Accounting Manipulation, Peer Pressure, and Internal Control

Pingyang Gao Gaoqing Zhang
Univ. of Chicago Univ. of Minnesota

2017 Tuck Workshop

September 8, 2017
Motivation: internal control regulation
Motivation: internal control regulation

- internal control decisions had long been deemed as outside the purview of securities regulations

Romano 2005: “The central policy recommendation of this Article is that the corporate governance provisions of SOX should be stripped of their mandatory force and rendered optional for registrants.”

The empirical difficulty in identifying SOX’s benefits and costs for individual firms, let alone its externality, we provide one rationale for regulating firms’ internal control over financial reporting.
Motivation: internal control regulation

- Internal control decisions had long been deemed as outside the purview of securities regulations.
- SOX has mandated substantive internal control measures to deter and detect accounting frauds.
Motivation: internal control regulation

- internal control decisions had long been deemed as outside the purview of securities regulations.
- SOX has mandated substantive internal control measures to deter and detect accounting frauds.
- The rationale is still controversial.

Romano 2005: “The central policy recommendation of this Article is that the corporate governance provisions of SOX should be stripped of their mandatory force and rendered optional for registrants.”

The empirical difficulty in identifying SOX’s benefits and costs for individual firms, let alone its externality, we provide one rationale for regulating firms’ internal control over financial reporting.
Motivation: internal control regulation

- internal control decisions had long been deemed as outside the purview of securities regulations
- SOX has mandated substantive internal control measures to deter and detect accounting frauds
- the rationale is still controversial.
 - Romano 2005: “The central policy recommendation of this Article is that the corporate governance provisions of SOX should be stripped of their mandatory force and rendered optional for registrants.”
Motivation: internal control regulation

- Internal control decisions had long been deemed as outside the purview of securities regulations.
- SOX has mandated substantive internal control measures to deter and detect accounting frauds.
- The rationale is still controversial.
 - Romano 2005: “The central policy recommendation of this Article is that the corporate governance provisions of SOX should be stripped of their mandatory force and rendered optional for registrants.”
- The empirical difficulty in identifying SOX's benefits and costs for individual firms, let alone its externality.
Motivation: internal control regulation

- Internal control decisions had long been deemed as outside the purview of securities regulations.
- SOX has mandated substantive internal control measures to deter and detect accounting frauds.
- The rationale is still controversial.
 - Romano 2005: “The central policy recommendation of this Article is that the corporate governance provisions of SOX should be stripped of their mandatory force and rendered optional for registrants.”
- The empirical difficulty in identifying SOX’s benefits and costs for individual firms, let alone its externality.
- We provide one rationale for regulating firms’ internal control over financial reporting.
Motivation (continued): peer pressure for manipulation

Ben Horowitz: "Once WorldCom started committing accounting fraud to prop up their numbers, all of the other telecoms had to either (a) commit accounting fraud to keep pace with WorldCom's blistering growth rate, or (b) be viewed as losers with severe consequences." Qwest and Global Crossing: accounting frauds. AT&T and Sprint: took ST actions at the expense of LT viability.
Motivation (continued): peer pressure for manipulation

- peer pressure for manipulation is often alleged

Ben Horowitz: "Once WorldCom started committing accounting fraud to prop up their numbers, all of the other telecoms had to either (a) commit accounting fraud to keep pace with WorldCom’s blistering growth rate, or (b) be viewed as losers with severe consequences."
peer pressure for manipulation is often alleged

- Ben Horowitz: "Once WorldCom started committing accounting fraud to prop up their numbers, all of the other telecoms had to either (a) commit accounting fraud to keep pace with WorldCom's blistering growth rate, or (b) be viewed as losers with severe consequences."
peer pressure for manipulation is often alleged

- Ben Horowitz: "Once WorldCom started committing accounting fraud to prop up their numbers, all of the other telecoms had to either (a) commit accounting fraud to keep pace with WorldCom’s blistering growth rate, or (b) be viewed as losers with severe consequences."
- Qwest and Global Crossing: accounting frauds
peer pressure for manipulation is often alleged

- Ben Horowitz: "Once WorldCom started committing accounting fraud to prop up their numbers, all of the other telecoms had to either (a) commit accounting fraud to keep pace with WorldCom’s blistering growth rate, or (b) be viewed as losers with severe consequences."
- Qwest and Global Crossing: accounting frauds
- AT&T and Sprint: took ST actions at the expense of LT viability.
peer pressure for manipulation is often alleged

- Ben Horowitz: "Once WorldCom started committing accounting fraud to prop up their numbers, all of the other telecoms had to either (a) commit accounting fraud to keep pace with WorldCom’s blistering growth rate, or (b) be viewed as losers with severe consequences."
- Qwest and Global Crossing: accounting frauds
- AT&T and Sprint: took ST actions at the expense of LT viability.

