Capital Deepening and Non-Balanced Economic Growth*

Daron Acemoglu  Veronica Guerrieri
MIT University of Chicago

This Version: August 2007.

Abstract

This paper constructs a model of non-balanced economic growth. The main economic force is the combination of differences in factor proportions and capital deepening. Capital deepening tends to increase the relative output of the sector with a greater capital share, but simultaneously induces a reallocation of capital and labor away from that sector. We illustrate this economic mechanism using a two-sector general equilibrium model, with a constant elasticity of substitution between the two sectors and Cobb-Douglas production functions in each sector. Non-balanced growth is shown to be consistent with an asymptotic equilibrium with constant interest rate and capital share in national income. We also show that for realistic parameter values the model generates dynamics that are broadly consistent with US data. In particular, the model generates more rapid growth of employment in less capital-intensive sectors, more rapid growth of real output in more capital-intensive sectors, and aggregate behavior in line with the Kaldor facts.

Keywords: capital deepening, multi-sector growth, non-balanced economic growth.
JEL Classification: O40, O41, O30.

*We thank John Laitner, Guido Lorenzoni, Iván Werning, three anonymous referees and especially the editor Nancy Stokey for very helpful suggestions. We also thank seminar participants at Chicago, Federal Reserve Bank of Richmond, IZA, MIT, NBER Economic Growth Group, 2005, Society of Economic Dynamics, Florence 2004 and Vancouver 2006, and Universitat of Pompeu Fabra for useful comments and Ariel Burstein for help with the simulations. Acemoglu acknowledges financial support from the Russell Sage Foundation and the NSF.


1 Introduction

Most models of economic growth strive to be consistent with the “Kaldor facts”, i.e., the relative constancy of the growth rate, the capital-output ratio, the share of capital income in GDP and the real interest rate (see Kaldor, 1963, and also Denison, 1974, Homer and Sylla, 1991, Barro and Sala-i-Martin, 2004). Beneath this balanced picture, however, there are systematic changes in the relative importance of various sectors (see Kuznets, 1957, 1973, Chenery, 1960, Kongsamut, Rebelo and Xie, 2001). A recent literature develops models of economic growth and development that are consistent with such structural changes, while still remaining approximately consistent with the Kaldor facts.¹ This literature typically starts by positing non-homothetic preferences consistent with Engel’s law and thus emphasizes the demand-side reasons for non-balanced growth; the marginal rate of substitution between different goods changes as an economy grows, directly leading to a pattern of uneven growth between sectors. An alternative thesis, first proposed by Baumol (1967), emphasizes the potential non-balanced nature of economic growth resulting from differential productivity growth across sectors, but has received less attention in the literature.²

In this paper, we present a two-sector model that highlights a natural supply-side reason for non-balanced growth related to Baumol’s (1967) thesis. Differences in factor proportions across sectors (i.e., different shares of capital) combined with capital deepening will lead to non-balanced growth because an increase in capital-labor ratio raises output more in sectors with greater capital intensity. We illustrate this economic mechanism using an economy with a constant elasticity of substitution between two sectors and Cobb-Douglas production functions within each sector. We show that the equilibrium (and the Pareto optimal) allocations feature non-balanced growth at the sectoral level but are consistent with the Kaldor facts in the long

¹See, for example, Matsuyama (1992), Echevarria (1997), Laitner (2000), Kongsamut, Rebelo and Xie (2001), Caselli and Coleman (2001), Gollin, Parente and Rogerson (2002). See also the interesting papers by Stokey (1988), Matsuyama (2002), Foellmi and Zweimuller (2002), and Buera and Kaboski (2006), which derive non-homotheticities from the presence of a “hierarchy of needs” or “hierarchy of qualities”. Finally, Hall and Jones (2006) point out that there are natural reasons for health care to be a superior good (because expected life expectancy multiplies utility) and show how this can account for the increase in health care spending. Matsuyama (2005) presents an excellent overview of this literature.

²Two exceptions are the two recent independent papers by Ngai and Pissarides (2006) and Zuleta and Young (2006). Ngai and Pissarides (2006), for example, construct a model of multi-sector economic growth inspired by Baumol. In Ngai and Pissarides’s model, there are exogenous Total Factor Productivity differences across sectors, but all sectors have identical Cobb-Douglas production functions. While both of these papers are potentially consistent with the Kuznets and Kaldor facts, they do not contain the main contribution of our paper: non-balanced growth resulting from factor proportion differences and capital deepening.
run. In the empirically relevant case where the elasticity of substitution between the two sectors is less than one, one of the sectors (typically the more capital-intensive one) grows faster than the rest of the economy, but because the relative prices move against this sector, its nominal output (value added) grows at a slower rate than the rest. Moreover, we show that capital and labor are continuously reallocated away from the more rapidly growing sector.3

![Graph: Employment, nominal value added, and real value added in high capital intensity sectors relative to low capital intensity sectors, 1948-2005.](image)

Figure 1: Employment, nominal value added, and real value added in high capital intensity sectors relative to low capital intensity sectors, 1948-2005. See Section 3 and Appendix B for industry classifications. Data from the National Income and Product Accounts (NIPA).

Figure 1 shows that the distinctive qualitative implications by our model are consistent with the broad patterns in US data over the past 60 years. Motivated by our theory, this figure divides US industries into two groups according to their capital intensity and shows

---

3 As we will see below, in our economy the elasticity of substitution between products will be less than one if and only if the (short-run) elasticity of substitution between labor and capital is less than one. In view of the time-series and cross-industry evidence, a short-run elasticity of substitution between labor and capital less than one appears reasonable. See, for example, the surveys by Hamermesh (1993) and Nadiri (1970), which show that the great majority of the estimates are less than one. Recent work by Krusell, Ohanian, Rios-Rull, and Violante (2000) and Antras (2001) also reports estimates of the elasticity that are less than 1. Finally, estimates implied by the response of investment to the user cost of capital also typically imply an elasticity of substitution between capital and labor significantly less than 1 (see, e.g., Chirinko, 1993, Chirinko, Fazzari and Mayer, 1999, or Mairesse, Hall and Mulkay, 1999).
that there is more rapid growth of real value added in the more capital-intensive sectors, but
nominal value added and employment grow more in the less capital-intensive sectors. The
opposite movements of real value added and employment (or nominal value added) between
sectors with high and low capital intensity is a distinctive feature of our approach (for the
theoretically and empirically relevant case of the elasticity of substitution less than one).

Finally, we present a simple calibration of our model to investigate whether its quantita-
tive as well as its qualitative predictions are broadly consistent with US data. Even though
the model does not feature the demand-side factors that are undoubtedly important for non-
balanced growth, it generates relative growth rates of capital-intensive sectors that are consis-
tent with the US data over the past 60 years. For example, our calibration generates increases
in the relative output of the more capital-intensive industries that are consistent with the
changes in US data between 1948 and 2004 and accounts for one sixth to one third of the in-
crease in the relative employment of the less capital-intensive industries. Our calibration also
shows that convergence to the asymptotic (equilibrium) allocation is very slow, and consistent
with the Kaldor facts, along this transition path the share of capital in national income and
the interest rate are approximately constant.

The rest of the paper is organized as follows. Section 2 presents our model of non-balanced
growth, characterizes the full dynamic equilibrium of this economy, and shows how the model
generates non-balanced sectoral growth while remaining consistent with the Kaldor facts. Sec-
tion 3 undertakes a simple calibration of our benchmark economy to investigate whether the
dynamics generated by the model are consistent with the changes in the relative output and
employment of capital-intensive sectors and the Kaldor facts. Section 4 concludes. Appendix
A contains additional theoretical results, while Appendix B, which is available on the Web,
provides further details on the NIPA data and the sectoral classifications used in Figure 1 and
in Section 3, and provides additional evidence consistent with the patterns shown in Figure 1.

