A Model of Principles-Based vs. Rules-Based Standards
Pingyang Gao, Haresh Sapra, and Hao Xue

Minnesota Seminar

April 2016
Introduction

- Rules-based standards: rely on bright-line and quantifiable evidence.
Introduction

- Rules-based standards: rely on bright-line and quantifiable evidence.
 - Induce transaction structuring.
Introduction

- Rules-based standards: rely on bright-line and quantifiable evidence.
 - Induce transaction structuring.

- Principles-based standards: rely on management’s professional judgement.
Introduction

- **Rules-based standards**: rely on **bright-line and quantifiable evidence**.
 - Induce transaction structuring.

- **Principles-based standards**: rely on management’s **professional judgement**.
 - Induce abuse of discretion.
Insiders would like to paint a rosy picture of the firm:
Insiders would like to paint a rosy picture of the firm:

- By tampering with the evidence and/or
Insiders would like to paint a rosy picture of the firm:

- By tampering with the evidence and/or
- By abusing their professional judgement.
Insiders would like to paint a rosy picture of the firm:

- By tampering with the evidence and/or
- By abusing their professional judgement.

Given potential evidence management and abuse of discretion:
Environment

- Insiders would like to paint a rosy picture of the firm:
 - By tampering with the evidence and/or
 - By abusing their professional judgement.

- Given potential evidence management and abuse of discretion:
 - How should a standard setter design the optimal standard?
Insiders would like to paint a rosy picture of the firm:
- By tampering with the evidence and/or
- By abusing their professional judgement.

Given potential evidence management and abuse of discretion:
- How should a standard setter design the optimal standard?
- What is its shape?
Insiders would like to paint a rosy picture of the firm:

- By tampering with the evidence and/or
- By abusing their professional judgement.

Given potential evidence management and abuse of discretion:

- How should a standard setter design the optimal standard?
- What is its shape?
- How does it depend on various features of firm’s environment?
Main Insights

- Optimal standard combines rules-based and principles-based elements.
Main Insights

- Optimal standard combines rules-based and principles-based elements.

- It takes a simple and intuitive form:
Main Insights

- Optimal standard combines rules-based and principles-based elements.

- It takes a simple and intuitive form:

 - If evidence is sufficiently favorable, rely on professional judgement. Otherwise, use a strict rule.
Main Insights

- Optimal standard combines rules-based and principles-based elements.

- It takes a simple and intuitive form:
 - If evidence is sufficiently favorable, rely on professional judgement. Otherwise, use a strict rule.

- Its properties depend on various features of firm’s environment:
Main Insights

- Optimal standard combines rules-based and principles-based elements.

- It takes a simple and intuitive form:
 - If evidence is sufficiently favorable, rely on professional judgement. Otherwise, use a strict rule.

- Its properties depend on various features of firm’s environment:
 - Effectiveness of regulatory enforcement of standard.
Main Insights

- Optimal standard combines rules-based and principles-based elements.

- It takes a simple and intuitive form:
 - If evidence is sufficiently favorable, rely on professional judgement. Otherwise, use a strict rule.

- Its properties depend on various features of firm’s environment:
 - Effectiveness of regulatory enforcement of standard.
 - Severity of conflict between insiders and outsiders.
Main Insights

- Optimal standard combines rules-based and principles-based elements.

- It takes a simple and intuitive form:
 - If evidence is sufficiently favorable, rely on professional judgement. Otherwise, use a strict rule.

- Its properties depend on various features of firm’s environment:
 - Effectiveness of regulatory enforcement of standard.
 - Severity of conflict between insiders and outsiders.
 - Nature of the transaction.
Standard setter designs standard S to measure ω, the economic substance of a transaction:
Standard setter designs standard S to measure ω, the economic substance of a transaction:

- $\omega \in \{G, B\}$ with probabilities q_H and $q_B = 1 - q_H$.
Timing of Events

1. Standard setter designs standard S to measure ω, the economic substance of a transaction:
 - $\omega \in \{G, B\}$ with probabilities q_H and $q_B = 1 - q_H$.

