Investment Networks, Sectoral Comovement, and the Changing U.S. Business Cycle

CHRISTIAN VOM LEHN
Brigham Young University

THOMAS WINBERRY
Chicago Booth and NBER

SED St. Louis, June 27th 2019
Changing Nature of Business Cycles Since 1980s

- **Aggregate level**: dynamics of output “decoupled” from inputs
 1. Volatility of employment + investment nearly doubled relative to output
 2. Labor productivity has become acyclical
Changing Nature of Business Cycles Since 1980s

• **Aggregate level**: dynamics of output “decoupled” from inputs
 1. Volatility of employment + investment nearly doubled relative to output
 2. Labor productivity has become acyclical

• **Sectoral level**: relationship between inputs and output stable
 1. Volatility of employment + investment roughly unchanged relative to output
 2. Labor productivity is still procyclical
Changing Nature of Business Cycles Since 1980s

- **Aggregate level**: dynamics of output “decoupled” from inputs
 1. Volatility of employment + investment nearly doubled relative to output
 2. Labor productivity has become acyclical

- **Sectoral level**: relationship between inputs and output stable
 1. Volatility of employment + investment roughly unchanged relative to output
 2. Labor productivity is still procyclical

- **How can we reconcile these patterns?**
Our Contributions

1. **Show aggregate vs. sectoral divergence driven by changes in sectoral comovement** using BEA data on 18 sectors, 1947-2015
 - Since 1984, correlation of value added fell in half, but correlation of employment and investment stable
 - Accounts for aggregate changes in statistical sense
 - Inputs still correlated \implies stabilizes volatility \implies productivity less correlated with GDP
Our Contributions

1. **Show aggregate vs. sectoral divergence driven by changes in sectoral comovement** using BEA data on 18 sectors, 1947-2015

2. **Argue changes in comovement driven by Great Moderation** using multisector RBC model w/ linkages in intermediate inputs and investment goods
 - Feed in sectoral TFP process pre-1984 (high correlation) and post-1984 (low correlation)
 - \(\Rightarrow\) reproduces changes in sectoral comovement
 - Comovement of value added driven by TFP shocks, but **comovement of inputs driven by investment network**
 - Investment goods produced in two main hubs
 - Those hubs use intermediates from all sectors
Our Contributions

1. **Show aggregate vs. sectoral divergence driven by changes in sectoral comovement** using BEA data on 18 sectors, 1947-2015

2. **Argue changes in comovement driven by Great Moderation** using multisector RBC model w/ linkages in intermediate inputs and investment goods

3. **Show important aggregate implications** of matching changing nature of sectoral comovement
 - Model accounts for roughly 40% of aggregate decoupling
 - Sluggish investment behavior following recent recessions \Rightarrow sluggish employment growth as well
Our Contributions

1. **Show aggregate vs. sectoral divergence driven by changes in sectoral comovement** using BEA data on 18 sectors, 1947-2015

2. **Argue changes in comovement driven by Great Moderation** using multisector RBC model w/ linkages in intermediate inputs and investment goods

3. **Show important aggregate implications** of matching changing nature of sectoral comovement
 - Model accounts for **roughly 40% of aggregate decoupling**
 - Sluggish investment behavior following recent recessions
 \[\Rightarrow\] sluggish employment growth as well

\[\Rightarrow\] **Investment network key to propagating shocks**
Empirical Results
Data Sources

BEA industry database, 1947 - 2015 annual
(results on employment robust to using World KLEMS)

<table>
<thead>
<tr>
<th>Sectors</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>Finance and Insurance</td>
</tr>
<tr>
<td>Utilities</td>
<td>Professional, Scientific, and Technical Services</td>
</tr>
<tr>
<td>Construction</td>
<td>Management of Companies and Enterprises</td>
</tr>
<tr>
<td>Durable Manufacturing</td>
<td>Administrative and Waste Management Services</td>
</tr>
<tr>
<td>Non-Durable Manufacturing</td>
<td>Educational Services</td>
</tr>
<tr>
<td>Wholesale Trade</td>
<td>Health Care and Social Assistance</td>
</tr>
<tr>
<td>Retail Trade</td>
<td>Arts, Entertainment, and Recreation Services</td>
</tr>
<tr>
<td>Transportation and Warehousing</td>
<td>Accommodation and Food Services</td>
</tr>
<tr>
<td>Information</td>
<td>Other Services</td>
</tr>
</tbody>
</table>
Divergence of Aggregate and Sectoral Cycles