- strategic complementarity: manager A manipulates more when he suspects that manager B is more likely to manipulate
peer pressure for manipulation is often alleged
- Ben Horowitz: "Once WorldCom started committing accounting fraud to prop up their numbers, all of the other telecoms had to either (a) commit accounting fraud to keep pace with WorldCom's blistering growth rate, or (b) be viewed as losers with severe consequences."
- Qwest and Global Crossing: accounting frauds
- AT&T and Sprint: took ST actions at the expense of LT viability.

strategic complementarity: manager A manipulates more when he suspects that manager B is more likely to manipulate
- we provide a rational explanation of peer pressure for manipulation in capital market
Contributions and related literatures

- peer pressure in other contexts
- externality of truthful disclosure and corporate governance
The model
Timeline

- two firms, indexed as A and B
Timeline

- two firms, indexed as A and B
- at date 0, each firm chooses internal control q_i
two firms, indexed as A and B
- at date 0, each firm chooses internal control q_i
- at date 1, each manager i
Timeline

- two firms, indexed as A and B
- at date 0, each firm chooses internal control q_i
- at date 1, each manager i
 - observes own firm type s_i privately
Timeline

- two firms, indexed as A and B
- at date 0, each firm chooses internal control q_i
- at date 1, each manager i
 - observes own firm type s_i privately
 - chooses manipulation m_i privately
Timeline

- two firms, indexed as A and B
- at date 0, each firm chooses internal control q_i
- at date 1, each manager i
 - observes own firm type s_i privately
 - chooses manipulation m_i privately
 - issues report r_i
- at date 2, investors observe (r_A, r_B) and set stock price $P_i(r_A, r_B)$
- at date 3, payoffs are realized
Timeline

- two firms, indexed as A and B
- at date 0, each firm chooses internal control q_i
- at date 1, each manager i
 - observes own firm type s_i privately
 - chooses manipulation m_i privately
 - issues report r_i
- at date 2, investors observe (r_A, r_B) and set stock price $P_i(r_A, r_B)$
Timeline

- two firms, indexed as A and B
- at date 0, each firm chooses internal control q_i
- at date 1, each manager i
 - observes own firm type s_i privately
 - chooses manipulation m_i privately
 - issues report r_i
- at date 2, investors observe (r_A, r_B) and set stock price $P_i(r_A, r_B)$
- at date 3, payoffs are realized
Payoffs

- firm value: \(V_i = s_i - C_i(m_i) - K_i(q_i) \)
Payoffs

- firm value: $V_i = s_i - C_i(m_i) - K_i(q_i)$
- costs of manipulation $C_i(m_i)$ and internal control $K_i(q_i)$
Payoffs

- Firm value: \(V_i = s_i - C_i(m_i) - K_i(q_i) \)
- Costs of manipulation \(C_i(m_i) \) and internal control \(K_i(q_i) \)
- Firm type \(s_i \in \{1, 0\} \) with \(\Pr(s_i = 1) = \theta_i \)
Payoffs

- firm value: \(V_i = s_i - C_i(m_i) - K_i(q_i) \)
- costs of manipulation \(C_i(m_i) \) and internal control \(K_i(q_i) \)
- firm type \(s_i \in \{1, 0\} \) with \(\Pr(s_i = 1) = \theta_i \)
- manager cares about short-term stock price and long-term value of his own firm

\[
U_i = \delta_i P_i + (1 - \delta_i) V_i
\]
Information structure

- correlation between s_A and s_B: $\rho \in [-1, 1]$
Information structure

- correlation between s_A and s_B: $\rho \in [-1, 1]$
- report $r_i \in \{0, 1\}$ is determined jointly by firm type s_i, internal control q_i and manipulation m_i
correlation between s_A and s_B : $\rho \in [-1, 1]$

report $r_i \in \{0, 1\}$ is determined jointly by firm type s_i, internal control q_i and manipulation m_i
Information structure

- correlation between s_A and s_B: $\rho \in [-1, 1]$
- report $r_i \in \{0, 1\}$ is determined jointly by firm type s_i, internal control q_i and manipulation m_i

$$\Pr(r_i = 1|s_i = 1, m_i, q_i) = 1$$
Information structure

- correlation between s_A and s_B: $\rho \in [-1, 1]$
- report $r_i \in \{0, 1\}$ is determined jointly by firm type s_i, internal control q_i and manipulation m_i

$$\Pr(r_i = 1|s_i = 1, m_i, q_i) = 1$$

$$\mu_i \equiv \Pr(r_i = 1|s_i = 0, m_i, q_i) = m_i(1 - q_i)$$
Information structure

- correlation between s_A and s_B: $\rho \in [-1, 1]$
- report $r_i \in \{0, 1\}$ is determined jointly by firm type s_i, internal control q_i and manipulation m_i

\[
\Pr(r_i = 1|s_i = 1, m_i, q_i) = 1
\]

\[
\mu_i \equiv \Pr(r_i = 1|s_i = 0, m_i, q_i) = m_i(1 - q_i)
\]

- q_i is observable, while m_i and s_i are not
Definition of an equilibrium

A PBE (perfect Bayesian Equilibrium) is a set of decisions \((q_i^*, m_i^*(s_i), P_i^*(r_A, r_B))\) such that

- each is made to maximize respective objective functions;
- they are consistent with each other.
The Analysis with $\rho = 0$
Investors’ pricing at date 2

- upon receiving r_A, investors price the firm

$$P_A^*(r_A) = \theta_A(r_A) + (1 - \theta_A(r_A))(0 - C_A^*) - K_A(q_A)$$
Investors’ pricing at date 2