2. Manager privately observes initial quantifiable evidence $t \in \mathbb{R}$ about ω:
Timing of Events

1. Standard setter designs standard S to measure ω, the economic substance of a transaction:
 - $\omega \in \{G, B\}$ with probabilities q_H and $q_B = 1 - q_H$.

2. Manager privately observes initial quantifiable evidence $t \in \mathbb{R}$ about ω:
 - $t \sim f^\omega(\cdot)$ and a large value of t is good news in the sense of MLRP.
Timing of Events

1. Standard setter designs standard S to measure ω, the economic substance of a transaction:
 - $\omega \in \{G, B\}$ with probabilities q_H and $q_B = 1 - q_H$.

2. Manager privately observes initial quantifiable evidence $t \in \mathbb{R}$ about ω:
 - $t \sim f_\omega(\cdot)$ and a large value of t is good news in the sense of MLRP.
 - Manager chooses whether to privately manipulate evidence from t to $t_m = t + m$ at a cost $C(m)$.
Timing of Events

1. Standard setter designs standard S to measure ω, the economic substance of a transaction:
 - $\omega \in \{G, B\}$ with probabilities q_H and $q_B = 1 - q_H$.

2. Manager privately observes initial quantifiable evidence $t \in \mathbb{R}$ about ω:
 - $t \sim f^\omega(\cdot)$ and a large value of t is good news in the sense of MLRP.
 - Manager chooses whether to privately manipulate evidence from t to $t_m = t + m$ at a cost $C(m)$.
 - Evidence t_m could be an input for the standard.
Timing of Events (continued)

3. The manager observes additional non-quantifiable information about ω:
Timing of Events (continued)

3. The manager observes additional non-quantifiable information about ω:
 - She perfectly learns ω.

4. ω becomes common knowledge and payoffs are realized.
3. The manager observes additional non-quantifiable information about ω:

- She perfectly learns ω.
- However, unlike quantifiable evidence t_m, her knowledge of ω cannot be directly prescribed in the standard.
Timing of Events (continued)

3. The manager observes additional non-quantifiable information about ω:

- She perfectly learns ω.
- However, unlike quantifiable evidence t_m, her knowledge of ω cannot be directly prescribed in the standard.
- If standard calls for professional judgement:
Timing of Events (continued)

3. The manager observes additional non-quantifiable information about ω:
 - She perfectly learns ω.
 - However, unlike quantifiable evidence t_m, her knowledge of ω cannot be directly prescribed in the standard.
 - If standard calls for professional judgement:
 - Manager may abuse her discretion at a private cost of $\phi > 0$.

$\tilde{\phi}$ has a cumulative density function $K_{\tau}(\phi; \tau)$.

Based on prevailing accounting standard, report $r \in \{b, g\}$.

$4. \omega$ becomes common knowledge and payoffs are realized.
3. The manager observes additional non-quantifiable information about ω:

- She perfectly learns ω.
- However, unlike quantifiable evidence t_m, her knowledge of ω cannot be directly prescribed in the standard.
- If standard calls for professional judgement:
 - Manager may abuse her discretion at a private cost of $\phi > 0$.
 - $\tilde{\phi}$ has a cumulative density function $K(\phi; \tau)$.

Timing of Events (continued)

3. The manager observes additional non-quantifiable information about ω:

- She perfectly learns ω.

- However, unlike quantifiable evidence t_m, her knowledge of ω cannot be directly prescribed in the standard.

- If standard calls for professional judgement:
 - Manager may abuse her discretion at a private cost of $\phi > 0$.
 - $\tilde{\phi}$ has a cumulative density function $K(\phi; \tau)$.
 - $K_\tau(\phi; \tau) < 0$: τ captures effectiveness of regulatory enforcement.
Timing of Events (continued)

3. The manager observes additional non-quantifiable information about ω:
 - She perfectly learns ω.
 - However, unlike quantifiable evidence t_m, her knowledge of ω cannot be directly prescribed in the standard.
 - If standard calls for professional judgement:
 - Manager may abuse her discretion at a private cost of $\phi > 0$.
 - $\tilde{\phi}$ has a cumulative density function $K(\phi; \tau)$.
 - $K_\tau(\phi; \tau) < 0$: τ captures effectiveness of regulatory enforcement.
 - Based on prevailing accounting standard, report $r \in \{b, g\}$.