\section{A Model of Non-Balanced Growth}

In this section, we present the environment, which is a two-sector model with exogenous
technological change. The working paper version, Acemoglu and Guerrieri (2006), presents
results on non-balanced growth in a more general setting as well as an extension of the model
that incorporates endogenous technological change.
2.1 Demographics, Preferences and Technology

The economy admits a representative household with the standard preferences
\[
\int_0^\infty \exp \left( - (\rho - n) t \right) \frac{\tilde{c}(t)^{1-\theta} - 1}{1-\theta} dt,
\]
(1)
where \( \tilde{c}(t) \) is consumption per capita at time \( t \), \( \rho \) is the rate of time preferences and \( \theta \geq 0 \) is the inverse of the intertemporal elasticity of substitution (or the coefficient of relative risk aversion). Labor is supplied inelastically and is equal to population \( L(t) \) at time \( t \), which grows at the exponential rate \( n \in [0, \rho) \), so that
\[
L(t) = \exp(n t) L(0).
\]
(2)

The unique final good is produced competitively by combining the output of two sectors (intermediates) with an elasticity of substitution \( \varepsilon \in [0, \infty) \):
\[
Y(t) = F[Y_1(t), Y_2(t)]
= \left[ \gamma Y_1(t) \frac{\varepsilon-1}{\varepsilon} + (1-\gamma) Y_2(t) \frac{\varepsilon-1}{\varepsilon} \right]^{\frac{\varepsilon}{\varepsilon-1}},
\]
(3)
where \( \gamma \in (0,1) \). Both sectors use labor, \( L \), and capital, \( K \). Capital depreciates at the rate \( \delta \geq 0 \).

The aggregate resource constraint, which is equivalent to be the budget constraint of the representative household, requires consumption and investment to be less than output,
\[
\dot{K}(t) + \delta K(t) + C(t) \leq Y(t),
\]
(4)
where \( C(t) \equiv \tilde{c}(t) L(t) \) is total consumption and investment consists of new capital, \( \dot{K} \), and replenishment of depreciated capital, \( \delta K \).

The two goods \( Y_1 \) and \( Y_2 \) are produced competitively with production functions
\[
Y_1(t) = M_1(t) L_1(t)^{\alpha_1} K_1(t)^{1-\alpha_1} \quad \text{and} \quad Y_2(t) = M_2(t) L_2(t)^{\alpha_2} K_2(t)^{1-\alpha_2},
\]
(5)
where \( K_1, L_1, K_2 \) and \( L_2 \) are the levels of capital and labor used in the two sectors.

The parameters \( \alpha_1 \in (0,1) \) and \( \alpha_2 \in (0,1) \) determine which sector is more “capital intensive”. When \( \alpha_1 > \alpha_2 \), sector 1 is less capital intensive (or more “labor intensive”), while the converse applies when \( \alpha_1 < \alpha_2 \). In the rest of the analysis, we assume that
\[
\alpha_1 > \alpha_2,
\]
(A1)
which only rules out the case where $\alpha_1 = \alpha_2$ (the labeling of the sector with the lower capital share as sector 1 is without loss of any generality).

Technological progress in both sectors is exogenous and takes the form
\[
\frac{M_1(t)}{M_1(t)} = m_1 > 0 \quad \text{and} \quad \frac{M_2(t)}{M_2(t)} = m_2 > 0.
\]

(6)

Capital and labor market clearing require that at each date
\[
K_1(t) + K_2(t) \leq K(t),
\]
and
\[
L_1(t) + L_2(t) \leq L(t),
\]
where $K$ denotes the aggregate capital stock and $L$ is total population. The restriction that each of $L_1, L_2, K_1,$ and $K_2$ has to be nonnegative is left implicit throughout.

2.2 The Social Planner’s Problem and the Competitive Equilibrium

Let us denote the rental price of capital and the wage rate by $R$ and $w$ and the interest rate by $r$. Also let $p_1$ and $p_2$ be the prices of the $Y_1$ and $Y_2$ goods. We normalize the price of the final good, $P$, to one at all points, so that
\[
1 \equiv P(t) = \left[\gamma^\varepsilon p_1(t)^{1-\varepsilon} + (1 - \gamma)^\varepsilon p_2(t)^{1-\varepsilon}\right]^\frac{1}{1-\varepsilon}.
\]

(9)

A competitive equilibrium is defined in the usual way as paths for factor and intermediate goods prices $[r(t), w(t), p_1(t), p_2(t)]_{t \geq 0}$, employment and capital allocations $[L_1(t), L_2(t), K_1(t), K_2(t)]_{t \geq 0}$ such that firms maximize profits, and markets clear, and consumption and savings decisions $[c(t), \tilde{c}(t)]_{t \geq 0}$ maximize the utility of the representative household.

Since markets are complete and competitive, we can appeal to the Second Welfare Theorem and characterize the competitive equilibrium by solving the social planner’s problem of maximizing the utility of the representative household.\(^4\) This problem takes the form:
\[
\max_{[L_1(t), L_2(t), K_1(t), K_2(t), \tilde{c}(t)]_{t \geq 0}} \int_0^\infty \exp (- (\rho - n) t) \frac{\tilde{c}(t)^{1-\theta} - 1}{1-\theta} dt \quad \text{(SP)}
\]
subject to (2), (6), (7), (8), and the resource constraint
\[
\dot{K}(t) + \delta K(t) + \tilde{c}(t) L(t) \leq Y(t) = F\left[M_1(t) L_1(t)^{\alpha_1} K_1(t)^{1-\alpha_1}, M_2(t) L_2(t)^{\alpha_2} K_2(t)^{1-\alpha_2}\right],
\]

\(^4\)See Acemoglu and Guerrieri (2006) for an explicit characterization of the equilibrium.
together with the initial conditions $K(0) > 0$, $L(0) > 0$, $M_1(0) > 0$ and $M_2(0) > 0$. The objective function in this program is continuous and strictly concave, while the constraint set forms a convex-valued continuous correspondence, thus the social planner’s problem will have a unique solution, and this solution will correspond to the unique competitive equilibrium.

Once this solution is characterized, the appropriate multipliers give the competitive prices. For example, given the normalization in (9), which is equivalent to the multiplier on (10) being normalized to one, the multipliers associated with (7) and (8) give the rental rate, $R \equiv r + \delta$, and the wage rate, $w$. The prices of the intermediate goods, which correspond to the (social) values of the intermediates, can then be obtained as

$$p_1(t) = \gamma \left( \frac{Y_1(t)}{Y(t)} \right)^{\frac{1}{\varepsilon}} \quad \text{and} \quad p_2(t) = (1 - \gamma) \left( \frac{Y_2(t)}{Y(t)} \right)^{\frac{1}{\varepsilon}}.$$  (11)

### 2.3 The Static Optimal Allocation

Inspection of (SP) shows that the maximization problem can be broken into two parts. First, given the state variables, $K(t)$, $L(t)$, $M_1(t)$ and $M_2(t)$, the allocation of factors across sectors, $L_1(t), L_2(t), K_1(t)$ and $K_2(t)$, is chosen to maximize output $Y(t) = F[Y_1(t), Y_2(t)]$ so as to achieve the largest possible set of allocations that satisfy the constraint set. Second, given this choice of factor allocations at each date, the time path of $K(t)$ and $\tilde{c}(t)$ can be chosen to maximize the value of the objective function. These two parts correspond to the characterization of static and dynamic optimal allocations. We first characterize the static optimal allocations and the implied competitive prices $p_1(t), p_2(t), r(t)$ and $w(t)$, and then turn to the dynamic optimal allocations.

Let us define the maximized value of current output given capital stock $K(t)$ at time $t$ as

$$\Phi(K(t), t) = \max_{L_1(t), L_2(t), K_1(t), K_2(t)} F[Y_1(t), Y_2(t)] \quad \text{subject to (5), (6), (7), (8),}$$

and given $L(t), M_1(t), M_2(t)$.

It is straightforward to see that this will involve the equalization of the marginal products of capital and labor in the two sectors, which can be written as

$$\gamma \alpha_1 \left( \frac{Y(t)}{Y_1(t)} \right)^{\frac{1}{\varepsilon}} \frac{Y_1(t)}{L_1(t)} = (1 - \gamma) \alpha_2 \left( \frac{Y(t)}{Y_2(t)} \right)^{\frac{1}{\varepsilon}} \frac{Y_2(t)}{L_2(t)}.$$  (13)
and
\[
\gamma (1 - \alpha_1) \left( \frac{Y(t)}{Y_1(t)} \right)^{\frac{1}{\gamma}} \frac{Y_1(t)}{K_1(t)} = (1 - \gamma) (1 - \alpha_2) \left( \frac{Y(t)}{Y_2(t)} \right)^{\frac{1}{\gamma}} \frac{Y_2(t)}{K_2(t)},
\]
(14)

Since the key static decision involves the allocation of labor and capital between the two sectors, we define the shares of capital and labor allocated to the labor-intensive sector (sector 1) as
\[
\kappa(t) \equiv \frac{K_1(t)}{K(t)} \quad \text{and} \quad \lambda(t) \equiv \frac{L_1(t)}{L(t)}.
\]
Clearly, we also have \(1 - \kappa \equiv K_2/K\) and \(1 - \lambda \equiv L_2/L\). Combining (13) and (14), we obtain
\[
\kappa(t) = \left[ 1 + \left( \frac{1 - \alpha_2}{1 - \alpha_1} \right) \left( \frac{1 - \gamma}{\gamma} \right) \left( \frac{Y_1(t)}{Y_2(t)} \right)^{\frac{1 - \varepsilon}{\varepsilon}} \right]^{-1},
\]
(15)
and
\[
\lambda(t) = \left[ 1 + \left( \frac{1 - \alpha_1}{1 - \alpha_2} \right) \left( \frac{\alpha_2}{\alpha_1} \right) \left( \frac{1 - \kappa(t)}{\kappa(t)} \right) \right]^{-1}.
\]
(16)

Equation (16) shows that the share of labor in sector 1, \(\lambda\), is (strictly) increasing in \(\kappa\). We next determine how these two shares change with capital accumulation and technological change.