<table>
<thead>
<tr>
<th></th>
<th>Aggregated</th>
<th>Within-Sector (unweighted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(y_t))</td>
<td>2.26%</td>
<td>1.36%</td>
</tr>
<tr>
<td>(\sigma(l_t)/\sigma(y_t))</td>
<td>0.75</td>
<td>1.01</td>
</tr>
<tr>
<td>(\sigma(i_t)/\sigma(y_t))</td>
<td>2.59</td>
<td>3.45</td>
</tr>
<tr>
<td>(\rho(y_t - l_t, y_t))</td>
<td>0.64</td>
<td>0.27</td>
</tr>
</tbody>
</table>

- \(y_t \) = log of value added
- \(l_t \) = log of employment
- \(i_t \) = log of investment (in fixed assets)
- All variables have been HP filtered with smoothing = 6.25
Sectoral Comovement Has Changed Since 1980s

\[
\rho_{\tau}^X = \frac{\sum_{i=1}^{N} \sum_{j=i+1}^{N} \omega_{i\tau}^X \omega_{j\tau}^X \text{Corr}(x_{it}, x_{jt} | t \in \tau)}{\sum_{i=1}^{N} \sum_{j=i+1}^{N} \omega_{i\tau}^X \omega_{j\tau}^X}
\]

- \(x_{jt} \) is logged + HP-filtered variable of interest
- \(\tau \in \{\text{pre 1984, post 1984}\} \) is time period
- \(\omega_{i\tau}^X = \mathbb{E}[\frac{x_{jt}}{X_t}] \) are sectoral weights

<table>
<thead>
<tr>
<th></th>
<th>Employment</th>
<th>Investment</th>
<th>Value added</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951 - 1983</td>
<td>0.58</td>
<td>0.33</td>
<td>0.41</td>
</tr>
<tr>
<td>1984 - 2012</td>
<td>0.57</td>
<td>0.34</td>
<td>0.22</td>
</tr>
<tr>
<td>Difference</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.19</td>
</tr>
</tbody>
</table>
Aggregate Decoupling: Rise of Employment Volatility

\[
\frac{\text{Var}(l_t)}{\text{Var}(y_t)} = \omega_t \frac{\sum_{j=1}^{N} (\omega_{jt}^l)^2 \text{Var}(l_{jt})}{\sum_{j=1}^{N} (\omega_{jt}^y)^2 \text{Var}(y_{jt})} + (1 - \omega_t) \frac{\sum_{j=1}^{N} \sum_{o \neq i} \omega_{jt}^l \omega_{ot}^l \text{Cov}(l_{jt}, l_{ot})}{\sum_{j=1}^{N} \sum_{o \neq i} \omega_{jt}^y \omega_{ot}^y \text{Cov}(y_{jt}, y_{ot})}
\]

within-sector

between-sector
Aggregate Decoupling: Rise of Employment Volatility

\[
\frac{\text{Var}(l_t)}{\text{Var}(y_t)} = \omega_t \frac{\sum_{j=1}^{N} (\omega_{jt})^2 \text{Var}(l_{jt})}{\sum_{j=1}^{N} (\omega_{jt})^2 \text{Var}(y_{jt})} + (1 - \omega_t) \frac{\sum_{j=1}^{N} \sum_{o \neq i} \omega_{jt} \omega_{ot} \text{Cov}(l_{jt}, l_{ot})}{\sum_{j=1}^{N} \sum_{o \neq i} \omega_{jt} \omega_{ot} \text{Cov}(y_{jt}, y_{ot})}
\]

\[
\text{within-sector} + (1 - \omega_t) \text{between-sector}
\]
Aggregate Decoupling: Rise of Employment Volatility

\[
\frac{\text{Var}(l_t)}{\text{Var}(y_t)} = \omega_t \frac{\sum_{j=1}^{N}(\omega_{jt}^l)^2 \text{Var}(l_{jt})}{\sum_{j=1}^{N}(\omega_{jt}^y)^2 \text{Var}(y_{jt})} + (1 - \omega_t) \frac{\sum_{j=1}^{N} \sum_{o \neq i} \omega_{jt}^l \omega_{ot}^l \text{Cov}(l_{jt}, l_{ot})}{\sum_{j=1}^{N} \sum_{o \neq i} \omega_{jt}^y \omega_{ot}^y \text{Cov}(y_{jt}, y_{ot})}
\]

