Optimal Thresholds in Accounting Recognition Standards

Pingyang Gao

University of Chicago

Duke Accounting Workshop

March 29, 2017
Many economic activities concern the situation in which the principal would like to make use of information in the possession of the agent whose interests might differ from hers.
Many economic activities concern the situation in which the principal would like to make use of information in the possession of the agent whose interests might differ from hers.

An accounting system directly measures the states of interest.
Many economic activities concern the situation in which the principal would like to make use of information in the possession of the agent whose interests might differ from hers.

An accounting system directly measures the states of interest.

Open the black box of accounting measurement
Many economic activities concern the situation in which the principal would like to make use of information in the possession of the agent whose interests might differ from hers.

An accounting system directly measures the states of interest.

Open the black box of accounting measurement

- What is an accounting standard?
Open the black box of accounting measurement

- Many economic activities concern the situation in which the principal would like to make use of information in the possession of the agent whose interests might differ from hers.
- An accounting system directly measures the states of interest.
- Open the black box of accounting measurement
 - What is an accounting standard?
 - How does an accounting standard convert a firm’s transactions and events into summary financial numbers?
Many economic activities concern the situation in which the principal would like to make use of information in the possession of the agent whose interests might differ from hers.

An accounting system directly measures the states of interest.

Open the black box of accounting measurement

- What is an accounting standard?
- How does an accounting standard convert a firm’s transactions and events into summary financial numbers?
- What instruments does a standard setter control in designing accounting standards?
Open the black box of accounting measurement

- Many economic activities concern the situation in which the principal would like to make use of information in the possession of the agent whose interests might differ from hers.
- An accounting system directly measures the states of interest.
- Open the black box of accounting measurement
 - What is an accounting standard?
 - How does an accounting standard convert a firm’s transactions and events into summary financial numbers?
 - What instruments does a standard setter control in designing accounting standards?
 - What are the frictions in the process?
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor

- The transferor’s accounting: Is the cash borrowing (on-balance-sheet) or sales (off-balance-sheet)?
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor
- The transferor’s accounting: Is the cash borrowing (on-balance-sheet) or sales (off-balance-sheet)?
 - sell the asset to the transferee without any further involvement
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor
- The transferor’s accounting: Is the cash borrowing (on-balance-sheet) or sales (off-balance-sheet)?
 - sell the asset to the transferee without any further involvement
 - use the asset as a collateral to borrow from the transferee
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor
- The transferor’s accounting: Is the cash borrowing (on-balance-sheet) or sales (off-balance-sheet)?
 - sell the asset to the transferee without any further involvement
 - use the asset as a collateral to borrow from the transferee
 - securitize the asset with partial involvement
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor
- The transferor’s accounting: Is the cash borrowing (on-balance-sheet) or sales (off-balance-sheet)?
 - sell the asset to the transferee without any further involvement
 - use the asset as a collateral to borrow from the transferee
 - securitize the asset with partial involvement
- $p \in [0, 1]$ is the extent of the transferor’s residual involvement.
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor
- The transferor’s accounting: Is the cash borrowing (on-balance-sheet) or sales (off-balance-sheet)?
 - sell the asset to the transferee without any further involvement
 - use the asset as a collateral to borrow from the transferee
 - securitize the asset with partial involvement
- $p \in [0, 1]$ is the extent of the transferor’s residual involvement.
 - disclosure: p
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor

- The transferor’s accounting: Is the cash borrowing (on-balance-sheet) or sales (off-balance-sheet)?
 - sell the asset to the transferee without any further involvement
 - use the asset as a collateral to borrow from the transferee
 - securitize the asset with partial involvement

- $p \in [0, 1]$ is the extent of the transferor’s residual involvement.
 - disclosure: p
 - recognition: $r = 1$ iff $p \leq P$ and $r = 0$ iff $p > P$.
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor
- The transferor’s accounting: Is the cash borrowing (on-balance-sheet) or sales (off-balance-sheet)?
 - sell the asset to the transferee without any further involvement
 - use the asset as a collateral to borrow from the transferee
 - securitize the asset with partial involvement
- $p \in [0, 1]$ is the extent of the transferor’s residual involvement.
 - disclosure: p
 - recognition: $r = 1$ iff $p \leq P$ and $r = 0$ iff $p > P$.
- Two problems with recognition
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor
- The transferor’s accounting: Is the cash borrowing (on-balance-sheet) or sales (off-balance-sheet)?
 - sell the asset to the transferee without any further involvement
 - use the asset as a collateral to borrow from the transferee
 - securitize the asset with partial involvement
- $p \in [0, 1]$ is the extent of the transferor’s residual involvement.
 - disclosure: p
 - recognition: $r = 1$ iff $p \leq P$ and $r = 0$ iff $p > P$.
- Two problems with recognition
 - the binary classification suppresses information
An example of accounting recognition: securitization

- Physical flow: asset transferred to transferee and cash to the transferor
- The transferor's accounting: Is the cash borrowing (on-balance-sheet) or sales (off-balance-sheet)?
 - sell the asset to the transferee without any further involvement
 - use the asset as a collateral to borrow from the transferee
 - securitize the asset with partial involvement
- $p \in [0, 1]$ is the extent of the transferor's residual involvement.
 - disclosure: p
 - recognition: $r = 1$ iff $p \leq P$ and $r = 0$ iff $p > P$.

- Two problems with recognition
 - the binary classification suppresses information
 - the discreteness induces manipulation around the threshold
Research questions

1. Given the use of recognition, what is the optimal recognition threshold P?

2. Why are recognition thresholds used in the first place? Why is recognition superior to disclosure?
Research questions

1. Given the use of recognition, what is the optimal recognition threshold P?

2. Why are recognition thresholds used in the first place? Why is recognition superior to disclosure?
A statistical/decision-making view

- Consider a medical diagnosis procedure
A statistical/decision-making view

- Consider a medical diagnosis procedure
- A higher threshold reduces undue optimism at the expense of increasing false alarm
A statistical/decision-making view

- Consider a medical diagnosis procedure
- A higher threshold reduces undue optimism at the expense of increasing false alarm
- If two errors are equally costly for decision-making, the efficient threshold is 50% (more likely than not).
A statistical/decision-making view

- Consider a medical diagnosis procedure
- A higher threshold reduces undue optimism at the expense of increasing false alarm
- If two errors are equally costly for decision-making, the efficient threshold is 50% (more likely than not).
- Disclosure weakly dominates recognition.
A statistical/decision-making view

- Consider a medical diagnosis procedure
- A higher threshold reduces undue optimism at the expense of increasing false alarm
- If two errors are equally costly for decision-making, the efficient threshold is 50% (more likely than not).
- Disclosure weakly dominates recognition.
- The choice of threshold does not affect the distribution of evidence.
Accounting aspect: evidence management (EM)

- The choice of threshold affects the distribution of evidence the threshold actually classifies.
The choice of threshold affects the distribution of evidence the threshold actually classifies.