**Proposition 1** In the optimal allocation (competitive equilibrium), we have
\[
\frac{d \ln \kappa(t)}{d \ln K(t)} = - \frac{d \ln \kappa(t)}{d \ln L(t)} = \frac{(1 - \varepsilon) (\alpha_1 - \alpha_2) (1 - \kappa(t))}{1 + (1 - \varepsilon) (\alpha_1 - \alpha_2) (\kappa(t) - \lambda(t))} > 0 \iff (\alpha_1 - \alpha_2) (1 - \varepsilon) > 0; \quad \text{and} \quad
\]
(17)
\[
\frac{d \ln \kappa(t)}{d \ln M_2(t)} = - \frac{d \ln \kappa(t)}{d \ln M_1(t)} = \frac{(1 - \varepsilon) (1 - \kappa(t))}{1 + (1 - \varepsilon) (\alpha_1 - \alpha_2) (\kappa(t) - \lambda(t))} > 0 \iff \varepsilon < 1.
\]
(18)

**Proof.** To derive these expressions, rewrite (15) as
\[
\phi(\kappa, L, K, M_1, M_2) \equiv \kappa - \left[ 1 + \left( \frac{1 - \alpha_2}{1 - \alpha_1} \right) \left( \frac{1 - \gamma}{\gamma} \right) \left( \frac{Y_1}{Y_2} \right)^{\frac{1 - \varepsilon}{\varepsilon}} \right]^{-1} = 0,
\]
where, from (5), \(Y_1/Y_2 = \lambda^{\alpha_1} (1 - \lambda)^{-\alpha_2} k^{1-\alpha_1} (1 - \kappa)^{-(1-\alpha_2)} L^{\alpha_1-\alpha_2} K^{\alpha_2-\alpha_1} M_1/M_2\), with \(\lambda\) given as in (16). Applying the Implicit Function Theorem to \(\phi(\kappa, L, K, M_1, M_2)\) and using the expression for \(Y_1/Y_2\) given here, we obtain (17) and (18). ■

Equation (17) states that when the elasticity of substitution between sectors, \(\varepsilon\), is less than one, the fraction of capital allocated to the capital-intensive sector declines in the stock of capital (and conversely, when \(\varepsilon > 1\), this fraction is increasing in the stock of capital). To obtain the intuition for this comparative static, which is useful for understanding many of the results that will follow, note that if \(K\) increased and \(\kappa\) remained constant, then the capital-intensive sector, sector 2, would grow by *more* than sector 1—because an equi-proportionate
increase in capital raises the output of the more capital-intensive sector by more. The relative values (prices) given in (11) then imply that when \( \varepsilon < 1 \), the relative value of the capital-intensive sector will fall more than proportionately, inducing a greater fraction of capital to be allocated to the less capital-intensive sector 1. The intuition for the converse result when \( \varepsilon > 1 \) is straightforward. An important implication of this proposition is that as long as \( \varepsilon \neq 1 \) and there is capital deepening (i.e., \( K/L \) is increasing over time), growth will be non-balanced and capital will be allocated unequally between the two sectors. This is the basis of non-balanced growth in our model.\(^5\) The rest of our analysis will show that non-balanced growth in this model is consistent with the Kaldor facts asymptotically and can approximate the Kaldor facts even along transitional dynamics.

Equation (18) also implies that when the elasticity of substitution, \( \varepsilon \), is less than one, an improvement in the technology of a sector causes the share of capital going to that sector to fall. The intuition is again the same: when \( \varepsilon < 1 \), increased production in a sector causes a more than proportional decline in its relative value, inducing a reallocation of capital away from it towards the other sector (again the converse results and intuition apply when \( \varepsilon > 1 \)).

In view of equation (16), the results in Proposition 1 also apply to \( \lambda \) (e.g., \( d \ln \lambda (t) / d \ln K (t) = -d \ln \lambda (t) / d \ln L (t) > 0 \) if and only if \( (\alpha_1 - \alpha_2) (1 - \varepsilon) > 0 \)).

Next, since factor prices, \( R \) and \( w \), correspond to the multipliers on the constraints (7) and (8), we also have

\[
    w (t) = \gamma \alpha_1 \left( \frac{Y (t)}{Y_1 (t)} \right) ^{\frac{1}{\varepsilon}} \frac{Y_1 (t)}{L_1 (t)},
\]

and

\[
    R (t) = \Phi_K (K (t), t) = \gamma (1 - \alpha_1) \left( \frac{Y (t)}{Y_1 (t)} \right) ^{\frac{1}{\varepsilon}} \frac{Y_1 (t)}{K_1 (t)},
\]

where \( \Phi_K (K (t), t) \) is the derivative of the maximized output function, \( \Phi (K (t), t) \), with respect to capital. Factor prices take the familiar form, equal to the (value of) marginal product of a factor from the derived production function in (10). To obtain an intuition for the economic forces, we next analyze how changes in the state variables, \( L, K, M_1 \) and \( M_2 \), impact on these factor prices. Combining (19) and (20), relative factor prices are obtained as

\[
    \frac{w (t)}{R (t)} = \frac{\alpha_1}{1 - \alpha_1} \left( \frac{\kappa (t) K (t)}{\lambda (t) L (t)} \right),
\]

\(^5\) As a corollary, note that with \( \varepsilon = 1 \), output levels in the two sectors could grow at different rates, but there would be no reallocation of capital and labor between the two sectors, and \( \kappa \) and \( \lambda \) would remain constant.
and the capital share in aggregate income is

\[
\sigma_K(t) \equiv \frac{R(t) K(t)}{Y(t)} = \gamma (1 - \alpha_1) \left( \frac{Y(t)}{Y_1(t)} \right)^{\frac{1-\varepsilon}{\varepsilon}} \kappa(t)^{-1}.
\]

(22)

Proposition 2 In the optimal allocation (competitive equilibrium), we have

\[
\frac{d \ln \left( \frac{w(t)}{R(t)} \right)}{d \ln K(t)} = - \frac{d \ln \left( \frac{w(t)}{R(t)} \right)}{d \ln L(t)} = \frac{1}{1 + (1 - \varepsilon) (\alpha_1 - \alpha_2) (\kappa(t) - \lambda(t))} > 0;
\]

\[
\frac{d \ln \left( \frac{w(t)}{R(t)} \right)}{d \ln M_2(t)} = - \frac{d \ln \left( \frac{w(t)}{R(t)} \right)}{d \ln M_1(t)} = \frac{(1 - \varepsilon) (\kappa(t) - \lambda(t))}{1 + (1 - \varepsilon) (\alpha_1 - \alpha_2) (\kappa(t) - \lambda(t))} < 0 \Leftrightarrow (\alpha_1 - \alpha_2) (1 - \varepsilon) > 0;
\]

\[
\frac{d \ln \sigma_K(t)}{d \ln K(t)} = - \frac{(1 - \varepsilon) (\alpha_1 - \alpha_2)^2 (1 - \kappa(t)) \kappa(t)}{[1 - \alpha_1 + (\alpha_1 - \alpha_2) \kappa(t)] [1 + (1 - \varepsilon) (\alpha_1 - \alpha_2) (\kappa(t) - \lambda(t))]} < 0 \Leftrightarrow \varepsilon < 1; \text{ and}
\]