- upon receiving r_A, investors price the firm

$$P_A^*(r_A) = \theta_A(r_A) + (1 - \theta_A(r_A))(0 - C_A^*) - K_A(q_A)$$

- investors use r_A to update belief about s_A

$$\theta_A(1) \equiv \Pr(s_A = 1 | r_A = 1) = \frac{\theta_A}{\theta_A + (1 - \theta_A)\mu_A^*}.$$
Investors’ pricing at date 2

- upon receiving r_A, investors price the firm

$$P_A^*(r_A) = \theta_A(r_A) + (1 - \theta_A(r_A))(0 - C_A^*) - K_A(q_A)$$

- investors use r_A to update belief about s_A

$$\theta_A(1) \equiv \Pr(s_A = 1|r_A = 1) = \frac{\theta_A}{\theta_A + (1 - \theta_A)\mu_A^*}.$$

- how does manipulation affect investors’ belief?
Investors’ pricing at date 2

- upon receiving r_A, investors price the firm

$$P_A^*(r_A) = \theta_A(r_A) + (1 - \theta_A(r_A))(0 - C_A^*) - K_A(q_A)$$

- investors use r_A to update belief about s_A

$$\theta_A(1) \equiv \Pr(s_A = 1|r_A = 1) = \frac{\theta_A}{\theta_A + (1 - \theta_A)\mu_A^*}.$$

- how does manipulation affect investors’ belief?

 1. $\mu_A^* = 0$, $\theta_A(1) = 1$
Investors’ pricing at date 2

- upon receiving r_A, investors price the firm

$$P_A^*(r_A) = \theta_A(r_A) + (1 - \theta_A(r_A))(0 - C_A^*) - K_A(q_A)$$

- investors use r_A to update belief about s_A

$$\theta_A(1) \equiv \Pr(s_A = 1|r_A = 1) = \frac{\theta_A}{\theta_A + (1 - \theta_A)\mu_A^*}.$$

- how does manipulation affect investors’ belief?

1. $\mu_A^* = 0, \theta_A(1) = 1$
2. $\mu_A^* = 1, \theta_A(1) = \theta_A$
Investors’ pricing at date 2

- upon receiving r_A, investors price the firm

\[P^*_A(r_A) = \theta_A(r_A) + (1 - \theta_A(r_A))(0 - C^*_A) - K_A(q_A) \]

- investors use r_A to update belief about s_A

\[\theta_A(1) \equiv \Pr(s_A = 1|r_A = 1) = \frac{\theta_A}{\theta_A + (1 - \theta_A)\mu^*_A}. \]

- how does manipulation affect investors’ belief?

1. $\mu^*_A = 0$, $\theta_A(1) = 1$
2. $\mu^*_A = 1$, $\theta_A(1) = \theta_A$
3. $\mu^*_A \in (0, 1)$, $\theta_A(1)$ is decreasing in μ^*_A
Investors’ pricing at date 2

- upon receiving r_A, investors price the firm

\[P_A^*(r_A) = \theta_A(r_A) + (1 - \theta_A(r_A))(0 - C_A^*) - K_A(q_A) \]

- investors use r_A to update belief about s_A

\[\theta_A(1) \equiv \Pr(s_A = 1|r_A = 1) = \frac{\theta_A}{\theta_A + (1 - \theta_A)\mu_A^*}. \]

- how does manipulation affect investors’ belief?

1. $\mu_A^* = 0, \quad \theta_A(1) = 1$
2. $\mu_A^* = 1, \quad \theta_A(1) = \theta_A$
3. $\mu_A^* \in (0, 1), \quad \theta_A(1)$ is decreasing in μ_A^*

- manager has incentive to manipulate

\[P_A^*(1) - P_A^*(0) = \theta_A(1)(1 + C_A^*) > 0 \]
Manager’s manipulation at date 1

- given investors’ conjecture μ_A^*, manager’s FOC for m_A

\[\delta_A \frac{\partial \mu_A}{\partial m_A} \theta_A (1)(1 + C_A^*) - (1 - \delta_A) C_A'(m_A) = 0 \]
Manager’s manipulation at date 1

- given investors’ conjecture μ_A^*, manager’s FOC for m_A

$$\delta_A \frac{\partial \mu_A}{\partial m_A} \theta_A (1)(1 + C_A^*) - (1 - \delta_A) C'_A(m_A) = 0$$

- Lemma 1: m_A^* is increasing in θ_A and δ_A, and decreasing in q_A.

Manager’s manipulation at date 1

- given investors’ conjecture μ^*_A, manager’s FOC for m_A

$$
\delta_A \frac{\partial \mu_A}{\partial m_A} \theta_A (1)(1 + C^*_A) - (1 - \delta_A) C'_A(m_A) = 0
$$

- Lemma 1: m^*_A is increasing in θ_A and δ_A, and decreasing in q_A.

- relation to signal-jamming models
Manager’s manipulation at date 1

- given investors’ conjecture μ_A^*, manager’s FOC for m_A

$$
\delta_A \frac{\partial \mu_A}{\partial m_A} \theta_A (1)(1 + C_A^*) - (1 - \delta_A) C_A'(m_A) = 0
$$

- Lemma 1: m_A^* is increasing in θ_A and δ_A, and decreasing in q_A.