within-sector

between-sector

Relative Employment Variance Decomposition

0 0.5 1 1.5 2 2.5

Aggregate Decoupling: Rise of Employment Volatility

\[
\frac{\text{Var}(l_t)}{\text{Var}(y_t)} = \omega_t \frac{\sum_{j=1}^{N} (\omega_{jt})^2 \text{Var}(l_{jt})}{\sum_{j=1}^{N} (\omega_{jt})^2 \text{Var}(y_{jt})} + (1 - \omega_t) \frac{\sum_{j=1}^{N} \sum_{o \neq i} \omega_{jt} \omega_{ot} \text{Cov}(l_{jt}, l_{ot})}{\sum_{j=1}^{N} \sum_{o \neq i} \omega_{jt} \omega_{ot} \text{Cov}(y_{jt}, y_{ot})}
\]

within-sector

between-sector

Relative Employment Variance Decomposition

0 0.5 1 1.5 2 2.5
Aggregate Decoupling: Rise of Input Volatility

\[
\frac{\text{Var}(x_t)}{\text{Var}(y_t)} = \omega_t \left(\frac{\sum_{j=1}^{N} (\omega^j_{it})^2 \text{Var}(x_{jt})}{\sum_{j=1}^{N} (\omega^y_{jt})^2 \text{Var}(y_{jt})} \right) + (1 - \omega_t) \left(\frac{\sum_{j=1}^{N} \sum_{o \neq i} \omega^j_{it} \omega^y_{ot} \text{Cov}(x_{jt}, x_{ot})}{\sum_{j=1}^{N} \sum_{o \neq i} \omega^y_{jt} \omega^y_{ot} \text{Cov}(y_{jt}, y_{ot})} \right)
\]

Employment

<table>
<thead>
<tr>
<th></th>
<th>Pre-84</th>
<th>Post-84</th>
<th>Diff.</th>
<th>Pre-84</th>
<th>Post-84</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Var}(x_t)) / (\text{Var}(y_t))</td>
<td>0.60</td>
<td>0.93</td>
<td>55%</td>
<td>7.62</td>
<td>10.09</td>
<td>31%</td>
</tr>
<tr>
<td>Within Sector</td>
<td>0.48</td>
<td>0.45</td>
<td>-6%</td>
<td>6.56</td>
<td>6.95</td>
<td>6%</td>
</tr>
<tr>
<td>Between Sector</td>
<td>0.64</td>
<td>1.14</td>
<td>78%</td>
<td>7.92</td>
<td>11.48</td>
<td>45%</td>
</tr>
<tr>
<td>Within Weight</td>
<td>0.22</td>
<td>0.31</td>
<td>41%</td>
<td>0.22</td>
<td>0.31</td>
<td>41%</td>
</tr>
</tbody>
</table>

Investment

<table>
<thead>
<tr>
<th></th>
<th>Pre-84</th>
<th>Post-84</th>
<th>Diff.</th>
<th>Pre-84</th>
<th>Post-84</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Var}(x_t)) / (\text{Var}(y_t))</td>
<td>0.60</td>
<td>0.93</td>
<td>55%</td>
<td>7.62</td>
<td>10.09</td>
<td>31%</td>
</tr>
<tr>
<td>Within Sector</td>
<td>0.48</td>
<td>0.45</td>
<td>-6%</td>
<td>6.56</td>
<td>6.95</td>
<td>6%</td>
</tr>
<tr>
<td>Between Sector</td>
<td>0.64</td>
<td>1.14</td>
<td>78%</td>
<td>7.92</td>
<td>11.48</td>
<td>45%</td>
</tr>
<tr>
<td>Within Weight</td>
<td>0.22</td>
<td>0.31</td>
<td>41%</td>
<td>0.22</td>
<td>0.31</td>
<td>41%</td>
</tr>
</tbody>
</table>
Aggregate Decoupling: Acyclicality of Labor Productivity

\[\text{Corr}(y_t, y_t - l_t) = f \left(\text{Corr}(y_t, l_t), \frac{\text{Var}(l_t)}{\text{Var}(y_t)} \right) \]
Aggregate Decoupling: Acyclicality of Labor Productivity

\[\text{Corr}(y_t, y_t - l_t) = f\left(\text{Corr}(y_t, l_t), \frac{\text{Var}(l_t)}{\text{Var}(y_t)}\right) \]
Model
Production

• Fixed number of sectors $j \in \{1, ..., N\}$

• Gross output Y_{jt} produced according to

$$Y_{jt} = A_{jt} \left(K_{jt}^{\alpha_j} L_{jt}^{1-\alpha_j} \right)^{\theta_j} X_{jt}^{1-\theta_j}$$

• Intermediates input-output network

$$X_{jt} = \prod_{i=1}^{N} M^{\gamma_{ij}}_{ijt}, \text{ where } \sum_{i=1}^{N} \gamma_{ij} = 1$$