(23)

\[
\frac{d \ln \sigma_K(t)}{d \ln M_2(t)} = - \frac{d \ln \sigma_K(t)}{d \ln M_1(t)}
\]

\[
= \frac{(\alpha_2 - \alpha_1) (1 - \varepsilon) (1 - \kappa(t)) \kappa(t)}{[1 - \alpha_1 + (\alpha_1 - \alpha_2) \kappa(t)] [1 + (1 - \varepsilon) (\alpha_1 - \alpha_2) (\kappa(t) - \lambda(t))]} < 0 \Leftrightarrow (\alpha_1 - \alpha_2) (1 - \varepsilon) > 0.
\]

(24)

Proof. The first two expressions follow from differentiating equation (21) and Proposition 1. To prove (23) and (24), note that from (3) and (15), we have

\[
\left( \frac{Y_1}{Y} \right)^{\frac{\varepsilon-1}{\varepsilon}} = \gamma^{-1} \left( 1 + \frac{1 - \alpha_1}{1 - \alpha_2} \left( \frac{1 - \kappa}{\kappa} \right) \right)^{-1}.
\]

Then, (23) and (24) follow by differentiating \( \sigma_K \) as given in (22) with respect to \( L, K, M_1 \) and \( M_2 \), and using the results in Proposition 1. \( \blacksquare \)

The most important result in this proposition is (23), which links the impact of the capital stock on the capital share in national income to the elasticity of substitution. Since a negative relationship between the share of capital in national income and the capital stock is equivalent to an elasticity of substitution between aggregate labor and capital that is less than one, this result also implies that, as claimed in footnote 3, the elasticity of substitution between capital and labor is less than one if and only if \( \varepsilon \) is less than one. Intuitively, an increase in the capital stock of the economy causes the output of the more capital-intensive sector, sector 2, to increase relative to the output in the less capital-intensive sector (despite the fact that
the share of capital allocated to the less-capital intensive sector increases as shown in equation (17)). This then increases the production of the more capital-intensive sector, and, when $\varepsilon < 1$, it reduces the relative value of (and reward to) capital and thus the share of capital in national income. The converse result applies when $\varepsilon > 1$.

Moreover, when $\varepsilon < 1$, (24) implies that an increase in $M_1$ is “capital biased” and an increase in $M_2$ is “labor biased”. The intuition for why an increase in the productivity of the sector that is intensive in capital is biased toward labor (and vice versa) is once again similar: when the elasticity of substitution between the two sectors, $\varepsilon$, is less than one, an increase in the output of a sector (this time driven by a change in technology) decreases its price more than proportionately, thus reducing the relative compensation of the factor used more intensively in that sector (see Acemoglu, 2002). When $\varepsilon > 1$, we have the converse pattern, and an increase in $M_2$ is “capital biased,” while an increase in $M_1$ is “labor biased”.

2.4 The Dynamic Optimal Allocation

We now characterize the full dynamic equilibrium as a solution to the social planner’s problem (SP) above. The previous subsection characterized the optimal static allocation of resources and the resulting maximized value of output $\Phi(K(t),t)$. Given this, problem (SP) can be equivalently written as

$$\max_{[K(t),\tilde{c}(t)]_{t \geq 0}} \int_0^\infty \exp\left(- (\rho - n) t\right) \tilde{c}(t) \frac{1 - \theta}{1 - \theta} dt$$

(subject to

$$\dot{K}(t) = \Phi(K(t),t) - \delta K(t) - \exp(nt) L(0) \tilde{c}(t),$$

and the initial condition $K(0) > 0$. The constraint (25) is written as an equality since it cannot hold as a strict inequality in an optimal allocation (otherwise, consumption would be raised, yielding a higher objective value). The other initial conditions of the original problem (SP) are incorporated into the maximized value of output $\Phi(K(t),t)$ in the constraint (25). This maximization problem is simpler than (SP), though it is still not equivalent to the standard problems encountered in growth models because constraint (25) is not an autonomous differential equation. Nevertheless, it is possible to further simplify this problem by expressing it in terms of transformed variables. For this purpose, we first assume:

either (i) $m_1/\alpha_1 < m_2/\alpha_2$ and $\varepsilon < 1$; or (ii) $m_1/\alpha_1 > m_2/\alpha_2$ and $\varepsilon > 1$,  \quad (A2)
which ensures that the \textit{asymptotically dominant sector} will be the labor-intensive sector, sector 1. The asymptotically dominant sector is the sector that determines the long-run growth rate of the economy. Observe that this condition compares not the exogenous rates of technological progress, \(m_1\) and \(m_2\), but \(m_1/\alpha_1\) and \(m_2/\alpha_2\), which we refer to as the \textit{augmented} rates of technological progress. This is because the two sectors differ in terms of their capital intensities, and technological change will be augmented by the differential rates of capital accumulation in the two sectors. For example for a given level of Hicks-neutral technological progress, because of the adjustment of the capital stock to technological change, the labor-intensive sector 1 will have a lower augmented rate of technological progress and sector 2 will achieve faster growth of output.

Assumption (A2) also implies that when \(\varepsilon < 1\), the sector with the lower rate of augmented technological progress will be the asymptotically dominant sector. This is because, when \(\varepsilon < 1\), the output of the two sectors are highly complementary and the slower growing sector will determine the asymptotic growth rate of the economy. When \(\varepsilon > 1\), the converse happens and the more rapidly growing sector determines the asymptotic growth rate of the economy and is the asymptotically dominant sector. Appendix A shows that parallel results apply when the converse of (A2) holds. In any case (A2) represents the empirically more relevant case. As already argued, \(\varepsilon < 1\) provides a good approximation to the data. In addition, (A1) implies \(\alpha_1 > \alpha_2\). Therefore, as long as \(m_1\) and \(m_2\) are not too different, the economy will be in case (i) of (A2).

Let us next introduce the following normalized variables,

\[
    c(t) = \frac{\bar{c}(t)}{M_1(t)^{1/\alpha_1}} \quad \text{and} \quad \chi(t) = \frac{K(t)}{L(t) M_1(t)^{1/\alpha_1}},
\]

which represent consumption and capital per capita normalized by the \textit{augmented technology} of the \textit{asymptotically dominant sector}, which, in view of Assumption (A2), is sector 1 (and thus the corresponding augmented technology is \(M_1(t)^{1/\alpha_1}\)). The next proposition shows that the solution to (SP)—and thus the dynamic equilibrium—can be expressed in terms of three autonomous differential equations in \(c\), \(\chi\) and \(\kappa\).

\textbf{Proposition 3} Suppose (A1) and (A2) hold. Then the solution to (SP) or (SP') satisfies the
following three differential equations

\[
\frac{\dot{c}(t)}{c(t)} = \frac{1}{\theta} \left[ (1 - \alpha_1) \gamma \eta(t)^{1/\varepsilon} \lambda(t)^{\alpha_1} \kappa(t)^{-\alpha_1} \chi(t)^{-\alpha_1} - \delta - \rho \right] - \frac{m_1}{\alpha_1}, \tag{27}
\]

\[
\frac{\dot{\chi}(t)}{\chi(t)} = \lambda(t)^{\alpha_1} \kappa(t)^{1-\alpha_1} \chi(t)^{-\alpha_1} \eta(t) - \chi(t)^{-1} c(t) - \delta - n - \frac{m_1}{\alpha_1},
\]

\[
\frac{\dot{\kappa}(t)}{\kappa(t)} = \frac{(1 - \kappa(t)) \left[ (\alpha_1 - \alpha_2) \frac{\dot{\chi}(t)}{\chi(t)} + m_2 - \frac{\alpha_2 m_1}{\alpha_1} \right]}{(1 - \varepsilon)^{-1} + (\alpha_1 - \alpha_2)(\kappa(t) - \lambda(t))},
\]

where

\[
\eta(t) \equiv \gamma^{\varepsilon - 1} \left[ 1 + \left( \frac{1 - \alpha_1}{1 - \alpha_2} \left( \frac{1 - \kappa(t)}{\kappa(t)} \right) \right) \right]^{\frac{1}{\varepsilon - 1}}, \tag{28}
\]

with initial conditions \(\chi(0)\) and \(\kappa(0)\), and also satisfies the transversality condition

\[
\lim_{t \to \infty} \exp \left( - \left( \rho - \frac{(1 - \theta) m_1}{\alpha_1} - n \right) t \right) \chi(t) = 0. \tag{29}
\]

Moreover, any allocation that satisfies (27) and (29) is a solution to (SP) or (SP').