- relation to signal-jamming models
 - rational investors are not systematically fooled in equilibrium

- info asymmetry persists. Firms with $r_A = 1$ receives the same price $P_A (1)$

- info asymmetry increases in manipulation in our model
Manager’s manipulation at date 1

- given investors’ conjecture μ_A^*, manager’s FOC for m_A

$$\delta_A \frac{\partial \mu_A}{\partial m_A} \theta_A (1) (1 + C_A^*) - (1 - \delta_A) C_A' (m_A) = 0$$

- Lemma 1: m_A^* is increasing in θ_A and δ_A, and decreasing in q_A.

- relation to signal-jamming models
 - rational investors are not systematically fooled in equilibrium
 - manipulation leads to deadweight loss
Manager’s manipulation at date 1

- given investors’ conjecture μ_A^*, manager’s FOC for m_A

$$\delta_A \frac{\partial \mu_A}{\partial m_A} \theta_A (1) (1 + C_A^*) - (1 - \delta_A) C'_A(m_A) = 0$$

- Lemma 1: m_A^* is increasing in θ_A and δ_A, and decreasing in q_A.
- relation to signal-jamming models
 - rational investors are not systematically fooled in equilibrium
 - manipulation leads to deadweight loss
 - info asymmetry persists. Firms with $r_A = 1$ receives the same price $P_A^*(1)$
Manager’s manipulation at date 1

- given investors’ conjecture μ^*_A, manager’s FOC for m_A

$$\delta_A \frac{\partial \mu_A}{\partial m_A} \theta_A (1)(1 + C_A^*) - (1 - \delta_A) C_A'(m_A) = 0$$

- Lemma 1: m_A^* is increasing in θ_A and δ_A, and decreasing in q_A.

- relation to signal-jamming models
 - rational investors are not systematically fooled in equilibrium
 - manipulation leads to deadweight loss
 - info asymmetry persists. Firms with $r_A = 1$ receives the same price $P_A^*(1)$
 - info asymmetry increases in manipulation in our model
The Analysis with $\rho \neq 0$
Investors’ pricing at date 2

- upon receiving r_A and r_B, investors price the firm

$$P^*_A(r_A, r_B) = \theta_A(r_A, r_B) + (1 - \theta_A(r_A, r_B))(0 - C^*_A) - K_A(q_A).$$
Investors’ pricing at date 2

- upon receiving r_A and r_B, investors price the firm
 \[P_A^*(r_A, r_B) = \theta_A(r_A, r_B) + (1 - \theta_A(r_A, r_B))(0 - C^*_A) - K_A(q_A). \]

- investors use r_A and r_B to update belief about s_A
 \[\theta_A(r_A, r_B) \equiv \Pr(s_A = 1|r_A, r_B). \]
Investors’ pricing at date 2

- upon receiving r_A and r_B, investors price the firm

\[
P^*_A(r_A, r_B) = \theta_A(r_A, r_B) + (1 - \theta_A(r_A, r_B))(0 - C_A^*) - K_A(q_A).
\]

- investors use r_A and r_B to update belief about s_A

\[
\theta_A(r_A, r_B) \equiv \Pr(s_A = 1| r_A, r_B).
\]

- manager A is now uncertain about the price (Lemma 2)
Investors’ pricing at date 2

- upon receiving r_A and r_B, investors price the firm

$$P_A^*(r_A, r_B) = \theta_A(r_A, r_B) + (1 - \theta_A(r_A, r_B))(0 - C_A^*) - K_A(q_A).$$

- investors use r_A and r_B to update belief about s_A

$$\theta_A(r_A, r_B) \equiv \Pr(s_A = 1 | r_A, r_B).$$

- manager A is now uncertain about the price (Lemma 2)
 - if $\rho > 0$, $r_B = 1$ provides camouflage for $r_A = 1$
Investors’ pricing at date 2

- upon receiving r_A and r_B, investors price the firm

$$P^*_A(r_A, r_B) = \theta_A(r_A, r_B) + (1 - \theta_A(r_A, r_B))(0 - C^*_A) - K_A(q_A).$$

- investors use r_A and r_B to update belief about s_A

$$\theta_A(r_A, r_B) \equiv \Pr(s_A = 1|r_A, r_B).$$

- manager A is now uncertain about the price (Lemma 2)
 - if $\rho > 0$, $r_B = 1$ provides camouflage for $r_A = 1$
 - if $\rho < 0$, $r_B = 1$ confronts $r_A = 1$
Investors’ pricing at date 2

- upon receiving \(r_A \) and \(r_B \), investors price the firm

\[
P^*_A(r_A, r_B) = \theta_A(r_A, r_B) + (1 - \theta_A(r_A, r_B))(0 - C^*_A) - K_A(q_A).
\]

- investors use \(r_A \) and \(r_B \) to update belief about \(s_A \)

\[
\theta_A(r_A, r_B) \equiv \Pr(s_A = 1| r_A, r_B).
\]