• TFP shocks

$$\log A_{jt+1} = \rho_j \log A_{jt} + \varepsilon_{jt+1}, \text{ where } (\varepsilon_{1t}, ..., \varepsilon_{Nt})' \sim N(0, \Sigma)$$
Investment

- Capital accumulation technology

\[K_{jt+1} = (1 - \delta)K_{jt} + I_{jt} \]

- Investment input-output network

\[I_{jt} = \prod_{i=1}^{N} \lambda_{ij}, \quad \text{where} \quad \sum_{i=1}^{N} \lambda_{ij} = 1 \]
Household and Equilibrium

- Representative household with preferences

\[\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t (\log C_t - \Psi L_t), \quad \text{where } C_t = \prod_{j=1}^{N} C_{jt}^{\xi_j} \text{ and } \sum_{j=1}^{N} \xi_j = 1 \]

- Output market clearing

\[C_{jt} + \sum_{i=1}^{N} M_{jit} + \sum_{i=1}^{N} I_{jit} = Y_{jt} \]

- Labor market clearing

\[\sum_{j=1}^{N} L_{jt} = L_t \]
Calibration Overview

- **Main exercise**: feed in “Great Moderation,” holding structure of economy fixed
 - Great moderation = fewer aggregate shocks (good luck)
 - No consensus that other parameters have changed
 - Results robust to changing other parameters
Calibration Overview

• **Main exercise**: feed in "Great Moderation," holding structure of economy fixed
 • Great moderation = fewer aggregate shocks (good luck)
 • No consensus that other parameters have changed
 • Results robust to changing other parameters

1. All parameters other than shocks are **constant pre vs. post 1984**
 • Production parameters from input-output database
 • Investment parameters from capital flows table
 • Preference parameters from final use tables

2. TFP process chosen to **match value added data pre vs. post 1984**
 • Persistence of value added y_{jt} pins down ρ_j
 • Covariance of value added (y_{jt}, y_{ot}) pins down Σ_T
“Great Moderation” Shocks

\[\text{Var}(y_t) = \sum_{i=1}^{N} \omega_{jt}^y \text{Var}(y_{jt}) + \sum_{i=1}^{N} \sum_{j \neq i} \omega_{jt}^y \omega_{jt}^y \sigma(y_{jt}) \sigma(y_{jt}) \rho(y_{jt}, y_{jt}) \]

<table>
<thead>
<tr>
<th>Data</th>
<th>Pre-84</th>
<th>Post-84</th>
<th>Diff.</th>
<th>Model</th>
<th>Pre-84</th>
<th>Post-84</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Variance ((x10^{-3}))</td>
<td>0.42</td>
<td>0.23</td>
<td>-0.19</td>
<td>0.44</td>
<td>0.21</td>
<td>-0.23</td>
<td></td>
</tr>
<tr>
<td>Only variances</td>
<td>0.35</td>
<td>0.27</td>
<td>-0.08</td>
<td>0.35</td>
<td>0.27</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>Only correlations</td>
<td>0.37</td>
<td>0.26</td>
<td>-0.11</td>
<td>0.39</td>
<td>0.23</td>
<td>-0.16</td>
<td></td>
</tr>
</tbody>
</table>
Model Results: Changes in Sectoral Comovement
Model Reproduces Changing Comovement Patterns

\[\rho_T^X \equiv \frac{\sum_{i=1}^{N} \sum_{j=i+1}^{N} \omega_{iT}^X \omega_{jT}^X \text{Corr}(x_{jt}, x_{jt} | t \in \tau)}{\sum_{i=1}^{N} \sum_{j=i+1}^{N} \omega_{iT}^X \omega_{jT}^X} \]

- \(x_{jt} \) is HP-filtered + logged variable of interest
- \(\omega_{iT}^X = \mathbb{E}[\frac{x_{jt}}{\chi_s}] \) are sectoral weights
- \(\tau \in \{\text{pre 1984, post 1984}\} \) is time period

<table>
<thead>
<tr>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emp.</td>
<td>Inv.</td>
</tr>
<tr>
<td>1951-1983</td>
<td>0.58</td>
</tr>
<tr>
<td>1984-2012</td>
<td>0.57</td>
</tr>
<tr>
<td>Difference</td>
<td>-0.01</td>
</tr>
</tbody>
</table>
Investment Network Key to Comovement Changes