**Proof.** The equivalence of the solutions to (SP) and (SP') follows from the discussion in the text. Next consider the maximization (SP'). This corresponds to a maximization problem with a continuously differentiable objective function and a nonempty set of controls, so Pontryagin's Maximum Principle is necessary for an optimal solution to this program (e.g., Acemoglu, 2007, Theorem 7.9, or Fleming and Rishel, 1975, Theorem 5.1). Moreover, because the objective function is strictly concave and the constraint set is convex, the Mangasarian Sufficiency Theorem (e.g., Acemoglu, 2007, Theorem 7.11) implies that an allocation that satisfies the Maximum Principle uniquely achieves the maximum of (SP'). Thus we only need to show the equivalence between the Maximum Principle and equations (27)-(29). The Hamiltonian for (SP') takes the form

\[
H(\bar{c}, K, \mu) = \exp \left( - (\rho - n) t \right) \frac{\bar{c}(t)^{1-\theta}}{1 - \theta} - \frac{1}{1 - \theta} + \mu(t) \left[ \Phi(K(t), t) - \delta K(t) - \exp(nt) L(0) \bar{c}(t) \right],
\]

with \(\mu(t)\) denoting the costate variable. Inspection of (SP') shows that paths that reach zero consumption or zero capital stock at any finite \(t\) cannot be optimal, thus we can focus on interior solutions and write the Maximum Principle as

\[
H_c(\bar{c}, K, \mu) = \exp \left( - (\rho - n) t \right) \bar{c}(t)^{-\theta} - \mu(t) \exp(nt) L(0) = 0 \tag{30}
\]

\[
H_K(\bar{c}, K, \mu) = \mu(t) \left( \Phi_K(K(t), t) - \delta \right) = -\dot{\mu}(t),
\]

12
whenever the optimal control $\bar{c}(t)$ is continuous. Combining these two equations, we obtain the Euler equation for consumption growth as

$$\frac{d\bar{c}(t)}{\bar{c}(t)} = \frac{1}{\theta} \left[ \Phi_K (K(t), t) - \delta - \rho \right].$$

Moreover, equations (13) and (14) imply

$$\Phi(K(t), t) = \gamma \eta(t)^{1/\varepsilon} M_1(t) L(t)^{\alpha_1} \lambda(t)^{\alpha_1} K(t)^{1-\alpha_1} \kappa(t)^{1-\alpha_1},$$

and

$$\Phi_K(K(t), t) = (1 - \alpha_1) \gamma \eta(t)^{1/\varepsilon} M_1(t) L(t)^{\alpha_1} \lambda(t)^{\alpha_1} K(t)^{-\alpha_1} \kappa(t)^{-\alpha_1}.$$ (33)

The law of motion of technology in (6) together with the normalization in (26) implies $\dot{c}(t)/c(t) = (d\bar{c}(t)/dt)/\bar{c}(t) - m_1/\alpha_1$. Also from (26), we have $\chi(t)^{-\alpha_1} \equiv M_1(t) L(t)^{\alpha_1} K(t)^{-\alpha_1}$. Using the previous two expressions and substituting (33) into (31), we obtain the first equation in (27). Next, again using (26) to write

$$\frac{\dot{\chi}(t)}{\chi(t)} = \frac{\dot{K}(t)}{K(t)} - n - \frac{m_1}{\alpha_1}$$

and substituting for $\dot{K}(t)$ from (25) and for $\Phi(K(t), t)$ from (32), we obtain the second equation in (27). Notice also that both of these equations depend on $\kappa(t)$. To obtain the law of motion of $\kappa(t)$ is, differentiate (15) and then substitute from (5) and (16). Here $\kappa(0)$ is also taken as given because for given $K(0)$, (15) uniquely pins down $\kappa(0)$.

Finally, the transversality condition of (SP$^0$) requires

$$\lim_{t \to \infty} \left[ \exp \left( - (\rho - n) t \right) \mu(t) K(t) \right] = 0.$$ Combining (26) with (30) shows that this condition is equivalent to (29). ■

The first equation in (27) is the standard Euler equation, written in terms of the normalized variables. In fact, equation (33) together with (26) immediately shows that the marginal product of capital is $(1 - \alpha_1) \gamma \eta(t)^{1/\varepsilon} \lambda(t)^{\alpha_1} \kappa(t)^{-\alpha_1} \chi(t)^{-\alpha_1}$, which is the first term in the square bracket. The second equation determines the law of motion of the normalized capital stock, $\chi(t)$. The third equation, in turn, specifies the evolution of the share of capital between the two sectors. We also impose the following parameter condition motivated by (29), which will ensure that the economy does not grow fast enough to violate the transversality condition:

$$\rho - n \geq (1 - \theta) \frac{m_1}{\alpha_1}.$$ (A3)
Our next task is to use Proposition 3 to provide a tighter characterization of the dynamic optimal (equilibrium) allocation. For this purpose, let us first define a Constant Growth Path (CGP) as a dynamic allocation that features constant aggregate consumption growth.\(^6\) The next theorem will show that there exists a unique CGP that is a solution to the social planner’s problem (SP) and will provide closed-form solutions for the growth rates of different aggregates in this equilibrium. The notable feature of the CGP will be that despite the constant growth rate of aggregate consumption, growth will be non-balanced because output, capital and employment in the two sectors will grow at different rates. Let us define:

\[
\dot{L}_s(t) \equiv n_s(t), \quad \frac{K_s(t)}{L_s(t)} \equiv z_s(t), \quad \frac{Y_s(t)}{K_s(t)} \equiv g_s(t) \text{ for } s = 1, 2, \text{ and } \frac{\dot{K}(t)}{K(t)} = \frac{\dot{Y}(t)}{Y(t)} = g(t),
\]

so that \(n_s\) and \(z_s\) denote the growth rate of labor and capital stock, \(m_s\) denotes the growth rate of technology, and \(g_s\) denotes the growth rate of output in sector \(s\). Moreover, whenever they exist, we denote the corresponding asymptotic growth rates by asterisks, so that \(n^*_s = \lim_{t \to \infty} n_s(t), \ z^*_s = \lim_{t \to \infty} z_s(t), \) and \(g^*_s = \lim_{t \to \infty} g_s(t)\). Similarly, let us denote the asymptotic capital and labor allocation decisions by asterisks, that is,

\[
\kappa^* = \lim_{t \to \infty} \kappa(t) \text{ and } \lambda^* = \lim_{t \to \infty} \lambda(t).
\]

Then we have the following characterization of the unique CGP.

**Theorem 1** Suppose (A1)-(A3) hold. Then, there exists a unique CGP where consumption per capita grows at the rate \(g^*_c = m_1/\alpha_1\), and we have \(\kappa^* = 1,\)

\[
\chi^* = [\frac{(\theta m_1/\alpha_1 + \rho + \delta)}{\gamma^{\frac{\epsilon}{1-\epsilon}} (1 - \alpha_1)}]^{-\frac{1}{\alpha_1}}, \tag{34}
\]

and

\[
c^* = \gamma^{\frac{\epsilon}{1-\epsilon}} (\chi^*)^{1-\alpha_1} - \chi^* \left( \delta + n + \frac{m_1}{\alpha_1} \right). \tag{35}
\]

Moreover, the growth rates of output, capital and employment in the two sectors are

\[
g^* = g^*_1 = z^*_1 = z^*_1 = n + \frac{m_1}{\alpha_1}, \tag{36}
\]

\[
z^*_2 = n - (1 - \epsilon) m_2 + [1 + (1 - \epsilon) \alpha_2] \frac{m_1}{\alpha_1} < g^*, \tag{37}
\]

\[
g^*_2 = n + \epsilon m_2 + (1 - \epsilon \alpha_2) \frac{m_1}{\alpha_1}, \tag{38}
\]

\(^6\)Kongsamut, Rebelo and Xie (2001) refer to this as a “Generalized Balanced Growth Path”.