- manager \(A \) is now uncertain about the price (Lemma 2)
 - if \(\rho > 0 \), \(r_B = 1 \) provides camouflage for \(r_A = 1 \)
 - if \(\rho < 0 \), \(r_B = 1 \) confronts \(r_A = 1 \)
 - for both \(\rho \), impact of \(r_B \) moves towards 0 as \(\mu^*_B \) increases
Investors’ pricing at date 2

- upon receiving r_A and r_B, investors price the firm

$$P^*_A(r_A, r_B) = \theta_A(r_A, r_B) + (1 - \theta_A(r_A, r_B))(0 - C^*_A) - K_A(q_A).$$

- investors use r_A and r_B to update belief about s_A

$$\theta_A(r_A, r_B) \equiv \Pr(s_A = 1|r_A, r_B).$$

- manager A is now uncertain about the price (Lemma 2)
 - if $\rho > 0$, $r_B = 1$ provides camouflage for $r_A = 1$
 - if $\rho < 0$, $r_B = 1$ confronts $r_A = 1$
 - for both ρ, impact of r_B moves towards 0 as μ^*_B increases

- manager has incentive to manipulate

$$P^*_A(1, r_B) - P^*_A(0, r_B) = \theta_A(1, r_B)(1 + C^*_A) > 0, \text{ for any } r_B$$
Manager’s manipulation at date 1

- given conjectures about μ^*_B, manager A’s FOC for m_A:

$$\delta_A \frac{\partial \mu_A}{\partial m_A} W^A(\mu^*_B)(1 + C^*_A) - (1 - \delta_A) C'_A(m_A) = 0.$$
Manager’s manipulation at date 1

- given conjectures about μ_B^*, manager A’s FOC for m_A:

$$\delta_A \frac{\partial \mu_A}{\partial m_A} W^A(\mu_B^*)(1 + C_A^*) - (1 - \delta_A) C_A'(m_A) = 0.$$

- the key driver of manipulation: bad manager’s expectation about investors’ expectation averaged over r_B

$$W^A(\mu_B^*) \equiv E_{r_B}[\theta_A(1, r_B)| s_A = 0]$$
Manager’s manipulation at date 1

- given conjectures about μ^*_B, manager A’s FOC for m_A:

$$\delta_A \frac{\partial \mu_A}{\partial m_A} W^A(\mu^*_B)(1 + C^*_A) - (1 - \delta_A) C'_A(m_A) = 0.$$

- the key driver of manipulation: bad manager’s expectation about investors’ expectation averaged over r_B

$$W^A(\mu^*_B) \equiv E_{r_B}[\theta_A(1, r_B)|s_A = 0]$$

- Proposition 1: $\frac{\partial m_A^*}{\partial \mu_B^*} > 0$ for any interior μ_B^*.

The intuition of the peer pressure for manipulation

- manipulation increases equilibrium information asymmetry
The intuition of the peer pressure for manipulation

- manipulation increases equilibrium information asymmetry
- manager A knows his own firm’s value better than investors
The intuition of the peer pressure for manipulation

- manipulation increases equilibrium information asymmetry
- manager A knows his own firm’s value better than investors
- he can use this info advantage to forecast the impact of μ^*_B on r_B better than investors
The intuition of the peer pressure for manipulation

- manipulation increases equilibrium information asymmetry
- manager A knows his own firm’s value better than investors
- he can use this info advantage to forecast the impact of μ^*_B on r_B better than investors
- he thus manipulates more to take advantage of investors’ pricing inaccuracy
An extreme example

- example: $\rho = 1$
An extreme example

- example: $\rho = 1$
- suppose $\mu_B^* = 0$, then $m_A^* = 0$
An extreme example

- example: $\rho = 1$
- suppose $\mu_B^* = 0$, then $m_A^* = 0$
 - without manipulation, r_B is perfectly informative about s_B and s_A
An extreme example

- example: \(\rho = 1 \)
- suppose \(\mu_B^* = 0 \), then \(m_A^* = 0 \)
 - without manipulation, \(r_B \) is perfectly informative about \(s_B \) and \(s_A \)
- suppose \(\mu_B^* > 0 \), then \(m_A^* > 0 \)
An extreme example

- example: $\rho = 1$
- suppose $\mu_B^* = 0$, then $m_A^* = 0$
 - without manipulation, r_B is perfectly informative about s_B and s_A
- suppose $\mu_B^* > 0$, then $m_A^* > 0$
 - with manipulation, r_B is less informative about s_B and s_A
An extreme example

- example: \(\rho = 1 \)
- suppose \(\mu^*_B = 0 \), then \(m^*_A = 0 \)
 - without manipulation, \(r_B \) is perfectly informative about \(s_B \) and \(s_A \)
- suppose \(\mu^*_B > 0 \), then \(m^*_A > 0 \)
 - with manipulation, \(r_B \) is less informative about \(s_B \) and \(s_A \)
- the key is that manipulation reduces informativeness
Intuition for general cases

- investors’ expectation of s_A conditional on $r_A = 1$ averaged over r_B
Intuition for general cases

- investors’ expectation of s_A conditional on $r_A = 1$ averaged over r_B
Intuition for general cases

- investors’ expectation of s_A conditional on $r_A = 1$ averaged over r_B

$$E_{r_B}[\theta_A(1, r_B)] = \theta_A(1, 0) + \Pr(r_B = 1| r_A = 1)[\theta_A(1, 1) - \theta_A(1, 0)]$$