<table>
<thead>
<tr>
<th>Year</th>
<th>Baseline Model</th>
<th>No Investment Network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emp.</td>
<td>Inv.</td>
</tr>
<tr>
<td>1951-1983</td>
<td>0.69</td>
<td>0.27</td>
</tr>
<tr>
<td>1984-2012</td>
<td>0.66</td>
<td>0.14</td>
</tr>
<tr>
<td>Difference</td>
<td>-0.03</td>
<td>-0.13</td>
</tr>
</tbody>
</table>

- Without investment network Λ, input correlations counterfactually fall post-1984

 \rightarrow **investment network necessary** to match data
Role of Investment Network

- **Key mechanism**: value added comovement driven by shocks, input comovement driven by sectoral shocks + networks

- Why? Sectoral shock increases investment demand
 1. *Investment network*: goods produced in two “hubs”
 2. *Intermediates network*: hubs use all sectors’ intermediates
 \[\implies \text{correlated increase in input demand} \]
Role of Investment Network

- **Key mechanism**: value added comovement driven by shocks, input comovement driven by sectoral shocks + networks

- Why? Sectoral shock increases investment demand
 1. **Investment network**: goods produced in two “hubs”
 2. **Intermediates network**: hubs use all sectors’ intermediates

 \[\implies\text{correlated increase in input demand}\]
Investment Network Generates Spillovers from Sectoral Shocks...

(a) Aggregate investment

(b) Aggregate employment

- Shock to durable manufacturing (an investment hub)
- Spillovers to employment and investment are stronger with investment linkages
...Which Makes Inputs More Correlated Post-1983

(a) Correlation of TFP shocks

(b) Correlation of value added

(c) Correlation of employment
Model Results: Aggregate Implications of Matching the Investment Network
Aggregate Implication 1: Rise of Input Volatility

\[
\frac{\text{Var}(x_t)}{\text{Var}(y_t)} = \omega_t \left(\sum_{j=1}^{N} (\omega_{jt}^l)^2 \text{Var}(x_{jt}) \right) \left(\sum_{j=1}^{N} (\omega_{jt}^y)^2 \text{Var}(y_{jt}) \right) + (1 - \omega_t) \left(\sum_{j=1}^{N} \sum_{o \neq i} \omega_{jt}^l \omega_{ot}^l \text{Cov}(x_{jt}, x_{ot}) \right) \left(\sum_{j=1}^{N} \sum_{o \neq i} \omega_{jt}^y \omega_{ot}^y \text{Cov}(y_{jt}, y_{ot}) \right)
\]

<table>
<thead>
<tr>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-84</td>
<td>Post-84</td>
</tr>
<tr>
<td>Var(l_t)</td>
<td>Var(y_t)</td>
</tr>
<tr>
<td>Within Sector</td>
<td>0.64</td>
</tr>
<tr>
<td>Between Sector</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Aggregate Implication 1: Rise of Input Volatility

\[
\frac{\text{Var}(x_t)}{\text{Var}(y_t)} = \omega_t \left(\frac{\sum_{j=1}^{N} (\omega^l_{jt})^2 \text{Var}(x_{jt})}{\sum_{j=1}^{N} (\omega^y_{jt})^2 \text{Var}(y_{jt})} \right) + (1 - \omega_t) \left(\frac{\sum_{j=1}^{N} \sum_{o \neq i} \omega^l_{jt} \omega^l_{ot} \text{Cov}(x_{jt}, x_{ot})}{\sum_{j=1}^{N} \sum_{o \neq i} \omega^y_{jt} \omega^y_{ot} \text{Cov}(y_{jt}, y_{ot})} \right)
\]

<table>
<thead>
<tr>
<th>Data Model</th>
<th>Pre-84</th>
<th>Post-84</th>
<th>Diff.</th>
<th>Pre-84</th>
<th>Post-84</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within Sector</td>
<td>0.60</td>
<td>0.93</td>
<td>55%</td>
<td>0.40</td>
<td>0.48</td>
<td>20%</td>
</tr>
<tr>
<td>Between Sector</td>
<td>0.48</td>
<td>0.45</td>
<td>-6%</td>
<td>0.34</td>
<td>0.28</td>
<td>-18%</td>
</tr>
<tr>
<td>Within Weight</td>
<td>0.22</td>
<td>0.31</td>
<td>41%</td>
<td>0.23</td>
<td>0.35</td>
<td>52%</td>
</tr>
</tbody>
</table>
Aggregate Implication 1: Rise of Input Volatility

\[
\frac{\text{Var}(x_t)}{\text{Var}(y_t)} = \omega_t \left(\frac{\sum_{j=1}^{N}(\omega_j)^2 \text{Var}(x_{jt})}{\sum_{j=1}^{N}(\omega_j)^2 \text{Var}(y_{jt})} \right) + (1 - \omega_t) \left(\frac{\sum_{j=1}^{N} \sum_{o \neq i} \omega_j \omega_o \text{Cov}(x_{jt}, x_{ot})}{\sum_{j=1}^{N} \sum_{o \neq i} \omega_j \omega_o \text{Cov}(y_{jt}, y_{ot})} \right)
\]