14
\[ n_1^* = n \text{ and } n_2^* = n - (1 - \varepsilon) \left[ m_2 - \alpha_2 \frac{m_1}{\alpha_1} \right] < n_1^*. \] (39)

**Proof.** From Proposition 3, the optimal allocation must satisfy (27)-(29). A CGP requires that \( \lim_{t \to \infty} \hat{c}(t)/c(t) \) is constant, thus from the first equation of (27),
\[ \eta(t)^{1/\varepsilon} \lambda(t)^{\alpha_1} \kappa(t)^{-\alpha_1} \chi(t)^{-\alpha_1} \text{ must be constant as } t \to \infty. \]
Consequently, as \( t \to \infty \),
\[
\frac{1}{\varepsilon} \hat{\eta}(t) + \alpha_1 \frac{\hat{\lambda}(t)}{\lambda(t)} - \alpha_1 \frac{\hat{\kappa}(t)}{\kappa(t)} - \alpha_1 \frac{\hat{\chi}(t)}{\chi(t)} = 0. \quad (40)
\]
Differentiating (16) and (28) with respect to time and using the third equation of the system (27), we obtain expressions for \( \hat{\eta}(t)/\eta(t), \hat{\lambda}(t)/\lambda(t), \text{ and } \hat{\chi}(t)/\chi(t) \) in terms of \( \kappa(t)/\kappa(t) \).
Substituting these into (40) and rearranging, we can express (40) as an autonomous first-order differential equation in \( \kappa(t) \) as
\[
\frac{\dot{\kappa}(t)}{\kappa(t)} = G(\kappa(t)) \alpha_1 \alpha_2 (1 - \varepsilon) \left( \frac{m_2}{\alpha_2} - \frac{m_1}{\alpha_1} \right), \quad (41)
\]
where
\[
G(\kappa(t)) = \frac{[(\alpha_1 - \alpha_2) \kappa(t) + (1 - \alpha_1)] (1 - \kappa(t))}{(\alpha_1 - \alpha_2) \kappa(t) + \alpha_2 (1 - \alpha_1)}. \]
Clearly, \( G(0) = 1/\alpha_2, G(1) = 0 \) and \( G'(\kappa) < 0 \) for any \( \kappa \). These observations together with Assumption (A2) imply that (41) has a unique solution with \( \kappa(t) \to \kappa^* = 1 \). Next, from (16) and (28) it follows that \( \hat{\eta}(t)/\eta(t) = \hat{\lambda}(t)/\lambda(t) = 0 \) when \( \kappa(t)/\kappa(t) = 0 \), and \( \lambda(t) \to \lambda^* = 1, \eta(t) \to \eta^* = \gamma^{\varepsilon/(\varepsilon - 1)} \).
Equation (40) then implies that \( \lim_{t \to \infty} \chi(t) = \chi^* \in (0, \infty) \) must also exist, thus \( \hat{\chi}(t)/\chi(t) \to 0 \). Now setting the first two equations in (27) equal to zero and using the fact that \( \kappa^* = \lambda^* = 1 \) and \( \eta^* = \gamma^{\varepsilon/(\varepsilon - 1)} \), we obtain (34) and (35). By construction, there are no other allocations with constant \( \hat{c}(t)/c(t) \).

To derive equations (36)-(39), combine (26) with the result that \( \hat{\chi}(t)/\chi(t) \to 0 \), which implies \( z^* = n + m_1/\alpha_1 \). Moreover, \( \kappa^* = \lambda^* = 1 \) together with the market clearing conditions (7) and (8)—as equalities—give \( z_1^* = z^* \) and \( n_1^* = n \). Finally, differentiating (3), (5), (13) and (14), and using the preceding results, we obtain (36)-(39) as unique solutions.

To complete the proof that this allocation is the unique CGP we need to establish that it satisfies the transversality condition (29). This follows immediately from the fact that \( \lim_{t \to \infty} \chi(t) = \chi^* \) exists and is finite combined with Assumption (A3), which implies that \( \lim_{t \to \infty} \exp(- (\rho - (1 - \theta) m_1/\alpha_1 - n) t) \to 0 \).

There are a number of important implications of this theorem. First, growth is non-balanced, in the sense that the two sectors grow at different asymptotic rates (i.e., at different
rates even as $t \to \infty$). The intuition for this result is more general than the specific parameterization of the model and is driven by the juxtaposition of factor proportion differences between sectors and capital deepening. In particular, suppose that there is capital deepening (which here is due to technological progress). Now, if both capital and labor were allocated to the two sectors at constant proportions, the more capital-intensive sector, sector 2, will grow faster than sector 1. The faster growth in sector 2 will reduce the relative value of its output, leading to a reallocation of capital and labor towards sector 1. However, this reallocation cannot entirely offset the greater increase in the output of sector 2, since, if it did, the change in relative values (prices) that stimulated the reallocation would not take place. Therefore, growth must be non-balanced. In particular, if $\varepsilon < 1$, capital and labor will be reallocated away from the more rapidly growing sector towards the more slowly growing sector. In this case, the more slowly growing sector, sector 1, becomes the asymptotically dominant sector and determines the growth rate of aggregate output as shown in equation (36). Note that sector 1 is the one growing more slowly because Assumption (A2), together with $\varepsilon < 1$, implies $m_1/\alpha_1 < m_2/\alpha_2$.

Appendix A shows that similar results apply when the converse of (A2) holds.

Second, the theorem shows that in the CGP the shares of capital and labor allocated to sector 1 tend to one (i.e., $\kappa^* = \lambda^* = 1$). Nevertheless, at all points in time both sectors produce positive amounts and both sectors grow at rates greater than the rate of population growth (so this limit point is never reached). Moreover, in the more interesting case where $\varepsilon < 1$, equation (38) implies $g_2^* > g^* = g_1^*$, so that the sector that is shedding capital and labor (sector 2) is growing faster than the rest of the economy, even asymptotically. Therefore, the rate at which capital and labor are allocated away from this sector is determined in equilibrium to be exactly such that this sector still grows faster than the rest of the economy. This is the sense in which non-balanced growth is not a trivial outcome in this economy (with one of the sectors shutting down), but results from the positive and differential growth of the two sectors.

Finally, it can be verified that the share of capital in national income and the interest rate are constant in the CGP. For example, under (A2) we have $\sigma_K^* = 1 - \alpha_1$. This implies that the asymptotic capital share in national income will reflect the capital share of the dominant sector. Also, again under (A2) the asymptotic interest rate is

$$r^* = (1 - \alpha_1) \gamma^{\frac{\varepsilon}{\gamma - \delta}} (\chi^*)^{-\alpha_1} - \delta.$$  

These results are the basis of the claim in the Introduction that this economy features both non-
balanced growth at the sectoral level and aggregate growth consistent with the Kaldor facts. In particular, the CGP matches both the Kaldor facts and generates unequal growth between the two sectors. However, at the CGP one of the sectors has already become (vanishingly) small relative to the other. Therefore, this theorem does not answer the question of whether we can have a situation in which both sectors have non-trivial employment levels and the capital share in national income and the interest rate are approximately constant. This question is investigated quantitatively in the next section. Before doing so, we establish the stability of the CGP.

2.5 Dynamics and Stability

The previous subsection demonstrated that there exists a unique CGP with non-balanced sectoral growth—that is, aggregate output growth at a constant rate together with differential sectoral growth and reallocation of factors of production across sectors. We now investigate whether the economy will tend to approach the CGP. We will focus on allocations in the neighborhood of the CGP, thus focusing on local (saddle-path) stability. Because there are two pre-determined (state) variables, $\chi$ and $\kappa$, with initial values $\chi(0)$ and $\kappa(0)$, this type of stability requires the linearized system in the neighborhood of the asymptotic path to have a (unique) two-dimensional manifold of solutions converging to $c^*$, $\chi^*$ and $\kappa^*$. The next theorem states that this is the case.

**Theorem 2** Suppose (A1)-(A3) hold. Then the non-linear system (27) is locally (saddle-path) stable, in the sense that in the neighborhood of $c^*$, $\chi^*$ and $\kappa^*$, there is a unique two-dimensional manifold of solutions that converge to $c^*$, $\chi^*$ and $\kappa^*$.