Managers have incentive to influence accounting evidence.
Accounting aspect: evidence management (EM)

- The choice of threshold affects the distribution of evidence the threshold actually classifies.
- Managers have incentive to influence accounting evidence.
 - fabrication of evidence
Accounting aspect: evidence management (EM)

- The choice of threshold affects the distribution of evidence the threshold actually classifies.
- Managers have incentive to influence accounting evidence.
 - fabrication of evidence
 - accounting-motivated transactions
Accounting aspect: evidence management (EM)

- The choice of threshold affects the distribution of evidence the threshold actually classifies.
- Managers have incentive to influence accounting evidence.
 - fabrication of evidence
 - accounting-motivated transactions
- The threshold choice affects managers’ incentive.
Accounting aspect: evidence management (EM)

- The choice of threshold affects the distribution of evidence the threshold actually classifies.
- Managers have incentive to influence accounting evidence.
 - fabrication of evidence
 - accounting-motivated transactions
- The threshold choice affects managers’ incentive.
- How to set thresholds in the shadow of EM?
The strategic approach with EM

- The optimal threshold balances its statistical and strategic effects
The strategic approach with EM

- The optimal threshold balances its statistical and strategic effects
 - the statistical effect: trades off recognition errors for given evidence (ex post)
The strategic approach with EM

- The optimal threshold balances its statistical and strategic effects
 - the statistical effect: trades off recognition errors for given evidence (ex post)
 - the strategic effect: affects evidence distribution (ex ante)
The strategic approach with EM

- The optimal threshold balances its statistical and strategic effects
 - the statistical effect: trades off recognition errors for given evidence (ex post)
 - the strategic effect: affects evidence distribution (ex ante)
- In the previous example with EM, the optimal threshold can be either higher or lower than 50%.
The strategic approach with EM

- The optimal threshold balances its statistical and strategic effects
 - the statistical effect: trades off recognition errors for given evidence (ex post)
 - the strategic effect: affects evidence distribution (ex ante)

- In the previous example with EM, the optimal threshold can be either higher or lower than 50%.

- Disclosure may not dominate recognition.
Related literature

- A similar theme in agency literature: ex post inefficient use of information is necessary for ex ante optimal incentive
Timeline

- At date 0, the standard setter chooses a threshold;
Timeline

- At date 0, the standard setter chooses a threshold;
- At date 1, manager engages in evidence management (EM);
Timeline

- At date 0, the standard setter chooses a threshold;
- At date 1, manager engages in evidence management (EM);
- At date 2, Nature draws the state. The state and EM jointly determine the evidence. A recognition report is generated.
Timeline

- At date 0, the standard setter chooses a threshold;
- At date 1, manager engages in evidence management (EM);
- At date 2, Nature draws the state. The state and EM jointly determine the evidence. A recognition report is generated.
- At date 3, a stakeholder receives the report and makes a decision. Payoffs are determined by both the decision and the state.
An example of accounting recognition

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]
An example of accounting recognition

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

- state: whether revenue has been earned from a transaction
An example of accounting recognition

state \((\omega) \) — evidence \((t) \) — report \((r) \) — decision \((d) \)

- state: whether revenue has been earned from a transaction
- evidence: contract, product delivery, price determinability, ...
An example of accounting recognition

\[\text{state} (\omega) \implies \text{evidence} (t) \implies \text{report} (r) \implies \text{decision} (d) \]

- state: whether revenue has been earned from a transaction
- evidence: contract, product delivery, price determinability, ...
- report: revenue recognized or not
An example of accounting recognition

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

- state: whether revenue has been earned from a transaction
- evidence: contract, product delivery, price determinability, ...
- report: revenue recognized or not
- decision: invest or not
Formalizing accounting recognition

state (ω) — evidence (t) — report (r) — decision (d)

standard design

$\text{Info valuable to the stakeholder:}$ $F_L G v(G, 1) > 0$

$F_L B v(B, 0) > 0$

$\text{Conflict of interest:}$ $\delta \omega u(\omega, 1) u(\omega, 0)$
Formalizing accounting recognition

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

- state: \(\omega \in \{G, B\} \) with prior: \(\text{Pr}(\omega) = q_\omega \)
Formalizing accounting recognition

state (ω) \rightarrow evidence (t) \rightarrow report (r) \rightarrow decision (d)

- state: $\omega \in \{G, B\}$ with prior: $\Pr(\omega) = q_\omega$
- data (evidence) $t: f(t) = f^\omega(t)$, MLRP
Formalizing accounting recognition

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

- state: \(\omega \in \{G, B\}\) with prior: \(\Pr(\omega) = q_\omega\)
- data (evidence) \(t: f(t) = f^\omega(t)\), MLRP
- recognition report: \(r \in \{g, b\}\)
Formalizing accounting recognition

\[\text{state } (\omega) \quad \text{— evidence } (t) \quad \text{— report } (r) \quad \text{— decision } (d) \]

- **state**: \(\omega \in \{ G, B \} \) with prior: \(\Pr(\omega) = q_\omega \)
- **data (evidence)**: \(t : f(t) = f^\omega(t) \), MLRP
- **recognition report**: \(r \in \{ g, b \} \)
- **decision**: \(d \in \{ 1, 0 \} \)
Formalizing accounting recognition

state ω — evidence t — report r — decision d

- state: $\omega \in \{G, B\}$ with prior: $\Pr(\omega) = q_\omega$
- data (evidence) $t: f(t) = f^\omega(t)$, MLRP
- recognition report: $r \in \{g, b\}$
- decision: $d \in \{1, 0\}$
- stakeholder payoff $v(\omega, d)$ and manager payoff $u(\omega, d)$
Formalizing accounting recognition

\[\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d) \]

- state: \(\omega \in \{G, B\} \) with prior: \(\Pr(\omega) = q_\omega \)
- data (evidence) \(t : f(t) = f^\omega(t) \), MLRP
- recognition report: \(r \in \{g, b\} \)
- decision: \(d \in \{1, 0\} \)
- stakeholder payoff \(v(\omega, d) \) and manager payoff \(u(\omega, d) \)
 - Info valuable to the stakeholder:
Formalizing accounting recognition