- probability effect
- discounting effect
Intuition for general cases

- investors’ expectation of \(s_A \) conditional on \(r_A = 1 \) averaged over \(r_B \)

\[
E_{r_B}[\theta_A(1, r_B)] = \theta_A(1, 0) + \Pr(r_B = 1| r_A = 1)[\theta_A(1, 1) - \theta_A(1, 0)]
\]

- an increase in \(\mu^*_B \) has two effects
Intuition for general cases

➤ investors’ expectation of \(s_A \) conditional on \(r_A = 1 \) averaged over \(r_B \)

\[
E_{r_B}[\theta_A(1, r_B)] = \theta_A(1, 0) + \Pr(r_B = 1 \mid r_A = 1)[\theta_A(1, 1) - \theta_A(1, 0)]
\]

➤ probability effect

➤ discounting effect

➤ an increase in \(\mu^*_B \) has two effects

➤ the probability effect: \(r_B = 1 \) is more likely
Intuition for general cases

» investors’ expectation of s_A conditional on $r_A = 1$ averaged over r_B

$$E_{r_B}[\theta_A(1, r_B)] = \theta_A(1, 0) + \Pr(r_B = 1| r_A = 1)[\theta_A(1, 1) - \theta_A(1, 0)]$$

- probability effect
- discounting effect

» an increase in μ^*_B has two effects
 » the probability effect: $r_B = 1$ is more likely
 » the discounting effect: investors discount $r_B = 1$ more
Intuition for general cases

- investors’ expectation of \(s_A \) conditional on \(r_A = 1 \) averaged over \(r_B \)

\[
E_{r_B}[\theta_A(1, r_B)] = \theta_A(1, 0) + \Pr(r_B = 1| r_A = 1)[\theta_A(1, 1) - \theta_A(1, 0)]
\]

- an increase in \(\mu_B^* \) has two effects
 - the probability effect: \(r_B = 1 \) is more likely
 - the discounting effect: investors discount \(r_B = 1 \) more

- rational investors are not misled on average
Intuition for general cases

- investors’ expectation of s_A conditional on $r_A = 1$ averaged over r_B

\[
E_{r_B}[\theta_A(1, r_B)] = \theta_A(1, 0) + \Pr(r_B = 1|r_A = 1)[\theta_A(1, 1) - \theta_A(1, 0)]
\]

\begin{itemize}
 \item probability effect
 \item discounting effect
\end{itemize}

- an increase in μ^*_B has two effects
 \begin{itemize}
 \item the probability effect: $r_B = 1$ is more likely
 \item the discounting effect: investors discount $r_B = 1$ more
 \end{itemize}

- rational investors are not misled on average
 \begin{itemize}
 \item law of iterated expectation: $E_{r_B}[\theta_A(1, r_B)] = \theta_A(1)$
 \end{itemize}
Intuition for general cases

- investors’ expectation of s_A conditional on $r_A = 1$ averaged over r_B

\[
E_{r_B}[\theta_A(1, r_B)] = \theta_A(1, 0) + \Pr(r_B = 1| r_A = 1)[\theta_A(1, 1) - \theta_A(1, 0)]
\]

- probability effect

- discounting effect

- an increase in μ^*_B has two effects
 - the probability effect: $r_B = 1$ is more likely
 - the discounting effect: investors discount $r_B = 1$ more

- rational investors are not misled on average
 - law of iterated expectation: $E_{r_B}[\theta_A(1, r_B)] = \theta_A(1)$
 - the probability effect and the discounting effect cancel out each other perfectly
Intuition for general cases (continued)

- the key driver of manipulation: bad manager’s expectation about investors’ expectation averaged over r_B
Intuition for general cases (continued)

- the key driver of manipulation: bad manager’s expectation about investors’ expectation averaged over r_B
Intuition for general cases (continued)

- the key driver of manipulation: bad manager’s expectation about investors’ expectation averaged over r_B

$$\mathcal{W}^A(\mu_B^*) = \theta_A(1, 0) + \Pr(r_B = 1|s_A = 0)[\theta_A(1, 1) - \theta_A(1, 0)]$$
Intuition for general cases (continued)

- the key driver of manipulation: bad manager’s expectation about investors’ expectation averaged over r_B

\[\mathcal{W}^A(\mu^*_B) = \theta_A(1, 0) + \Pr(r_B = 1|s_A = 0)[\theta_A(1, 1) - \theta_A(1, 0)] \]

- manager and investors have different expectations about the distributions of s_B and r_B
Intuition for general cases (continued)

- the key driver of manipulation: bad manager’s expectation about investors’ expectation averaged over r_B

$$W^A(\mu^*_B) = \theta_A(1, 0) + \Pr(r_B = 1|s_A = 0)[\theta_A(1, 1) - \theta_A(1, 0)]$$

- manager and investors have different expectations about the distributions of s_B and r_B
Intuition for general cases (continued)

- The key driver of manipulation: bad manager’s expectation about investors’ expectation averaged over r_B

$$W^A(\mu^*_B) = \theta_A(1, 0) + \Pr(r_B = 1|s_A = 0)[\theta_A(1, 1) - \theta_A(1, 0)]$$