**Proof.** Let us rewrite the system (27) in a more compact form as

$$\dot{x} = f(x),$$

(42)

where $x \equiv (c \quad \chi \quad \kappa)'$. To investigate the dynamics of the system (42) in the neighborhood of the steady state, consider the linear system

$$\dot{z} = J(x^*) z,$$
where $z \equiv x - x^*$ and $x^*$ is such that $f(x^*) = 0$, where $J(x^*)$ is the Jacobian of $f(x)$ evaluated at $x^*$. Differentiation and some algebra enable us to write this Jacobian matrix as

$$J(x^*) = \begin{bmatrix} a_{cc} & a_{c\chi} & a_{c\kappa} \\ a_{\chi c} & a_{\chi\chi} & a_{\chi\kappa} \\ a_{\kappa c} & a_{\kappa\chi} & a_{\kappa\kappa} \end{bmatrix},$$

where

\begin{align*}
a_{cc} &= a_{kc} = a_{k\chi} = 0 \\
-a_{c\chi} &= \gamma \varepsilon (\chi^*)^{-\alpha_1-1} \frac{\alpha_1 (1 - \alpha_1)}{\theta} \\
a_{c\kappa} &= \gamma \varepsilon (\chi^*)^{-\alpha_1} \frac{1 - \alpha_1}{\theta (1 - \varepsilon) (1 - \alpha_2)} \\
a_{\chi c} &= -1 \\
a_{\chi\chi} &= \frac{\varepsilon}{\alpha_1} (1 - \alpha_1) \left[ (1 - \alpha_1) \left( \alpha_2 - \alpha_1 \right) + (1 - \alpha_1) \right] \\
a_{\chi\kappa} &= -\varepsilon \left( \delta + n + \frac{m_1}{\alpha_1} \right) \\
a_{\kappa\kappa} &= (1 - \varepsilon) \left( \frac{m_2 - \alpha_2}{\alpha_1 m_1} \right). \end{align*}

The determinant of the Jacobian is $\det J(x^*) = -a_{k\kappa} a_{c\chi} a_{\chi c}$. The above expressions show that $a_{c\chi}$ and $a_{\chi c}$ are negative. Next, it can be seen that $a_{k\kappa}$ is always negative since, in view of (A2), $\varepsilon \leq 1 \iff m_2/\alpha_2 \geq m_1/\alpha_1$. The fact that $a_{k\kappa} < 0$ establishes that $\det J(x^*) > 0$, so the steady state corresponding to the CGP is hyperbolic and thus the dynamics of the linearized system represent the local dynamics of the original system. Moreover, either all the eigenvalues are positive or two of them are negative and one is positive. To determine which one of these two possibilities is the case, we look at the characteristic equation given by $\det (J(x^*) - vI) = 0$, where $v$ denotes the vector of the eigenvalues. This equation can be expressed as the following cubic in $v$, with roots corresponding to the eigenvalues:

$$(a_{k\kappa} - v) \left[ v (a_{\chi\chi} - v) + a_{\chi c} a_{c\chi} \right] = 0.$$ 

This expression implies that one of the eigenvalue is equal to $a_{k\kappa}$ and thus negative, so there must be two negative eigenvalues. This establishes the existence of a unique two-dimensional manifold of solutions in the neighborhood of this CGP, converging to it.

This result shows that the CGP is locally (saddle-path) stable, and when the initial values of capital, labor and technology are not too far from the constant growth path, the economy
will indeed converge to this CGP, with non-balanced growth at the sectoral level and constant capital share and interest rate at the aggregate.

3 A Simple Calibration

We now undertake an illustrative calibration to investigate whether the equilibrium dynamics generated by our model economy are broadly consistent with the patterns in the US data. For this exercise, we use data from the National Income and Product Accounts (NIPA) between 1948 and 2005. Industries are classified according to North American Industrial Classification System (NAICS) at the 22-industry level of detail. We use industry-level data for nominal value added, real value added index (chain weighted), total employee compensation, total number of employees, and fixed assets. To map our model to data, we classify industries into low and high capital intensity “sectors”, each comprising approximately 50% of total employment. Figure 1 in the introduction depicts the evolution of relative real value added, nominal value added, and employment in these sectors and shows the more rapid growth of real value added in the capital-intensive sectors and the more rapid growth of nominal value added and employment in the less capital-intensive sectors.

For our calibration, we take the initial year, \( t = 0 \), to correspond to the first year for which we have NIPA data for our sectors, 1948. In our model, \( L(t) \) corresponds to total employment at time \( t \), \( K(t) \) to fixed assets, \( Y_j(t) \) to real value added in sector \( j \), and \( Y_j^N(t) \equiv p_j(t)Y_j(t) \) to nominal value added in sector \( j \).

Our model economy is fully characterized by ten parameters \( \rho, \delta, \theta, \gamma, \varepsilon, \alpha_1, \alpha_2, n, m_1 \) and \( m_2 \), and five initial values, \( L(0) \), \( K(0) \), \( M_1(0) \), \( M_2(0) \) and \( \kappa(0) \). We choose these parameters

\( ^7 \)In particular, we use full-time and part-time employees, since this is the only measure for which we have consistent NAICS data going back to 1948. The alternative classification system, SIC, does not enable us to extend data to 2005 and also reports real value added index only back to 1977.

\( ^8 \)The capital intensity of each industry is computed as value added minus total compensation divided by value added. NAICS data on compensation of employees are only available between 1987 and 2005 (all the other variables are available between 1948 and 2005). Therefore, we compute the capital share of each industry as the average capital share between 1987 and 2005. According to this ranking, low capital-intensity industries are: Construction; Durable goods; Transportation and Warehousing; Professional, scientific, and technical services; Management of companies and enterprises; Administrative and waste management services; Educational services; Health care and social assistance; Other services, except government. High capital-intensive industries are: Mining; Utilities; Non-durable goods; Wholesale; Retail trade; Information; Finance and Insurance; Arts, Entertainment, and Recreation; Accommodation and food services. Throughout we exclude the Government and Private household sectors as well as Agriculture, forestry, fishing, and hunting and Real estate and rental. Appendix B shows the capital intensity of each industry, provides more details, and also shows that the general patterns in the US data, in particular those plotted in Figure 1, are robust to changing the cutoff between high and low capital-intensity industries.
and initial values as follows. First, we adopt the standard parameter values for the annual
discount rate, $\rho = 0.02$, the annual depreciation rate, $\delta = 0.05$, and the annual (asymptotic)
interest rate, $r^* = 0.08$.\footnote{These numbers are the same as those used by Barro and Sala-i-Martin (2004) in their calibration of the
baseline neoclassical model.} We take the annual population growth rate $n = 0.018$ from the NIPA
data on employment growth for 1948-2005, and choose the asymptotic growth rate to ensure
that our calibration matches the NIPA output growth between 1948 and 2005, which is 3.4%.
This implies an asymptotic growth rate of $g^* = 0.033$. The initial values $L(0) = 40,3360$ (in
thousands) and $K(0) = 244,900$ (in millions of dollars) are also directly from the NIPA data
for 1948. Next, our classification of industries leads to two “aggregate sectors” with average
shares of labor in value added of 0.72 and 0.52. In terms of our model this implies $\alpha_1 = 0.72$
and $\alpha_2 = 0.52$.

An important parameter for our calibration is the elasticity of substitution between the
two sectors. Although we do not have independent information on this variable, our model
suggests a way of evaluating this elasticity. In particular, equation (11) implies the following
relationship between nominal and real value added ratios in the two sectors:

$$\log \left( \frac{Y_1^N(t)}{Y_2^N(t)} \right) = \log \left( \frac{\gamma}{1 - \gamma} \right) + \frac{\varepsilon - 1}{\varepsilon} \log \left( \frac{Y_1(t)}{Y_2(t)} \right).$$

(43)

We can therefore estimate $(\varepsilon - 1)/\varepsilon$ by regressing the log of the ratio of the nominal value
added between the two sectors on the log of the ratio of the real value added. Since our
focus is on medium-run frequencies, not on business cycle fluctuations, we use Hodrick and
Prescott filter to smooth both the dependent and the independent variables (with smoothing
weight 1600). This simple regression yields an estimate of $\varepsilon \simeq 0.76$ (and a two standard error
confidence interval of $[0.73, 0.79]$). We therefore choose $\varepsilon = 0.76$ for our benchmark calibration.
We also choose the parameter $\gamma$ to ensure that equation (43) holds at $t = 0$.

Throughout, motivated by our estimate of $\varepsilon$ reported in the previous paragraph, the existing
evidence discussed in footnote 3, and the pattern shown in Figure 1 indicating that employment
and nominal value added grow more in the less capital-intensive sector, we focus on the case
in which $\varepsilon < 1$ and $m_1/\alpha_1 < m_2/\alpha_2$ (case (i) of Assumption (A2)). In particular, for our
benchmark calibration we set $m_1 = m_2$ (even though, as we will see below, higher values of
$m_2$ improve the fit of the model to US data, see below). Since in this case sector 1 is the
asymptotically dominant sector, the asymptotic growth rate of output is $g^* = n + m_1/\alpha_1$. 
Given the already-determined parameter values, this implies $m_1 = m_2 = 0.0108$. The growth rate of output also pins down the intertemporal elasticity of substitution. In particular, the Euler equation (27) together with (26) yields $g^* = (r^* - \rho) / \theta + n$, which implies $\theta = 4$ and results in a reasonable elasticity of intertemporal substitution of 0.25.