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

- state: \(\omega \in \{ G, B \} \) with prior: \(\Pr(\omega) = q_\omega \)
- data (evidence) \(t : f(t) = f^\omega(t) \), MLRP
- recognition report: \(r \in \{ g, b \} \)
- decision: \(d \in \{ 1, 0 \} \)
- stakeholder payoff \(v(\omega, d) \) and manager payoff \(u(\omega, d) \)
 - Info valuable to the stakeholder:
 - \(L_G \equiv v(G, 1) - v(G, 0) > 0 \)
Formalizing accounting recognition

\[\text{state } (\omega) - \text{evidence } (t) - \text{report } (r) - \text{decision } (d) \]

\[\text{standard design} \]

- **state**: \(\omega \in \{ G, B \} \) with prior: \(\Pr(\omega) = q_\omega \)
- **data (evidence)**: \(t : f(t) = f^\omega(t) \), MLRP
- **recognition report**: \(r \in \{ g, b \} \)
- **decision**: \(d \in \{ 1, 0 \} \)
- **stakeholder payoff** \(v(\omega, d) \) and manager payoff \(u(\omega, d) \)
 - Info valuable to the stakeholder:
 - \(L_G \equiv v(G, 1) - v(G, 0) > 0 \)
 - \(L_B \equiv v(B, 0) - v(B, 1) > 0 \)
Formalizing accounting recognition

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

- state: \(\omega \in \{G, B\} \) with prior: \(\Pr(\omega) = q_\omega \)
- data (evidence) \(t : f(t) = f^\omega(t) \), MLRP
- recognition report: \(r \in \{g, b\} \)
- decision: \(d \in \{1, 0\} \)
- stakeholder payoff \(v(\omega, d) \) and manager payoff \(u(\omega, d) \)
 - Info valuable to the stakeholder:
 \[L_G \equiv v(G, 1) - v(G, 0) > 0 \]
 \[L_B \equiv v(B, 0) - v(B, 1) > 0 \]
 - Conflict of interest: \(\delta_\omega \equiv u(\omega, 1) - u(\omega, 0) \)
The standard setter’s problem

\[
\text{state } (\omega) \quad \text{— evidence } (t) \quad \text{— report } (r) \quad \text{— decision } (d)
\]

standard design
The standard setter’s problem

state \((\omega)\) — evidence \((t)\) — report \((r)\)— decision \((d)\)

- Design a recognition standard to maximize the stakeholder’s decision-making efficiency \(E_{\omega,r}[v(\omega, d(r))]\)
The standard setter’s problem

state (ω) — evidence (t) — report (r) — decision (d)

- Design a recognition standard to maximize the stakeholder’s decision-making efficiency $E_{\omega,r}[v(\omega, d(r))]$
- Three instruments available
The standard setter’s problem

- Design a recognition standard to maximize the stakeholder’s decision-making efficiency $E_{\omega,r}[v(\omega, d(r))]$
- Three instruments available
 - admissible evidence

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]
The standard setter’s problem

- Design a recognition standard to maximize the stakeholder’s decision-making efficiency $E_{\omega,r}[\nu(\omega, d(r))]$
- Three instruments available
 - admissible evidence
 - verification of evidence
The standard setter’s problem

state \((\omega)\) — evidence \((t)\) — report \((r)\) — decision \((d)\)

- Design a recognition standard to maximize the stakeholder’s decision-making efficiency \(E_{\omega,r}[v(\omega, d(r))]\)
- Three instruments available
 - admissible evidence
 - verification of evidence
 - threshold
The standard setter’s problem

\[
\text{state } (\omega) \quad \rightarrow \quad \text{evidence } (t) \quad \rightarrow \quad \text{report } (r) \quad \rightarrow \quad \text{decision } (d)
\]

Standard design

- Design a recognition standard to maximize the stakeholder’s decision-making efficiency \(E_{\omega,r}[v(\omega, d(r))] \)
- Three instruments available
 - admissible evidence
 - verification of evidence
 - threshold
- A recognition standard is characterized by a threshold
The standard setter’s problem

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

- Design a recognition standard to maximize the stakeholder’s decision-making efficiency \(E_{\omega,r}[v(\omega, d(r))] \)

- Three instruments available
 - admissible evidence
 - verification of evidence
 - threshold

- A recognition standard is characterized by a threshold
 - the evidence threshold \(T : r(t) = g \text{ if and only if } t \geq T \)
The standard setter’s problem

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

Design a recognition standard to maximize the stakeholder’s decision-making efficiency \(E_{\omega,r}[v(\omega, d(r))] \)

Three instruments available

- admissible evidence
- verification of evidence
- threshold

A recognition standard is characterized by a threshold

- the evidence threshold \(T : r(t) = g \) if and only if \(t \geq T \)
- the probability threshold \(P : r(t) = g \) if and only if \(\Pr(G|t) \geq P \)
The standard setter’s problem (cont’d)

state (ω) — evidence (t) — report (r) — decision (d)

standard design

A threshold is associated with two types of recognition errors:
- a false alarm error:
 $$\epsilon_G(T) = \Pr(t < T | G) = F_G(T)$$
- an undue optimism error:
 $$\epsilon_B(T) = \Pr(t > T | B) = 1 - F_B(T)$$

The standard setter maximizes

$$W(T) = W_{FB} q_G \epsilon_G L_G q_B \epsilon_B L_B$$
The standard setter’s problem (cont’d)

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

- A threshold is associated with two types of recognition errors
The standard setter’s problem (cont’d)

state \((\omega)\) — evidence \((t)\) — report \((r)\) — decision \((d)\)

- A threshold is associated with two types of recognition errors
 - a false alarm error: \(\varepsilon^G(T) \equiv \Pr(t < T | G) = F^G(T)\)
The standard setter’s problem (cont’d)

state (ω) — evidence (t) — report (r) — decision (d)

A threshold is associated with two types of recognition errors

- a false alarm error: $\varepsilon^G(T) \equiv \Pr(t < T|G) = F^G(T)$
- an undue optimism error: $\varepsilon^B(T) = \Pr(t \geq T|B) = 1 - F^B(T)$
The standard setter’s problem (cont’d)

state \((\omega) \) — evidence \((t) \) — report \((r) \) — decision \((d) \)

standard design

- A threshold is associated with two types of recognition errors
 - a false alarm error: \(\varepsilon^G(T) \equiv \Pr(t < T | G) = F^G(T) \)
 - an undue optimism error: \(\varepsilon^B(T) = \Pr(t \geq T | B) = 1 - F^B(T) \)

- The standard setter maximizes

\[
W(T) = W^{FB} - q_G \varepsilon^G L_G - q_B \varepsilon^B L_B
\]
Benchmark: the test of a simple hypothesis

- With MLRP an efficient recognition rule takes a threshold form T.

\[\begin{align*}
1 & \text{ the evidence threshold } \\
& \text{satisfies:} \\
\partial_{T} G(T) + q_{B} & = 0 \\
2 & \text{ the probability threshold } \\
& \Pr(\omega = G) = L_{B} + L_{G} \\
3 & \text{ Disclosure weakly dominates recognition.}
\end{align*} \]
Benchmark: the test of a simple hypothesis

- With MLRP an efficient recognition rule takes a threshold form T.
- The Bayesian efficient threshold satisfies:

$$\frac{\partial \epsilon}{\partial T} + \frac{\partial \epsilon}{\partial T} = 0$$

Disclosure weakly dominates recognition.