- Manager and investors have different expectations about the distributions of s_B and r_B

$$\Pr(s_B = 0|s_A = 0) - \Pr(s_B = 0|r_A = 1) \propto \rho$$
Intuition for general cases (continued)

- the key driver of manipulation: bad manager’s expectation about investors’ expectation averaged over r_B

\[W^A(\mu_B^*) = \theta_A(1, 0) + \Pr(r_B = 1|s_A = 0)[\theta_A(1, 1) - \theta_A(1, 0)] \]

- manager and investors have different expectations about the distributions of s_B and r_B

\[\Pr(s_B = 0|s_A = 0) - \Pr(s_B = 0|r_A = 1) \propto \rho \]

- $\rho > 0$: investors don’t discount $r_B = 1$ sufficiently because they underestimate the probability effect. More camouflage.
Intuition for general cases (continued)

- the key driver of manipulation: bad manager’s expectation about investors’ expectation averaged over r_B

$$W^A(\mu^*_B) = \theta_A(1, 0) + \Pr(r_B = 1|s_A = 0)[\theta_A(1, 1) - \theta_A(1, 0)]$$

- manager and investors have different expectations about the distributions of s_B and r_B

$$\Pr(s_B = 0|s_A = 0) - \Pr(s_B = 0|r_A = 1) \propto \rho$$

- $\rho > 0$: investors don’t discount $r_B = 1$ sufficiently because they underestimate the probability effect. More camouflage.

- $\rho < 0$: investors discount $r_B = 1$ too much because they overestimate the probability effect. Less confrontation.
The effect of internal control on manipulation

- the equilibrium externality effect (Proposition 2):
 \[
 \frac{\partial m^*_A(q_A, q_B)}{\partial q_A} < 0 \quad \text{and} \quad \frac{\partial m^*_B(q_B, q_A)}{\partial q_A} < 0.
 \]
The effect of internal control on manipulation

- the equilibrium externality effect (Proposition 2):
 \[\frac{\partial m_A^*(q_A, q_B)}{\partial q_A} < 0 \text{ and } \frac{\partial m_B^*(q_B, q_A)}{\partial q_A} < 0. \]

- the amplification effect:

\[
\frac{dm_A^*}{dq_A} = \frac{\partial m_A(q_A, m_B^*)}{\partial q_A} \text{ direct effect} + \frac{\partial m_A(q_A, m_B^*)}{\partial m_B} \frac{\partial m_B^*}{\partial \mu_A^*} d\mu_A^* \text{ indirect effect}
\]
The private incentive for internal control

- the firm value at date 0:

\[V_{A0}(q_A) = \theta_A - \Pr(s_A = 0)C_A(m_A^*) - K_A(q_A) \]
The private incentive for internal control

- the firm value at date 0:

\[V_{A0}(q_A) = \theta_A - Pr(s_A = 0)C_A(m^*_A) - K_A(q_A) \]

- manipulation reduces firm value:

\[\frac{\partial V_{A0}}{\partial m^*_A} = - Pr(s_A = 0)C'_A < 0. \]
The private incentive for internal control

- the firm value at date 0:

\[V_{A0}(q_A) = \theta_A - \Pr(s_A = 0)C_A(m_A^*) - K_A(q_A) \]

- manipulation reduces firm value:

\[\frac{\partial V_{A0}}{\partial m_A^*} = - \Pr(s_A = 0)C'_A < 0. \]

- the firm’s FOC for \(q_A \):

\[\frac{\partial V_{A0}}{\partial m_A^*} \frac{\partial m_A^*}{\partial q_A} - K'_A(q_A) = 0. \]
The social incentive for internal control

- are the privately optimal choices of internal control efficient from a social perspective?

Proposition 4: the privately optimal choices of internal control are not Pareto efficient. There exists a pair of internal control higher than the private choices that lead to a Pareto improvement. The intuition comes from the positive externality.
The social incentive for internal control

- are the privately optimal choices of internal control efficient from a social perspective?
The social incentive for internal control

- are the privately optimal choices of internal control efficient from a social perspective?
- Proposition 4: the privately optimal choices of internal control are not Pareto efficient.
The social incentive for internal control

- Are the privately optimal choices of internal control efficient from a social perspective?
- Proposition 4: the privately optimal choices of internal control are not Pareto efficient.
- There exists a pair of internal control higher than the private choices that lead to a Pareto improvement.
are the privately optimal choices of internal control efficient from a social perspective?