3. The manager observes additional non-quantifiable information about ω:
 - She perfectly learns ω.
 - However, unlike quantifiable evidence t_m, her knowledge of ω cannot be directly prescribed in the standard.
 - If standard calls for professional judgement:
 - Manager may abuse her discretion at a private cost of $\phi > 0$.
 - $\tilde{\phi}$ has a cumulative density function $K(\phi; \tau)$.
 - $K_\tau(\phi; \tau) < 0$: τ captures effectiveness of regulatory enforcement.
 - Based on prevailing accounting standard, report $r \in \{b, g\}$.

4. ω becomes common knowledge and payoffs are realized.
Preferences

- Standard setter designs standard S to minimize

$$q_G \Pr(r = b | \omega = G) \cdot L_G + q_B \Pr(r = g | \omega = B) \cdot L_B$$

expected cost of false alarm

expected cost of undue optimism

where S determines $\Pr(r = b | \omega = G)$ and $\Pr(r = g | \omega = B)$.

Firm's manager always prefers the favorable report, $r = g$. Conflict of interest captured by $\delta > 0$. Induces evidence management and/or abuse of discretion at a cost of φ.
Preferences

- Standard setter designs standard S to minimize

$$q_G \Pr(r = b | \omega = G) \cdot L_G + q_B \Pr(r = g | \omega = B) \cdot L_B$$

- expected cost of false alarm

- expected cost of undue optimism

where S determines $\Pr(r = b | \omega = G)$ and $\Pr(r = g | \omega = B)$.

- Firm’s manager always prefers the favorable report, $r = g$.
• Standard setter designs standard S to minimize

$$q_G \Pr(r = b|\omega = G) \cdot L_G + q_B \Pr(r = g|\omega = B) \cdot L_B$$

expected cost of false alarm

expected cost of undue optimism

where S determines $\Pr(r = b|\omega = G)$ and $\Pr(r = g|\omega = B)$.

• Firm’s manager always prefers the favorable report, $r = g$.
 • Conflict of interest captured by $\delta > 0$.
Preferences

- Standard setter designs standard S to minimize

$$q_G \Pr(r = b|\omega = G) \cdot L_G + q_B \Pr(r = g|\omega = B) \cdot L_B$$

where S determines $\Pr(r = b|\omega = G)$ and $\Pr(r = g|\omega = B)$.

- Firm’s manager always prefers the favorable report, $r = g$.
 - Conflict of interest captured by $\delta > 0$.
 - Induces evidence management m and/or abuse of discretion at a cost of ϕ.

An Example: Revenue Recognition

- Has the majority of risks and rewards associated with products been transferred from firm to the buyer?
An Example: Revenue Recognition

- Has the majority of risks and rewards associated with products been transferred from firm to the buyer?
 - A rules-based standard would rely on *quantifiable* evidence such as product shipment.
An Example: Revenue Recognition

- Has the majority of risks and rewards associated with products been transferred from firm to the buyer?
 - A rules-based standard would rely on quantifiable evidence such as product shipment.
 - A principles-based standard would rely on the management’s professional judgement.
An Example: Revenue Recognition

- Has the majority of risks and rewards associated with products been transferred from firm to the buyer?
 - A rules-based standard would rely on quantifiable evidence such as product shipment.
 - A principles-based standard would rely on the management’s professional judgement.
 - In general, a standard could incorporate both quantifiable evidence and professional judgement.
An Example: Revenue Recognition

- Has the majority of risks and rewards associated with products been transferred from firm to the buyer?
 - A rules-based standard would rely on quantifiable evidence such as product shipment.
 - A principles-based standard would rely on the management’s professional judgement.
 - In general, a standard could incorporate both quantifiable evidence and professional judgement.

- Suppose manager obtains private evidence \(t \) about an anticipated product shipment:
An Example: Revenue Recognition

- Has the majority of risks and rewards associated with products been transferred from firm to the buyer?
 - A rules-based standard would rely on quantifiable evidence such as product shipment.
 - A principles-based standard would rely on the management’s professional judgement.
 - In general, a standard could incorporate both quantifiable evidence and professional judgement.