Pingyang Gao (Univ. of Chicago)
Benchmark: the test of a simple hypothesis

- With MLRP an efficient recognition rule takes a threshold form T.
- The Bayesian efficient threshold satisfies:
 - the evidence threshold T^{BM}
 \[
 q_G L_G \frac{\partial \varepsilon^G(T)}{\partial T} + q_B L_B \frac{\partial \varepsilon^B(T)}{\partial T} = 0
 \]
Benchmark: the test of a simple hypothesis

- With MLRP an efficient recognition rule takes a threshold form T.
- The Bayesian efficient threshold satisfies:
 1. the evidence threshold T^{BM}
 \[
 q_G L_G \frac{\partial \epsilon^G(T)}{\partial T} + q_B L_B \frac{\partial \epsilon^B(T)}{\partial T} = 0
 \]
 2. the probability threshold P^{BM}
 \[
 P^{BM} \equiv \Pr(\omega = G|t = T) = \frac{L_B}{L_B + L_G}
 \]
Benchmark: the test of a simple hypothesis

- With MLRP an efficient recognition rule takes a threshold form T.
- The Bayesian efficient threshold satisfies:
 1. the evidence threshold T^{BM}
 \[q_G L_G \frac{\partial \varepsilon^G(T)}{\partial T} + q_B L_B \frac{\partial \varepsilon^B(T)}{\partial T} = 0 \]
 2. the probability threshold P^{BM}
 \[P^{BM} \equiv \Pr(\omega = G|t = T) = \frac{L_B}{L_B + L_G} \]
- Disclosure weakly dominates recognition.
The main friction: evidence management (EM)

\[
\begin{align*}
\text{state } (\omega) & \quad \text{evidence } (t) \quad \text{report } (r) \quad \text{decision } (d) \\
\text{manager influence} & \quad \text{standard design}
\end{align*}
\]
The main friction: evidence management (EM)

- state (ω) — evidence (t) — report (r) — decision (d)

 manager influence
 standard design

- stakeholder: $d^*(g) = 1$ and $d^*(b) = 0$, inducing managerial preference for $r = g$
The main friction: evidence management (EM)

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

- Stakeholder: \(d^*(g) = 1\) and \(d^*(b) = 0\), inducing managerial preference for \(r = g\)

- EM \(\beta\): influence evidence distribution (without changing the state)
The main friction: evidence management (EM)

\[
\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
\]

- manager influence
- standard design

- stakeholder: \(d^*(g) = 1\) and \(d^*(b) = 0\), inducing managerial preference for \(r = g\)

- EM \(\beta\): influence evidence distribution (without changing the state)
 \[\tilde{f}(t|\omega; \beta) = (1 - \beta)f^\omega(t) + \beta f^G(t)\]
The main friction: evidence management (EM)

\[\text{state } (\omega) - \text{evidence } (t) - \text{report } (r) - \text{decision } (d) \]

- manager influence
- standard design

- stakeholder: \(d^*(g) = 1 \) and \(d^*(b) = 0 \), inducing managerial preference for \(r = g \)

- EM \(\beta \): influence evidence distribution (without changing the state)
 \[\tilde{f}(t|\omega; \beta) = (1 - \beta)f^\omega(t) + \beta f^G(t) \]
 - at a private cost of \(cC(\beta) \)
The main friction: evidence management (EM)

- stakeholder: \(d^*(g) = 1 \) and \(d^*(b) = 0 \), inducing managerial preference for \(r = g \)
- EM \(\beta \): influence evidence distribution (without changing the state)
 \[\tilde{f}(t|\omega; \beta) = (1 - \beta)f^\omega(t) + \beta f^G(t) \]
 at a private cost of \(c_C(\beta) \)
- EM increases the undue optimism error \(\varepsilon^B \):
 \[\varepsilon^B(T; \beta) = 1 - F^B + \beta(F^B - F^G) \]
The main friction: evidence management (EM)

\[
\text{state } (\omega) \quad \text{evidence } (t) \quad \text{report } (r) \quad \text{decision } (d)
\]

- manager influence
- standard design

- stakeholder: \(d^*(g) = 1 \) and \(d^*(b) = 0 \), inducing managerial preference for \(r = g \)

- EM \(\beta \): influence evidence distribution (without changing the state)
 - \(\tilde{f}(t|\omega; \beta) = (1 - \beta)f^\omega(t) + \beta f^G(t) \)
 - at a private cost of \(cC(\beta) \)

- EM increases the undue optimism error \(\varepsilon^B \):
 \[
 \varepsilon^B(T; \beta) = 1 - F^B + \beta(F^B - F^G)
 \]

- "Good" EM is considered as an extension.
The EM decision and the threshold’s strategic effect

- the manager’s net payoff with β:

$$E_{\omega,r}[u(\omega, d^*(r)|\beta; T) - cC(\beta)]$$
The EM decision and the threshold’s strategic effect

- the manager’s net payoff with β:

$$E_{\omega,r}[u(\omega, d^*(r)|\beta; T] - cC(\beta)$$

- the first-order condition for $\beta^*(T)$:

$$q_B[F^B(T) - F^G(T)]\delta_B = cC'(\beta^*(T))$$
The EM decision and the threshold’s strategic effect

- The manager’s net payoff with β:

$$E_{\omega,r}[u(\omega, d^*(r)|\beta; T] - cC(\beta)$$

- The first-order condition for $\beta^*(T)$:

$$q_B[F^B(T) - F^G(T)]\delta_B = cC'(\beta^*(T))$$

- The non-monotonic strategic effect:

$$\frac{\partial \beta^*(T)}{\partial T} = \frac{q_B\delta_B}{cC''}[f^B(T) - f^G(T)]$$
The EM decision and the threshold’s strategic effect