Proposition 4: the privately optimal choices of internal control are not Pareto efficient.

there exists a pair of internal control higher than the private choices that lead to a Pareto improvement.

the intuition comes from the positive externality

\[
\frac{\partial V_{A0}}{\partial m_A^*} \frac{\partial m_A^*}{\partial q_A} + \frac{\partial V_{B0}}{\partial m_B^*} \frac{\partial m_B^*}{\partial q_A} - K_A'(q_A).
\]

Private Incentives + Positive Externality
The discussion

- a rationale for regulation internal control
The discussion

- a rationale for regulation internal control
- comprehensive evaluation of regulation is complicated.
The discussion

- a rationale for regulation internal control
- comprehensive evaluation of regulation is complicated.
- disclosure v.s. internal control: underinvestment in internal control arises even though disclosure of internal control is perfect in our model.
The generality of the peer pressure result

- key driving force: manipulation reduces informativeness
The generality of the peer pressure result

- **key driving force:** manipulation reduces informativeness
 - a continuous extension: peer pressure occurs if manipulation is assumed to reduce informativeness
The generality of the peer pressure result

- key driving force: manipulation reduces informativeness
 - a continuous extension: peer pressure occurs if manipulation is assumed to reduce informativeness
 - Stein (1989)
The generality of the peer pressure result

- key driving force: manipulation reduces informativeness
 - a continuous extension: peer pressure occurs if manipulation is assumed to reduce informativeness
 - Stein (1989)
 - Fischer and Verrecchia (2000)
The generality of the peer pressure result

- key driving force: manipulation reduces informativeness
 - a continuous extension: peer pressure occurs if manipulation is assumed to reduce informativeness
 - Stein (1989)
 - Fischer and Verrecchia (2000)

- the advantage of the binary state-message space
The generality of the peer pressure result

- key driving force: manipulation reduces informativeness
 - a continuous extension: peer pressure occurs if manipulation is assumed to reduce informativeness
 - Stein (1989)
 - Fischer and Verrecchia (2000)

- the advantage of the binary state-message space
 - manipulation degrades informativeness
The generality of the peer pressure result

- key driving force: manipulation reduces informativeness
 - a continuous extension: peer pressure occurs if manipulation is assumed to reduce informativeness
 - Stein (1989)
 - Fischer and Verrecchia (2000)

- the advantage of the binary state-message space
 - manipulation degrades informativeness
 - the manipulation decision is captured by a scaler, as opposed to a function
The generality of the peer pressure result

- key driving force: manipulation reduces informativeness
 - a continuous extension: peer pressure occurs if manipulation is assumed to reduce informativeness
 - Stein (1989)
 - Fischer and Verrecchia (2000)

- the advantage of the binary state-message space
 - manipulation degrades informativeness
 - the manipulation decision is captured by a scaler, as opposed to a function
 - the interaction of internal control and manipulation is transparent
Spillover vs peer pressure (strategic complementarity)

I spillover: firm A manipulates less when firm B is present.

I peer pressure: manager A manipulates less when he suspects manager B to manipulate less.

I spillover occurs if two firms' fundamentals are correlated.
I peer pressure occurs if two firms' fundamentals are correlated.

AND manipulation reduces informativeness.

I our model: both occur.
I Stein: spillover occurs but no peer pressure.

I peer pressure justifies regulation while spillover does not.
Spillover vs peer pressure (strategic complementarity)

- spillover: firm A manipulates less when firm B is present

AND manipulation reduces informativeness

our model: both occur

Stein: spillover occurs but no peer pressure

peer pressure justifies regulation while spillover does not
Spillover vs peer pressure (strategic complementarity)

- spillover: firm A manipulates less when firm B is present
- peer pressure: manager A manipulates less when he suspects manager B to manipulate less
Spillover vs peer pressure (strategic complementarity)

- spillover: firm A manipulates less when firm B is present
- peer pressure: manager A manipulates less when he suspects manager B to manipulate less
- spillover occurs if two firms’ fundamentals are correlated

AND manipulation reduces informativeness

- our model: both occur
- Stein: spillover occurs but no peer pressure

- peer pressure justifies regulation while spillover does not
Spillover vs peer pressure (strategic complementarity)

- spillover: firm A manipulates less when firm B is present
- peer pressure: manager A manipulates less when he suspects manager B to manipulate less
- spillover occurs if two firms’ fundamentals are correlated
- peer pressure occurs if two firms’ fundamentals are correlated and manipulation reduces informativeness
Spillover vs peer pressure (strategic complementarity)

- spillover: firm A manipulates less when firm B is present
- peer pressure: manager A manipulates less when he suspects manager B to manipulate less
- spillover occurs if two firms’ fundamentals are correlated
- peer pressure occurs if two firms’ fundamentals are correlated AND manipulation reduces informativeness
 - our model: both occur

Stein: spillover occurs but no peer pressure
Peer pressure justifies regulation while spillover does not
Spillover vs peer pressure (strategic complementarity)

- Spillover: firm A manipulates less when firm B is present
- Peer pressure: manager A manipulates less when he suspects manager B to manipulate less
- Spillover occurs if two firms’ fundamentals are correlated
- Peer pressure occurs if two firms’ fundamentals are correlated AND manipulation reduces informativeness
 - Our model: both occur
 - Stein: spillover occurs but no peer pressure
Spillover vs peer pressure (strategic complementarity)

- spillover: firm A manipulates less when firm B is present
- peer pressure: manager A manipulates less when he suspects manager B to manipulate less
- spillover occurs if two firms’ fundamentals are correlated
- peer pressure occurs if two firms’ fundamentals are correlated AND manipulation reduces informativeness
 - our model: both occur
 - Stein: spillover occurs but no peer pressure
- peer pressure justifies regulation while spillover does not
Take-away

- a plausible mechanism of peer pressure for manipulation.
- peer pressure arises in capital market, regardless of the sign of correlation.
- firms under-invest in internal control, despite perfect disclosure.