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre-84</td>
<td>Post-84</td>
</tr>
<tr>
<td>(\text{Var}(i_t) / \text{Var}(y_t))</td>
<td>7.62</td>
<td>10.09</td>
</tr>
<tr>
<td>Within Sector</td>
<td>6.56</td>
<td>6.95</td>
</tr>
<tr>
<td>Between Sector</td>
<td>7.92</td>
<td>11.48</td>
</tr>
<tr>
<td>Within Weight</td>
<td>0.22</td>
<td>0.31</td>
</tr>
<tr>
<td>Diff.</td>
<td>6.04</td>
<td>6.90</td>
</tr>
</tbody>
</table>
Aggregate Implication 2: Sluggish Recoveries Following Shocks to Investment Hubs

- In our model, agg. employment linked to investment demand
 \[\Rightarrow \] investment-driven recessions spill over to employment

- **Big picture**: sluggish investment growth can drive sluggish employment growth
 - Last two recessions arguably caused by shocks which generate sluggish investment growth during recovery
 - Can this channel account for sluggish employment growth in last two recoveries?
Aggregate Implication 2: Sluggish Recoveries Following Shocks to Investment Hubs

• In our model, agg. employment linked to investment demand \(\Rightarrow \) investment-driven recessions spill over to employment

• **Big picture**: sluggish investment growth can drive sluggish employment growth
 - Last two recessions arguably caused by shocks which generate sluggish investment growth during recovery
 - Can this channel account for sluggish employment growth in last two recoveries?

• **Exercise today**: case study of shock to construction sector
 - Investment network \(\Rightarrow \) deep recession and slow recovery
Aggregate Implication 2: Sluggish Recovery Following Shock to Construction Sector

(a) Aggregate investment

(b) Aggregate employment

- Feed in -2 s.d. shock in periods $t = 0, 1$
- Investment and employment have deep and persistent recession due to investment linkages
Conclusion
Our contributions

1. “Aggregate decoupling” driven by changes in sectoral comovement
 - Inputs still comove over the cycle, output does not

2. In our model, changing comovement driven by Great Moderation + structure of investment network
 - Sectoral shocks generate correlated increases in inputs

3. Aggregate implications of matching investment network:
 - Rising volatility of inputs relative to output
 - Sluggish recoveries in investment and employment are linked
Appendix
Changes in Sectoral Comovement After 1984: Comovement with Aggregate

\[\hat{\rho}_T^x \equiv \frac{\sum_{i=1}^{N} \omega_{i_T} \rho_{i_T}^x}{\sum_{i=1}^{N} \omega_{iT}} \]

- \(x_{jt} \) is HP-filtered + logged variable of interest
- \(\omega_{i_T}^x = \mathbb{E}[\frac{x_{jt}}{x_s}] \) are sectoral weights
- \(\tau \in \{ \text{pre 1984, post 1984} \} \) is time period
- \(\rho_{jT}^x \) is sector’s correlation w/ agg.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th></th>
<th></th>
<th>Alt. Measure</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-2012</td>
<td>0.57 0.33</td>
<td>-0.24**</td>
<td>0.77 0.62</td>
<td>-0.15**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951-1983</td>
<td>0.58 0.41</td>
<td>-0.17**</td>
<td>0.78 0.62</td>
<td>-0.11**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984-2012</td>
<td>0.57 0.22</td>
<td>-0.35**</td>
<td>0.77 0.53</td>
<td>-0.24**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>-0.01 -0.19**</td>
<td>-0.18**</td>
<td>-0.01 -0.14**</td>
<td>-0.13**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Changes in Sectoral Comovement After 1984: Investment Comovement

<table>
<thead>
<tr>
<th></th>
<th>Pairwise</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951-2012</td>
<td>0.31</td>
<td>0.60</td>
</tr>
<tr>
<td>1951-1983</td>
<td>0.33</td>
<td>0.62</td>
</tr>
<tr>
<td>1984-2012</td>
<td>0.34</td>
<td>0.63</td>
</tr>
<tr>
<td>Difference</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Changes in Sectoral Comovement After 1984: Results by Industry
Changes in Sectoral Comovement After 1984: Bandpass Filter