- Suppose manager obtains private evidence t about an anticipated product shipment:
 - By engaging in channel stuffing, she can expedite delivery, i.e., convert t to t_m.
An Example: Revenue Recognition

- Has the majority of risks and rewards associated with products been transferred from firm to the buyer?

 - A rules-based standard would rely on quantifiable evidence such as product shipment.
 - A principles-based standard would rely on the management’s professional judgement.
 - In general, a standard could incorporate both quantifiable evidence and professional judgement.

- Suppose manager obtains private evidence t about an anticipated product shipment:

 - By engaging in channel stuffing, she can expedite delivery, i.e., convert t to t_m.
 - By abusing her discretion, she can also prematurely recognize revenue as long as $\delta \geq \phi$.
An Example: Revenue Recognition

- Has the majority of risks and rewards associated with products been transferred from firm to the buyer?
 - A rules-based standard would rely on quantifiable evidence such as product shipment.
 - A principles-based standard would rely on the management’s professional judgement.
 - In general, a standard could incorporate both quantifiable evidence and professional judgement.

- Suppose manager obtains private evidence t about an anticipated product shipment:
 - By engaging in channel stuffing, she can expedite delivery, i.e., convert t to t_m.
 - By abusing her discretion, she can also prematurely recognize revenue as long as $\delta \geq \phi$.
 - The distribution of ϕ depends on τ.
Reporting Standards

- S is defined as a mapping

$$S(t_m) \rightarrow \{b, g, p\}$$
Reporting Standards

- S is defined as a mapping

$$S(t_m) \rightarrow \{b, g, p\}$$

- A Rules-Based Standard

$$S(t_m) = g \text{ if } t_m > T,$$
$$b \text{ if } t_m \leq T.$$
Reporting Standards

- S is defined as a mapping

\[S(t_m) \rightarrow \{b, g, p\} \]

- A Rules-Based Standard

\[S(t_m) = g \text{ if } t_m > T, \]
\[b \text{ if } t_m \leq T. \]

- A Principles-Based Standard

\[S(t_m) = p \ \forall t_m \]
Reporting Standards

- S is defined as a mapping

 \[S(t_m) \rightarrow \{b, g, p\} \]

- A Rules-Based Standard

 \[S(t_m) = \begin{cases}
 g & \text{if } t_m > T, \\
 b & \text{if } t_m \leq T.
 \end{cases} \]

- A Principles-Based Standard

 \[S(t_m) = p \quad \forall t_m \]

- A Hybrid Standard

 \[S(t_m) = \begin{cases}
 g & \text{if } t_m > T_2, \\
 p & \text{if } t_m \in [T_1, T_2], \\
 b & \text{if } t_m < T_1.
 \end{cases} \]
Equilibrium

- Given S, t_m, ω, and ϕ: manager chooses her optimal reporting strategy.
Equilibrium

- Given S, t_m, ω, and ϕ: manager chooses her optimal reporting strategy.

- Given S, initial evidence t, and optimal reporting strategy, manager chooses her optimal evidence management strategy.
Equilibrium

- Given S, t_m, ω, and ϕ: manager chooses her optimal reporting strategy.

- Given S, initial evidence t, and optimal reporting strategy, manager chooses her optimal evidence management strategy.

- Given manager's optimal evidence management and reporting strategies, standard setter chooses the optimal standard, $S^*(t_m)$.
Equilibrium

- Given S, t_m, ω, and ϕ: manager chooses her optimal reporting strategy.

- Given S, initial evidence t, and optimal reporting strategy, manager chooses her optimal evidence management strategy.

- Given manager’s optimal evidence management and reporting strategies, standard setter chooses the optimal standard, $S^*(t_m)$.