- the manager’s net payoff with β:

$$E_{\omega,r}[u(\omega, d^*(r)|\beta; T] - cC(\beta)$$

- the first-order condition for $\beta^*(T)$:

$$q_B[F^B(T) - F^G(T)]\delta_B = cC'(\beta^*(T))$$

- The non-monotonic strategic effect:

$$\frac{\partial \beta^*(T)}{\partial T} = \frac{q_B\delta_B}{cC''}[f^B(T) - f^G(T)]$$

Lemma

EM decreases in T if and only if $T > \hat{T}$. \hat{T} is uniquely determined by $f^B(T) = f^G(T)$.
Illustrating the threshold’s strategic effect

- EM is not monotonic in threshold T.

$$cC'(\beta^*(T)) = q_B \delta_B [F^B(T) - F^G(T)]$$

The effect of threshold T on evidence management $\beta^*(T)$
Illustrating the threshold’s strategic effect

- EM is not monotonic in threshold T.
 - If the threshold is so low that anyone can clear it, costly EM does not arise;

$$cC'(\beta^*(T)) = q_B \delta_B [F^B(T) - F^G(T)]$$

The effect of threshold T on evidence management $\beta^*(T)$
Illustrating the threshold’s strategic effect

- EM is not monotonic in threshold T.
 - If the threshold is so low that anyone can clear it, costly EM does not arise;
 - If the threshold is so high that no one can clear it even with EM, costly EM does not arise either.

\[
cC'(\beta^*(T)) = q_B \delta_B [F_B^B(T) - F_G^G(T)]
\]

The effect of threshold T on evidence management $\beta^*(T)$
The standard setter’s threshold choice at date 0

\[
\begin{align*}
\max_T W(T; \beta^*(T)) & \equiv W^{FB} - \underbrace{q_G \varepsilon^G(T) L_G}_{\text{cost of false alarm}} - \underbrace{q_B \varepsilon^B(T; \beta^*(T)) L_B}_{\text{cost of undue optimism}} \\
\text{s.t. } cC'(\beta^*(T)) & = q_B [F^B(T) - F^G(T)] \delta_B
\end{align*}
\]
The first-order condition for the optimal threshold

\[q_G L_G \frac{\partial \varepsilon^G(T)}{\partial T} + q_B L_B \frac{\partial \varepsilon^B(T; \beta^*)}{\partial T} + q_B L_B \frac{\partial \varepsilon^B(T; \beta^*)}{\partial \beta^*} \frac{\partial \beta^*(T)}{\partial T} = 0 \]

The optimal threshold balances its statistical and strategic effects on recognition errors.
Property 1: "More likely than not" is not optimal.

- The probability threshold without EM:

\[P_{BM} = \frac{L_B}{L_B + L_G} \]
Property 1: "More likely than not" is not optimal.

- The probability threshold without EM:
 \[P_{BM} = \frac{L_B}{L_B + L_G} \]

- The probability threshold with EM:
 \[P^* = \frac{L_B}{L_B + L_G + I(T^*)} \]
Property 1: "More likely than not" is not optimal.

- The probability threshold without EM:
 \[P^{BM} = \frac{L_B}{L_B + L_G} \]

- The probability threshold with EM:
 \[P^* = \frac{L_B}{L_B + L_G + I(T^*)} \]

- \(I(T) \) captures the transaction’s vulnerability to managerial influence.
 \[I(T^*) \equiv \frac{q_B}{q_G} L_B \frac{\partial \varepsilon^B(T; \beta^*)}{\partial \beta^*} \frac{\partial \beta^*(T)}{\partial T} \bigg|_{T=T^*} \]
Property 1: "More likely than not" is not optimal.

- The probability threshold without EM:
 \[P^{BM} = \frac{L_B}{L_B + L_G} \]

- The probability threshold with EM:
 \[P^* = \frac{L_B}{L_B + L_G + I(T^*)} \]

- \(I(T) \) captures the transaction’s vulnerability to managerial influence.
 \[I(T^*) \equiv \frac{q_B L_B}{q_G f^G} \frac{\partial \varepsilon^B(T; \beta^*)}{\partial \beta^*} \frac{\partial \beta^*(T)}{\partial T} \bigg|_{T=T^*} \]
Property 1: "More likely than not" is not optimal.

- The probability threshold without EM:
 \[P_{BM} = \frac{L_B}{L_B + L_G} \]

- The probability threshold with EM:
 \[P^* = \frac{L_B}{L_B + L_G + I(T^*)} \]

- \(I(T) \) captures the transaction’s vulnerability to managerial influence.
 \[I(T^*) \equiv \frac{q_B L_B \partial \epsilon^B(T; \beta^*)}{q_G f^G \partial \beta^*} \frac{\partial \beta^*(T)}{\partial T} \bigg|_{T=T^*} \]

Proposition

\[P^* > P_{BM} \text{ if and only if } T^* > \hat{T}. \]
Inflatory EM does not necessarily lead to conservative thresholds

Consider two examples with following parameters:
\(\delta_B = 1.5, \ C(\beta) = \frac{\beta^2}{2}, \ c = 1, \ F^G(t) = t \text{ for } t \in [0, 1]. \)
\(L_G = L_B = 1, \) which implies \(P^{BM} = 50\%. \)
Inflatory EM does not necessarily lead to conservative thresholds

Consider two examples with following parameters:
\[\delta_B = 1.5, \ C(\beta) = \frac{\beta^2}{2}, \ c = 1, \ F^G(t) = t \text{ for } t \in [0, 1]. \]
\[L_G = L_B = 1, \text{ which implies } P^{BM} = 50\%. \]

Example

\[F^B(t) = t^{\frac{1}{10}} \text{ for } t \in [0, 1]. \ q_G = 0.25. \text{ Then } \hat{T} = 0.08, \ T^* = 0.91. \]

\[P^* = 60\% > P^{BM}. \]
Inflatory EM does not necessarily lead to conservative thresholds

Consider two examples with following parameters:
\(\delta_B = 1.5, \ C(\beta) = \frac{\beta^2}{2}, \ c = 1, \ F^G(t) = t \) for \(t \in [0, 1]\).
\(L_G = L_B = 1\), which implies \(P^{BM} = 50\%\).