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th></th>
<th>Baseline</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emp.</td>
<td>VA</td>
<td>Diff.</td>
<td>Emp.</td>
</tr>
<tr>
<td>1951-2012</td>
<td>0.57</td>
<td>0.33</td>
<td>-0.24**</td>
<td>0.76</td>
</tr>
<tr>
<td>1951-1983</td>
<td>0.58</td>
<td>0.41</td>
<td>-0.17**</td>
<td>0.77</td>
</tr>
<tr>
<td>1984-2012</td>
<td>0.57</td>
<td>0.22</td>
<td>-0.35**</td>
<td>0.76</td>
</tr>
<tr>
<td>Difference</td>
<td>-0.01</td>
<td>-0.19**</td>
<td>-0.18**</td>
<td>-0.01</td>
</tr>
</tbody>
</table>
Changes in Sectoral Comovement After 1984: Unweighted

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th></th>
<th>Unweighted</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emp.</td>
<td>VA</td>
<td>Diff.</td>
<td>Emp.</td>
</tr>
<tr>
<td>1951-2012</td>
<td>0.57</td>
<td>0.33</td>
<td>-0.24**</td>
<td>0.44</td>
</tr>
<tr>
<td>1951-1983</td>
<td>0.58</td>
<td>0.41</td>
<td>-0.17**</td>
<td>0.46</td>
</tr>
<tr>
<td>1984-2012</td>
<td>0.57</td>
<td>0.22</td>
<td>-0.35**</td>
<td>0.45</td>
</tr>
<tr>
<td>Difference</td>
<td>-0.01</td>
<td>-0.19**</td>
<td>-0.18**</td>
<td>-0.01</td>
</tr>
</tbody>
</table>
Changes in Sectoral Comovement After 1984: World KLEMS Data
Changes in Sectoral Comovement After 1984: Rolling Windows

Rolling windows of sectoral correlations

Pre-1983: 0.58
Post-1983: 0.57

Pre-1983: 0.41
Post-1983: 0.22

Value added correlations
Employment correlations
Allowing the Networks to Change

<table>
<thead>
<tr>
<th></th>
<th>Baseline Model</th>
<th></th>
<th>Changing Networks</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emp.</td>
<td>VA</td>
<td>Diff.</td>
<td>Emp.</td>
</tr>
<tr>
<td>1951-1983</td>
<td>0.69</td>
<td>0.39</td>
<td>-0.30</td>
<td>0.62</td>
</tr>
<tr>
<td>1984-2012</td>
<td>0.66</td>
<td>0.19</td>
<td>-0.47</td>
<td>0.56</td>
</tr>
<tr>
<td>Difference</td>
<td>-0.03</td>
<td>-0.20</td>
<td>-0.17</td>
<td>-0.06</td>
</tr>
</tbody>
</table>

- Value added shares θ, intermediates network Γ, and consumption shares ξ straightforward to compute in two subperiods.
- **Investment network** Λ_τ imputed from final use table and capital flows table.
- Labor shares α_τ from World KLEMS and sectoral crosswalk to BEA.
Model Replicates Changing Comovement Patterns

Δemployment correlationτ – Δvalue added correlationτ

$R^2 = 0.52$

\Rightarrow Model explains 50% of sector level changes
Production Parameters

\[Y_{jt} = A_{jt}(K_{jt}^\alpha L_{jt}^{1-\alpha_j})^{\theta_j}X_{jt}^{1-\theta_j} \]
where \(X_{jt} = \Pi_{i=1}^N M_{ijt}^{\gamma_{ij}} \)

1. **Value added shares \(\theta \):** average value added as share of gross output, BEA I-O database 1947 - 2015
Production Parameters

\[Y_{jt} = A_{jt} (K_{jt}^{\alpha_j} L_{jt}^{1-\alpha_j})^{\theta_j} X_{jt}^{1-\theta_j} \]
where \(X_{jt} = \prod_{i=1}^{N} M_{ijt}^{\gamma_{ij}} \)

1. Value added shares \(\theta \)

2. Labor shares \(\alpha \): average labor compensation as share of total costs, BEA I-O database 1987-2015
Production Parameters

\[Y_{jt} = A_{jt}(K_{jt}^{\alpha_j} L_{jt}^{1-\alpha_j})^{\theta_j} X_{jt}^{1-\theta_j} \quad \text{where} \quad X_{jt} = \prod_{i=1}^{N} M_{ijt}^{\gamma_{ij}} \]