- All optimal decisions are consistent with each other in the sense of rational expectations.
Optimal Standard

Optimal standard $S^*(t_m)$ is fully characterized by a unique threshold T^*:

$$S^*(t_m) = \begin{cases} p & \text{if } t_m > T^* \\ b & \text{if } t_m \leq T^* \end{cases}$$

where T^* will be characterized later.
Intuition for Shape of Optimal Standard

- For sufficiently positive evidence, requiring professional judgement eliminates false alarm errors. But, it also minimizes undue optimism errors for two reasons:
Intuition for Shape of Optimal Standard

For sufficiently positive evidence, requiring professional judgement eliminates false alarm errors. But, it also minimizes undue optimism errors for two reasons:

MLRP implies there are few low types to begin with and those low types still need to exercise professional judgement.
Intuition for Shape of Optimal Standard

- For sufficiently positive evidence, requiring professional judgement eliminates false alarm errors. But, it also minimizes undue optimism errors for two reasons:
 1. MLRP implies there are few low types to begin with and those low types still need to exercise professional judgement.
 2. This, in turn, dampens the incentives for evidence management.
Intuition for Shape of Optimal Standard

- For sufficiently positive evidence, requiring professional judgement eliminates false alarm errors. But, it also minimizes undue optimism errors for two reasons:

 1. MLRP implies there are few low types to begin with and those low types still need to exercise professional judgement.

 2. This, in turn, dampens the incentives for evidence management.

- For sufficiently negative evidence, applying a strict rule (unfavorable treatment) minimizes undue optimism errors. While, false alarm errors are also low, they may not be trivial but...
Intuition for Shape of Optimal Standard

- For sufficiently positive evidence, requiring professional judgement eliminates false alarm errors. But, it also minimizes undue optimism errors for two reasons:

1. MLRP implies there are few low types to begin with and those low types still need to exercise professional judgement.
2. This, in turn, dampens the incentives for evidence management.

- For sufficiently negative evidence, applying a strict rule (unfavorable treatment) minimizes undue optimism errors. While, false alarm errors are also low, they may not be trivial but...
 - they can be controlled via T and optimized against undue optimism errors.
Implications

- If evidence is sufficiently favorable, rely on professional judgement. Otherwise, use a strict rule.
Implications

- If evidence is sufficiently favorable, rely on professional judgement. Otherwise, use a strict rule.
 - Higher hurdle for favorable treatment relative to unfavorable treatment.
Equilibrium

- Reporting Decisions

\[
\begin{align*}
 r^*(t_m < T, \omega, \phi) &= r^*(t_m \geq T, B, \phi \geq \delta) = b, \\
 r^*(t_m \geq T, G, \phi) &= r^*(t_m \geq T, B, \phi < \delta) = g.
\end{align*}
\]
Equilibrium

- Reporting Decisions

\[
\begin{align*}
 r^*(t_m < T, \omega, \phi) &= r^*(t_m \geq T, B, \phi \geq \delta) = b, \\
 r^*(t_m \geq T, G, \phi) &= r^*(t_m \geq T, B, \phi < \delta) = g.
\end{align*}
\]

- Ex ante (i.e., before \(\phi \) is realized) probability that the manager abuses discretion is \(K(\phi^*; \tau) \) where \(\phi < \phi^* = \delta \).
Evidence Management

- For any $t < T$, expected incremental benefit is

$$\Delta(t) = \Pr(\omega = G | t)\delta + \Pr(\omega = B | t) \int_{0}^{\phi^*} (\delta - \phi) dK(\phi; \tau)$$
Evidence Management

- For any \(t < T \), expected incremental benefit is

\[
\Delta(t) = \Pr(\omega = G|t)\delta + \Pr(\omega = B|t) \int_{0}^{\phi^*} (\delta - \phi) dK(\phi; \tau)
\]

- while the incremental cost is

\[
C(T - t)
\]
Evidence Management

- For any $t < T$, expected incremental benefit is

$$\Delta(t) = \Pr(\omega = G|t)\delta + \Pr(\omega = B|t) \int_0^{\phi^*} (\delta - \phi) dK(\phi; \tau)$$

- while the incremental cost is

$$C(T - t)$$

- Evidence management strategy characterized by a unique threshold $\hat{T}(T)$:

$$\Delta(\hat{T}(T)) - C(T - \hat{T}(T)) = 0$$
Evidence Management

- For any \(t < T \), expected incremental benefit is
 \[
 \Delta(t) = \Pr(\omega = G|t)\delta + \Pr(\omega = B|t) \int_0^{\phi^*} (\delta - \phi) dK(\phi; \tau)
 \]