Example

\[F^B(t) = t \frac{1}{10} \text{ for } t \in [0, 1]. \ q_G = 0.25. \text{ Then } \hat{T} = 0.08, \ T^* = 0.91.\]

\[P^* = 60\% > P^{BM}.\]

Example

\[F^B(t) = t \frac{3}{10} \text{ for } t \in [0, 1]. \ q_G = 0.6. \text{ Then } \hat{T} = 0.18, \ T^* = 0.02.\]

\[P^* = 33\% < P^{BM}.\]
Empirical Implications

\[P^* = \frac{L_B}{L_B + L_G + I(T^*)} \] is determined by both decision-making costs \((L_B, L_G)\) and a transaction’s vulnerability to EM \((I)\).

1. explain variation of thresholds across transactions, time, and jurisdictions
Empirical Implications

\[P^* = \frac{L_B}{L_B + L_G + I(T^*)} \] is determined by both decision-making costs \((L_B, L_G)\) and a transaction’s vulnerability to EM \(I\).

1. explain variation of thresholds across transactions, time, and jurisdictions
2. provide an additional explanation for conservative revenue recognition.
Empirical Implications

\[P^* = \frac{L_B}{L_B + L_G + I(T^*)} \]

is determined by both decision-making costs \((L_B, L_G)\) and a transaction’s vulnerability to EM \((I)\).

1. explain variation of thresholds across transactions, time, and jurisdictions
2. provide an additional explanation for conservative revenue recognition.
3. reconcile conservative revenue recognition with "aggressive" contingency recognition rules.
The Bayesian approach with EM

- What is the efficient threshold upon observing evidence t?
The Bayesian approach with EM

- What is the efficient threshold upon observing evidence t?
- Upon observing t, an accountant rationally understands EM $\tilde{\beta}$ and its effect on t: $\tilde{f}(t|B; \tilde{\beta})$
The Bayesian approach with EM

- What is the efficient threshold upon observing evidence t?
- Upon observing t, an accountant rationally understands EM $\tilde{\beta}$ and its effect on t: $\tilde{f}(t|B;\tilde{\beta})$
- Taking $\tilde{\beta}$ as given, the Bayesian efficient threshold satisfies:
The Bayesian approach with EM

- What is the efficient threshold upon observing evidence \(t \)?
- Upon observing \(t \), an accountant rationally understands EM \(\tilde{\beta} \) and its effect on \(t \): \(\tilde{f}(t|B;\tilde{\beta}) \)
- Taking \(\tilde{\beta} \) as given, the Bayesian efficient threshold satisfies:

 1. the evidence threshold

 \[
 q_G L_G \frac{\partial \varepsilon^G(T)}{\partial T} + q_B L_B \frac{\partial \varepsilon^B(T;\tilde{\beta})}{\partial T} \bigg|_{T=\tilde{T}} = 0
 \]
The Bayesian approach with EM

- What is the efficient threshold upon observing evidence t?
- Upon observing t, an accountant rationally understands EM $\tilde{\beta}$ and its effect on t: $\tilde{f}(t|B; \tilde{\beta})$
- Taking $\tilde{\beta}$ as given, the Bayesian efficient threshold satisfies:

 1. the evidence threshold

 $$q_G L_G \frac{\partial \varepsilon^G(T)}{\partial T} + q_B L_B \frac{\partial \varepsilon^B(T; \tilde{\beta})}{\partial T} \bigg|_{T = \tilde{T}} = 0$$

 2. the likelihood threshold

 $$\tilde{P} \equiv \Pr(\omega = G|t = \tilde{T}; \tilde{\beta}) = \frac{L_B}{L_B + L_G} = P^{BM}$$
Property 2: the optimal threshold is not ex post efficient.

Proposition

1. \(P^* \neq \tilde{P} \).
Property 2: the optimal threshold is not ex post efficient.

Proposition

1. \(P^* \neq \tilde{P} \).
2. When the threshold is set ex post,
Property 2: the optimal threshold is not ex post efficient.

Proposition

1. \(P^* \neq \tilde{P} \).

2. *When the threshold is set ex post,*

 - *the firm value is lower, i.e.,* \(W(\tilde{T}) < W(T^*) \)
Property 2: the optimal threshold is not ex post efficient.

Proposition

1. \(P^* \neq \tilde{P} \).
2. When the threshold is set ex post,
 - the firm value is lower, i.e., \(W(\tilde{T}) < W(T^*) \)
 - evidence management is higher, i.e., \(\tilde{\beta} > \beta^* \)
Property 2: the optimal threshold is not ex post efficient.

Proposition

1. $P^* \neq \tilde{P}$.

2. When the threshold is set ex post,
 - the firm value is lower, i.e., $W(\tilde{T}) < W(T^*)$
 - evidence management is higher, i.e., $\tilde{\beta} > \beta^*$
 - disclosure weakly dominates recognition.
Property 2: the optimal threshold is not ex post efficient.

Proposition

1. \(P^* \neq \tilde{P} \).
2. When the threshold is set ex post,
 - the firm value is lower, i.e., \(W(\tilde{T}) < W(T^*) \)
 - evidence management is higher, i.e., \(\tilde{\beta} > \beta^* \)
 - disclosure weakly dominates recognition.
Property 2: the optimal threshold is not ex post efficient.

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (P^* \neq \tilde{P}).</td>
</tr>
<tr>
<td>2 When the threshold is set ex post,</td>
</tr>
<tr>
<td>(\tilde{T})</td>
</tr>
<tr>
<td>- the firm value is lower, i.e., (W(\tilde{T}) < W(T^*))</td>
</tr>
<tr>
<td>- evidence management is higher, i.e., (\tilde{\beta} > \beta^*)</td>
</tr>
<tr>
<td>- disclosure weakly dominates recognition.</td>
</tr>
</tbody>
</table>

Intuition

- At date 2, for given EM, the efficient decision threshold is \(\tilde{T} \);
Property 2: the optimal threshold is not ex post efficient.

Proposition

1. \(P^* \neq \tilde{P} \).
2. When the threshold is set ex post,
 - the firm value is lower, i.e., \(W(\tilde{T}) < W(T^*) \)
 - evidence management is higher, i.e., \(\tilde{\beta} > \beta^* \)
 - disclosure weakly dominates recognition.

Intuition

- At date 2, for given EM, the efficient decision threshold is \(\tilde{T} \);
- At date 1, the optimal threshold that deters EM is \(T = \pm \infty \).
Property 2: the optimal threshold is not ex post efficient.

Proposition

1. \(P^* \neq \tilde{P} \).
2. When the threshold is set ex post,
 - the firm value is lower, i.e., \(W(\tilde{T}) < W(T^*) \)
 - evidence management is higher, i.e., \(\tilde{\beta} > \beta^* \)
 - disclosure weakly dominates recognition.