1. Value added shares θ
2. Labor shares α
3. Intermediates input-output network Γ: average intermediates cost as share of total costs, BEA I-O database 1947-2015
Investment Parameters

\[K_{jt+1} = (1 - \delta)K_{jt} + l_{jt} \quad \text{where} \quad l_{jt} = \prod_{i=1}^{N} I_{ijt}^{\lambda_{ij}} \]

1. Depreciation rate \(\delta = 0.1 \) (annual)
\[K_{jt+1} = (1 - \delta)K_{jt} + l_{jt} \quad \text{where} \quad l_{jt} = \prod_{i=1}^{N} l_{ijt}^{\lambda_{ij}} \]

1. Depreciation rate \(\delta = 0.1 \)

2. Investment input-output network \(\Lambda \): cost of investment as share of total investment, BEA capital flows database 1997 (+ maintenance investment out of own-sector output)
\[E_0 \sum_{t=0}^{\infty} \beta^t (\log C_t - \psi L_t), \quad \text{where } C_t = \prod_{j=1}^{N} C_{jt}^{\xi_j} \text{ and } \sum_{j=1}^{N} \xi_j = 1 \]

1. Discount factor $\beta = 0.96$
\[E_0 \sum_{t=0}^{\infty} \beta^t (\log C_t - \psi L_t), \quad \text{where } C_t = \Pi_{j=1}^N C_{jt} \xi_j \text{ and } \sum_{j=1}^N \xi_j = 1 \]

1. Discount factor $\beta = 0.96$

2. Labor disutility $\psi = 0.55$ (normalization)
\[E_0 \sum_{t=0}^{\infty} \beta^t (\log C_t - \Psi L_t), \text{ where } C_t = \prod_{j=1}^{N} C_{jt}^{\xi_j} \text{ and } \sum_{j=1}^{N} \xi_j = 1 \]

1. Discount factor $\beta = 0.96$
2. Labor disutility $\Psi = 0.55$ (normalization)
3. Consumption shares ξ_j from share of consumption in final use table
\[\log A_{jt+1} = \rho_j \log A_{jt} + \varepsilon_{jt+1}, \text{ where } (\varepsilon_{1t}, \ldots, \varepsilon_{Nt})' \sim N(0, \Sigma_T) \]
and \(\tau \in \{\text{pre-1984, post-1984}\} \)

1. Persistence parameters \(\rho_j \) to match persistence of value added \(V_{jt} \)
\[
\log A_{jt+1} = \rho_j \log A_{jt} + \varepsilon_{jt+1}, \quad \text{where } (\varepsilon_{1t}, \ldots, \varepsilon_{Nt})' \sim N(0, \Sigma_{\tau}) \\
\text{and } \tau \in \{\text{pre-1984,post-1984}\}
\]

1. Persistence parameters \(\rho_j \)
2. Covariance matrix \(\Sigma_{\tau} \) parameterized to match covariance matrix of value-added \(V_{jt} \) in each subsample

Variances, pre-1984

![Graph showing variances pre-1984]
\[\log A_{jt+1} = \rho_j \log A_{jt} + \varepsilon_{jt+1}, \text{ where } (\varepsilon_{1t}, \ldots, \varepsilon_{Nt})' \sim N(0, \Sigma_\tau) \]
and \(\tau \in \{\text{pre-1984}, \text{post-1984}\} \)

1. Persistence parameters \(\rho_j \)
2. Covariance matrix \(\Sigma_\tau \) parameterized to match covariance matrix of value-added \(V_{jt} \) in each subsample

Variances, post-1984
\[\log A_{jt+1} = \rho_j \log A_{jt} + \varepsilon_{jt+1}, \text{ where } (\varepsilon_{1t}, \ldots, \varepsilon_{Nt})' \sim N(0, \Sigma_\tau) \]

and \(\tau \in \{\text{pre-1984, post-1984}\} \)

1. Persistence parameters \(\rho_j \)
2. Covariance matrix \(\Sigma_\tau \) parameterized to match covariance matrix of value-added \(V_{jt} \) in each subsample

Pairwise correlations, pre-1984
\[\log A_{jt+1} = \rho_j \log A_{jt} + \varepsilon_{jt+1}, \text{ where } (\varepsilon_{1t}, \ldots, \varepsilon_{Nt})' \sim N(0, \Sigma_T) \]

and \(\tau \in \{\text{pre-1984, post-1984}\} \)

1. Persistence parameters \(\rho_j \)

2. Covariance matrix \(\Sigma_T \) parameterized to match covariance matrix of value-added \(V_{jt} \) in each subsample

Pairwise correlations, post-1984

![Data vs Model Plot]