- while the incremental cost is
 \[
 C(T - t)
 \]

- Evidence management strategy characterized by a unique threshold \(\hat{T}(T) \):
 \[
 \Delta(\hat{T}(T)) - C(T - \hat{T}(T)) = 0
 \]

- The manager’s optimal evidence management strategy is:
 \[
 m^*(t; T) = \begin{cases}
 T - t & \text{if } t \in (\hat{T}(T), T) \\
 0 & \text{otherwise}
 \end{cases}
 \]
Optimal Threshold

- At $t = 1$, standard setter chooses T to minimize

$$L = q_G L_G \int_{-\infty}^{\hat{T}(T)} f^G(x) \, dx + q_B L_B K(\phi^*; \tau) \int_{\hat{T}(T)}^{\infty} f^B(x) \, dx$$

where $\hat{T}(T)$ satisfies

$$\Delta(\hat{T}(T)) - C(T - \hat{T}(T)) = 0.$$
Optimal Threshold

Optimal threshold T^* solves:

$$
\left(q_G L_G f^G(\hat{T}(T)) - q_B L_B K(\phi^*; \tau) f^B(\hat{T}(T)) \right) \frac{\partial \hat{T}(T)}{\partial T} = 0
$$

where $\frac{\partial \hat{T}(T)}{\partial T} > 0$.
Properties of Optimal Standard

- Optimal standard relies more on management's professional judgement:
Properties of Optimal Standard

- Optimal standard relies more on management’s professional judgement:
 - The more effective the enforcement of the standard: \(\frac{dT^*}{d\tau} < 0 \).
Properties of Optimal Standard

- Optimal standard relies more on management’s professional judgement:
 - The more effective the enforcement of the standard: \(\frac{dT^*}{d\tau} < 0 \).
 - The less severe the conflict between insiders and outsiders: \(\frac{dT^*}{d\delta} > 0 \).
Properties of Optimal Standard

- Optimal standard relies more on management's professional judgement:
 - The more effective the enforcement of the standard: \(\frac{dT^*}{d\tau} < 0 \).
 - The less severe the conflict between insiders and outsiders: \(\frac{dT^*}{d\delta} > 0 \).
 - The more costly evidence management is: \(\frac{dT^*}{dC} < 0 \).
Properties of Optimal Standard

- Optimal standard relies more on management's professional judgement:
 - The more effective the enforcement of the standard: \(\frac{dT^*}{d\tau} < 0. \)
 - The less severe the conflict between insiders and outsiders: \(\frac{dT^*}{d\delta} > 0. \)
 - The more costly evidence management is: \(\frac{dT^*}{dC} < 0. \)
 - The lower (higher) the cost of undue optimism error (false alarm error): \(\frac{dT^*}{dL_B} > 0 \) and \(\frac{dT^*}{dL_G} < 0. \)
Conclusion

In a second best environment, we developed a model to analyze the trade-off between principles-based vs. rules-based elements.
Conclusion

- In a second best environment, we developed a model to analyze the trade-off between principles-based vs. rules-based elements.

- We show that optimal standard takes a simple form:
Conclusion

- In a second best environment, we developed a model to analyze the trade-off between principles-based vs. rules-based elements.

- We show that optimal standard takes a simple form:
 - To get favorable treatment, need both professional judgement and favorable evidence. But for unfavorable evidence, apply a strict rule.
In a second best environment, we developed a model to analyze the trade-off between principles-based vs. rules-based elements.

We show that optimal standard takes a simple form:

- To get favorable treatment, need both professional judgement and favorable evidence. But for unfavorable evidence, apply a strict rule.

We simplified the enforcement mechanism and captured it by the exogenous cost ϕ:

Conclusion

- In a second best environment, we developed a model to analyze the trade-off between principles-based vs. rules-based elements.

- We show that optimal standard takes a simple form:
 - To get favorable treatment, need *both* professional judgement and favorable evidence. But for unfavorable evidence, apply a strict rule.

- We simplified the enforcement mechanism and captured it by the exogenous cost ϕ:
 - ϕ could be endogenized as a transfer made from manager to an auditor to negotiate a favorable treatment.