Intuition

- At date 2, for given EM, the efficient decision threshold is \(\tilde{T} \);
- At date 1, the optimal threshold that deters EM is \(T = \pm\infty \).
- At date 0, the ex ante optimal threshold balances the dual effects.
Property 2: the optimal threshold is not ex post efficient.

Proposition

1. $P^* \neq \tilde{P}$.
2. When the threshold is set ex post,
 - the firm value is lower, i.e., $W(\tilde{T}) < W(T^*)$
 - evidence management is higher, i.e., $\tilde{\beta} > \beta^*$
 - disclosure weakly dominates recognition.

Intuition

- At date 2, for given EM, the efficient decision threshold is \tilde{T};
- At date 1, the optimal threshold that deters EM is $T = \pm \infty$.
- At date 0, the ex ante optimal threshold balances the dual effects.
- As a result, T^* differs from either \tilde{T} or $\pm \infty$.
Empirical Implications

1. Is standard setting oriented for ex ante or ex post optimality?
2. How to evaluate accounting standards ex post?
3. The discrepancy between ex ante optimal and ex post efficient thresholds means that standard setters need to be insulated from ex post pressure.
Property 3: comparative statics

Proposition

1. *The ex ante firm value* \((W^*)\) *is decreasing in* \(\frac{\delta_B}{c}\).
2. *The optimal evidence threshold* \((T^*)\) *is increasing in* \(\frac{\delta_B}{c}\) *if and only if* \(T^* > \hat{T}\).
Property 3: comparative statics

Proposition

1. The ex ante firm value \((W^*)\) is decreasing in \(\frac{\delta_B}{c}\).

2. The optimal evidence threshold \((T^*)\) is increasing in \(\frac{\delta_B}{c}\) if and only if \(T^* > \hat{T}\).

Policy implications:

- Lease accounting: raise or lower the thresholds?
Property 4: recognition dominates disclosure.

Proposition

Compared with the recognition model, the ex ante firm value is lower and evidence management is higher if the accounting standard requires full disclosure of evidence to the stakeholder.
Property 4: recognition dominates disclosure.

Proposition

Compared with the recognition model, the ex ante firm value is lower and evidence management is higher if the accounting standard requires full disclosure of evidence to the stakeholder.

Proof: replicating decisions under disclosure with a recognition threshold
Property 4: recognition dominates disclosure.

Proposition

Compared with the recognition model, the ex ante firm value is lower and evidence management is higher if the accounting standard requires full disclosure of evidence to the stakeholder.

1. Proof: replicating decisions under disclosure with a recognition threshold

2. The *strict* dominance results from the assumption of a binary decision. It is not general.
Property 4: recognition dominates disclosure.

Proposition

Compared with the recognition model, the ex ante firm value is lower and evidence management is higher if the accounting standard requires full disclosure of evidence to the stakeholder.

1. Proof: replicating decisions under disclosure with a recognition threshold
2. The strict dominance results from the assumption of a binary decision. It is not general.
3. Two general results:
Property 4: recognition dominates disclosure.

Proposition

Compared with the recognition model, the ex ante firm value is lower and evidence management is higher if the accounting standard requires full disclosure of evidence to the stakeholder.

1. Proof: replicating decisions under disclosure with a recognition threshold
2. The *strict* dominance results from the assumption of a binary decision. It is not general.
3. Two general results:
 - recognition with an optimal threshold mitigates EM by suppressing info.
Property 4: recognition dominates disclosure.

Proposition

Compared with the recognition model, the ex ante firm value is lower and evidence management is higher if the accounting standard requires full disclosure of evidence to the stakeholder.

1. Proof: replicating decisions under disclosure with a recognition threshold
2. The *strict* dominance results from the assumption of a binary decision. It is not general.
3. Two general results:
 - recognition with an optimal threshold mitigates EM by suppressing info.
 - full disclosure is not optimal in general.
Property 4: recognition dominates disclosure.

Proposition

Compared with the recognition model, the ex ante firm value is lower and evidence management is higher if the accounting standard requires full disclosure of evidence to the stakeholder.

1. Proof: replicating decisions under disclosure with a recognition threshold
2. The strict dominance results from the assumption of a binary decision. It is not general.
3. Two general results:
 - recognition with an optimal threshold mitigates EM by suppressing info.
 - full disclosure is not optimal in general.
4. The optimal recognition scheme is left for future research.
Property 4: recognition dominates disclosure.

Proposition

Compared with the recognition model, the ex ante firm value is lower and evidence management is higher if the accounting standard requires full disclosure of evidence to the stakeholder.

1. Proof: replicating decisions under disclosure with a recognition threshold

2. The strict dominance results from the assumption of a binary decision. It is not general.

3. Two general results:
 - recognition with an optimal threshold mitigates EM by suppressing info.
 - full disclosure is not optimal in general.

4. The optimal recognition scheme is left for future research.
 - with binary decisions, a binary recognition is optimal
Property 4: recognition dominates disclosure.

Proposition

Compared with the recognition model, the ex ante firm value is lower and evidence management is higher if the accounting standard requires full disclosure of evidence to the stakeholder.

1. **Proof:** replicating decisions under disclosure with a recognition threshold
2. **The strict dominance results from the assumption of a binary decision. It is not general.**
3. **Two general results:**
 - recognition with an optimal threshold mitigates EM by suppressing info.
 - full disclosure is not optimal in general.
4. **The optimal recognition scheme is left for future research.**
 - with binary decisions, a binary recognition is optimal
 - with continuous decisions, info suppression under a binary recognition is costly. There is a trade-off.
Comparison with the prior literature

- a one-step representation in the prior literature
 effort \((e)\) — state \((\omega)\) — report \((r)\) — decision \((d)\)

standard design
Comparison with the prior literature

- a one-step representation in the prior literature
 effort \((e)\) — state \((\omega)\) — report \((r)\) — decision \((d)\)

standard design
Comparison with the prior literature

- a one-step representation in the prior literature
 - effort \((e)\) — state \((\omega)\) — report \((r)\) — decision \((d)\)

- A measurement rule: \(\Pr(r|\omega)\)
Comparison with the prior literature

- a one-step representation in the prior literature
 - effort \((e) \) — state \((\omega) \) — report \((r) \) — decision \((d) \)
 - standard design

 ▶ A measurement rule: \(\Pr(r|\omega) \)
 ▶ The measurement rule’s consequences are the focus
Comparison with the prior literature

