ information impounded in the equilibrium stock price

\[
\rho_j = \frac{N^*_j}{N^*_j + 1}
\]
Divergent effects on switcher’s firm value and liquidity

\[m^*(\chi) \]

- Liquidity increases but firm value decreases
- Liquidity increases and firm value increases
- Liquidity decreases but firm value increases

\(m \) represents the inverse of precision
\(\chi \) represents the early adopter's relative size
Distinct determinants of firm value and liquidity
The externality for the early adopter

- positive externality: adoption leads to both higher firm value and liquidity for early adopter
The externality for the early adopter

- positive externality: adoption leads to both higher firm value and liquidity for early adopter
- adoption does not affect early adopter’s reporting precision but improves ρ_E through network effects
The externality for the early adopter

- positive externality: adoption leads to both higher firm value and liquidity for early adopter
- adoption does not affect early adopter’s reporting precision but improves ρ_E through network effects
- positive externality may provide one justification for mandating the adoption of global accounting standards
The empirical and policy implications

- empirical implications
 - controlling for precision, adoption increases both ...rm value and liquidity for the switcher and the early adopter
 - divergent effects of adoption on ...rm value and liquidity depending on the global standard's relative precision
 - policy implications
 - the global standard's precision is an incomplete measure of economic consequences of adopting global standards
 - liquidity ceases to be an accurate proxy for ...rm value when the global standard is either sufficiently precise or noisy
The empirical and policy implications

- empirical implications
 - controlling for precision, adoption increases both firm value and liquidity for the switcher and the early adopter
The empirical and policy implications

- empirical implications
 - controlling for precision, adoption increases both firm value and liquidity for the switcher and the early adopter
 - divergent effects of adoption on firm value and liquidity depending on the global standard’s relative precision
The empirical and policy implications

- empirical implications
 - controlling for precision, adoption increases both firm value and liquidity for the switcher and the early adopter
 - divergent effects of adoption on firm value and liquidity depending on the global standard’s relative precision

- policy implications
The empirical and policy implications

- **empirical implications**
 - controlling for precision, adoption increases both firm value and liquidity for the switcher and the early adopter
 - divergent effects of adoption on firm value and liquidity depending on the global standard’s relative precision

- **policy implications**
 - the global standard’s precision is an incomplete measure of economic consequences of adopting global standards
The empirical and policy implications

- **empirical implications**
 - controlling for precision, adoption increases both firm value and liquidity for the switcher and the early adopter
 - divergent effects of adoption on firm value and liquidity depending on the global standard’s relative precision

- **policy implications**
 - the global standard’s precision is an incomplete measure of economic consequences of adopting global standards
 - liquidity ceases to be an accurate proxy for firm value when the global standard is either sufficiently precise or noisy
Takeaways

- Global accounting standard adoption trades off network effect with precision effect.
- Global standard adoption has divergent effects on the switcher’s firm value and liquidity.
- Global standard adoption has a positive externality on the early adopter’s liquidity and firm value.