- A one-step representation in the prior literature
 effort \((e) \) — state \((\omega) \) — report \((r) \) — decision \((d) \)

- A measurement rule: \(\Pr(r|\omega) \)
- The measurement rule’s consequences are the focus
- But we are also interested in its design
Comparison with the prior literature

- a one-step representation in the prior literature
 effort (e) — state (ω) — report (r) — decision (d)

- A measurement rule: $\Pr(r|\omega)$
- The measurement rule’s consequences are the focus
- But we are also interested in its design
- Rule $\Pr(r|\omega)$ is not implementable:
Comparison with the prior literature

- a one-step representation in the prior literature

 \[
 \text{effort (} e \text{)} \rightarrow \text{state (} \omega \text{)} \rightarrow \text{report (} r \text{)} \rightarrow \text{decision (} d \text{)}
 \]

- standard design

- A measurement rule: \(\Pr(r|\omega) \)
- The measurement rule’s consequences are the focus
- But we are also interested in its design
- Rule \(\Pr(r|\omega) \) is not implementable:
 - If \(\omega \) is not observable, how is \(\Pr(r|\omega) \) generated?
Comparison with the prior literature

- a one-step representation in the prior literature
 - effort (e) — state (ω) — report (r) — decision (d)

A measurement rule: $\Pr(r|\omega)$
- The measurement rule’s consequences are the focus
- But we are also interested in its design
- Rule $\Pr(r|\omega)$ is not implementable:
 - If ω is not observable, how is $\Pr(r|\omega)$ generated?
 - If ω is observable, $r = \omega$ is usually optimal.
Comparison with the prior literature

- a one-step representation in the prior literature
 effort \((e) \) — state \((\omega) \) — report \((r) \) — decision \((d) \)

- A measurement rule: \(Pr(r|\omega) \)
- The measurement rule’s consequences are the focus
- But we are also interested in its design
- Rule \(Pr(r|\omega) \) is not implementable:
 - If \(\omega \) is not observable, how is \(Pr(r|\omega) \) generated?
 - If \(\omega \) is observable, \(r = \omega \) is usually optimal.

- What instruments do standard setters control?
Comparison with the prior literature

- a one-step representation in the prior literature
 effort \((e)\) — state \((\omega)\) — report \((r)\) — decision \((d)\)

- A measurement rule: \(\Pr(r|\omega)\)
- The measurement rule’s consequences are the focus
- But we are also interested in its design
- Rule \(\Pr(r|\omega)\) is not implementable:
 - If \(\omega\) is not observable, how is \(\Pr(r|\omega)\) generated?
 - If \(\omega\) is observable, \(r = \omega\) is usually optimal.
- What instruments do standard setters control?

- a two-step representation of accounting measurement
 state \((\omega)\) — evidence \((t)\) — report \((r)\) — decision \((d)\)

 manager influence

 standard design
Comparison with the prior literature

- a one-step representation in the prior literature

 effort \((e)\) — state \((\omega)\) — report \((r)\) — decision \((d)\)

- standard design

 - A measurement rule: \(\text{Pr}(r|\omega)\)
 - The measurement rule’s consequences are the focus
 - But we are also interested in its design
 - Rule \(\text{Pr}(r|\omega)\) is not implementable:
 - If \(\omega\) is not observable, how is \(\text{Pr}(r|\omega)\) generated?
 - If \(\omega\) is observable, \(r = \omega\) is usually optimal.

 - What instruments do standard setters control?

- a two-step representation of accounting measurement

 state \((\omega)\) — evidence \((t)\) — report \((r)\) — decision \((d)\)

 - manager influence
 - standard design
Comparison with the prior literature

- A one-step representation in the prior literature:

 \[
 \text{effort } (e) \rightarrow \text{state } (\omega) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
 \]

 - standard design

- A measurement rule: \(\Pr(r|\omega) \)
- The measurement rule’s consequences are the focus
- But we are also interested in its design
- Rule \(\Pr(r|\omega) \) is not implementable:
 - If \(\omega \) is not observable, how is \(\Pr(r|\omega) \) generated?
 - If \(\omega \) is observable, \(r = \omega \) is usually optimal.

- What instruments do standard setters control?

- A two-step representation of accounting measurement:

 \[
 \text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d)
 \]

 - manager influence
 - standard design

- A rule is a mapping from evidence, not from state, to report
Comparison with the prior literature

• A one-step representation in the prior literature
 effort \((e)\) — state \((\omega)\) — report \((r)\) — decision \((d)\)

 standard design

- A measurement rule: \(\text{Pr}(r|\omega)\)
- The measurement rule’s consequences are the focus
- But we are also interested in its design
- Rule \(\text{Pr}(r|\omega)\) is not implementable:
- If \(\omega\) is not observable, how is \(\text{Pr}(r|\omega)\) generated?
- If \(\omega\) is observable, \(r = \omega\) is usually optimal.

- What instruments do standard setters control?

• A two-step representation of accounting measurement
 state \((\omega)\) — evidence \((t)\) — report \((r)\) — decision \((d)\)

 manager influence standard design

- A rule is a mapping from evidence, not from state, to report
- Three instruments standard setters control
Extensions

1. endogenize δ_ω and L_ω in a capital market setting
2. different timing of EM
3. "good" EM
4. different technologies of EM
Take-away

- a two-step representation of accounting measurement

 \[
 \text{state } (\omega) - \text{ evidence } (t) - \text{ report } (r) - \text{ decision } (d)
 \]

 manager influence standard design
Take-away

- a two-step representation of accounting measurement

 state \((\omega) \) — evidence \((t) \) — report \((r) \) — decision \((d) \)

 manager influence — standard design

Pinyang Gao (Univ. of Chicago)
Take-away

- a two-step representation of accounting measurement
 \[\text{state} (\omega) - \text{evidence} (t) - \text{report} (r) - \text{decision} (d) \]
 - manager influence
 - standard design

- the statistical approach to threshold design is incomplete and misleading.
Take-away

- a two-step representation of accounting measurement
 \[\text{state } (\omega) \rightarrow \text{evidence } (t) \rightarrow \text{report } (r) \rightarrow \text{decision } (d) \]
 - manager influence
 - standard design

- the statistical approach to threshold design is incomplete and misleading.
Take-away

- A two-step representation of accounting measurement:
 - state (ω)
 - evidence (t)
 - report (r)
 - decision (d)

- Manager influence
- Standard design

- The statistical approach to threshold design is incomplete and misleading.

- The strategic approach is incentive-oriented and provides new explanations for cross-sectional variation of thresholds.