This leaves us with the initial values for $\kappa$, $M_1$ and $M_2$. First, notice that equation (15) at time 0 can be rewritten as:

$$\kappa (0) = \left[ 1 + \left( \frac{1 - \alpha_2}{1 - \alpha_1} \right) \frac{Y^N_2 (0)}{Y^N_1 (0)} \right]^{-1}.$$ (44)

This equation together with the 1948 levels of nominal output in the two sectors from the NIPA data, $Y^N_1 (0)$ and $Y^N_2 (0)$, gives $\kappa (0) = 0.32$. Equation (16) then gives the initial value of relative employment as $\lambda (0) = 0.52$. It is also worth noting that in addition to the parameters and the initial values necessary for our calibration, the numbers we are using also pin down the initial interest rate and the capital share in national income as $r (0) = 0.095$ and $\sigma_K (0) = 0.39$. Moreover, since sector 1 is the asymptotically dominant sector, the asymptotic capital share in national income and interest rate are determined as $\sigma^*_K = 1 - \alpha_1 = 0.28$ and $r^* = 0.08$. This implies that, by construction, both the interest rate and the capital share must decline at some point along the transition path. A key question concerns the speed of these declines. If this happened at the same frequency as the change in the composition of employment and capital across the two sectors, then the model would not generate a pattern consistent with non-balanced sectoral growth and the aggregate Kaldor facts. We will see that this is not the case.

Finally, given $\kappa (0) = 0.32$ and $\lambda (0) = 0.52$, the NIPA data imply values for $L_1 (0)$, $L_2 (0)$, $K_1 (0)$ and $K_2 (0)$, and we also have the values for $Y_1 (0)$ and $Y_2 (0)$ directly from the NIPA. We then obtain the remaining initial values, $M_1 (0)$ and $M_2 (0)$, from equation (5). This completes the determination of all the parameters and initial conditions of our model. We then compute the time path of all of the variables in our model using two different numerical procedures (both giving equivalent results).\(^{12}\)

\(^{10}\)We can also compute the empirical counterparts of $\lambda (0)$ and $\kappa (0)$ from the NIPA data using employment and capital in the two sector aggregates. These give the values of 0.49 and 0.50, which are similar, though clearly not identical, to the implied values we use. The fact that the theoretically-implied values of $\lambda (0)$ and $\kappa (0)$ differ from their empirical counterparts is not surprising, since we are assuming that the US economy can be represented by two-sectors combined with a constant elasticity of substitution and each sector having a Cobb-Douglas production function, which is, at best, an approximation.

\(^{11}\)This is because the capital share and interest rate are functions of $\kappa$ only (just combine (20) and (22) with (3) and (15)).

\(^{12}\)In particular, we first return to the two-dimensional non-autonomous system of equations in $c$ and $\chi$ (rather
Figure 2: Behavior of $\kappa$, $\lambda$, $r$ and $\sigma_K$ in the benchmark calibration with $\varepsilon = 0.76$ and $m_2 = 0.0108$. See text for further details.

Figure 2 shows the results of our benchmark calibration with the parameter values described above. In particular, in this benchmark we have $\varepsilon = 0.76$ and $m_1 = m_2 = 0.0108$. The four panels depict relative employment in sector 1 ($\lambda$), relative capital in sector 1 ($\kappa$), the interest rate ($r$) and the capital share in national income ($\sigma_K$) for the first 150 years (in terms of data, corresponding to 1948 to 2098).

A number of features are worth noting. First, for the first 150 years, there is significant reallocation of capital and labor away from the more capital-intensive sector towards the less capital-intensive sector, sector 1, and the economy is very far from the asymptotic equilibrium with $\kappa = \lambda = 1$. In fact, the economy takes a very very long time, over 5000 years, to reach
the asymptotic equilibrium. This illustrates that our model economy generates interesting and relatively slow dynamics, with a significant amount of structural change. Second, while there is non-balanced growth at the sectoral level, the interest rate and the capital share remain approximately constant. The interest rate shows an early decline from about 9.5% to 9%, which largely reflects the initial consumption dynamics. It then remains around 9%. The capital share shows a very slight decline over the 150 years. This relative constancy of the interest-rate and the capital share is particularly interesting, since as noted above, we know that both variables have to decline at some point to achieve their asymptotic values of $r^* = 0.08$ and $\sigma_k^* = 0.28$. Nevertheless, our model calibration implies more rapid structural change than the speed of these aggregate changes, and thus over the horizon of about 150 years there is very little change in the interest rate and the capital share, while there is significant reallocation of labor and capital across sectors.

### Table 1: Data and Model Calibration, 1948-2005

<table>
<thead>
<tr>
<th></th>
<th>US Data</th>
<th>Benchmark Calibration $\varepsilon = 0.76$, $m_2 = 0.0108$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1948</td>
<td>2005</td>
</tr>
<tr>
<td>$Y_2/Y_1$</td>
<td>0.85</td>
<td>1.01</td>
</tr>
<tr>
<td>$L_2/L_1$</td>
<td>1.03</td>
<td>0.80</td>
</tr>
<tr>
<td>$\sigma_k$</td>
<td>0.40</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Note: US data from NIPA. Classifications and calibration described in the text.

These patterns are further illustrated in Table 1, which shows the US data and the numbers implied by our benchmark calibration between 1948 and 2005 for the relative (real) value added and relative employment of the high versus low capital intensity sectors as well as the aggregate capital share in national income (in terms of the model, $t = 0$ is taken to correspond to 1948, thus $t = 57$ gives the values for 2005). The first two columns of this table confirm the patterns shown in Figure 1 in the Introduction—real output grows faster in high capital intensity industries, while employment grows faster in low capital intensity industries. The next two columns show that the benchmark calibration is broadly consistent with this pattern. In particular, while in the data, $Y_2/Y_1$ increases by about 19% between 1948 and 2004, the model leads to an increase of about 17%. In the data, $L_2/L_1$ declines by about 33%. In the model, the implied decline is in the same direction, but considerably smaller, about 5%.$^{13}$

$^{13}$Note that the initial values of $L_2/L_1$ is not the same in the data and in the benchmark model, since, as noted above, we chose the sectoral allocation of labor implied by the model given the relative nominal outputs of the two sectors (recall equation (44)).
Figure 3: Behavior of $\kappa$, $\lambda$, $r$ and $\sigma_K$ in the model, with $\varepsilon = 0.66$ and $m_2 = 0.0108$. See text for further details.

On the other hand, the evolutions of the capital share in the data and in the model are very similar. In the data, the capital share declines from 0.398 to 0.396, whereas in the model it declines from 0.392 to 0.389.

Table 2 and Table 3 show alternative calibrations of our model economy. In Table 2, we consider different values for the elasticity of substitution, $\varepsilon$, while Table 3 considers the implications of different growth rates of the capital-intensive sector, $m_2$.

### Table 2: Data and Model Calibration, 1948-2005 (Robustness I)

<table>
<thead>
<tr>
<th></th>
<th>US Data</th>
<th>$\varepsilon = 0.66$, $m_2 = 0.0108$</th>
<th>$\varepsilon = 0.86$, $m_2 = 0.0108$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_2/Y_1$</td>
<td>0.85</td>
<td>1.01</td>
<td>0.85</td>
</tr>
<tr>
<td>$L_2/L_1$</td>
<td>1.03</td>
<td>0.80</td>
<td>0.91</td>
</tr>
<tr>
<td>$\sigma_k$</td>
<td>0.40</td>
<td>0.40</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Note: US data from NIPA. Classifications and calibration described in the text.

The results for different values of $\varepsilon$ in Table 2 are broadly similar to the benchmark model. The most notable feature is that when $\varepsilon$ is smaller, for example, $\varepsilon = 0.56$ or $\varepsilon = 0.66$ instead of the benchmark value of $\varepsilon = 0.76$, there are greater changes in relative employments. With
\( \varepsilon = 0.56 \), the decline in the relative employment of the capital-intensive sector is approximately 9\% instead of 5\% in the benchmark. The opposite happens when \( \varepsilon \) is larger and there is even less change in relative employment. This is not surprising in view of the fact that, as noted in footnote 5, with \( \varepsilon = 1 \) there would be no reallocation of capital and labor.

Figure 4: Behavior of \( \kappa, \lambda, r \) and \( \sigma_K \) in the model, with \( \varepsilon = 0.76 \) and \( m_2 = 0.0118 \). See text for further details.

The broad patterns implied by different values of \( m_2 \) in Table 3 are also similar to the results of the benchmark calibration. It is noteworthy, however, that if \( m_2 \) is taken to be greater, for example, \( m_2 = 0.0128 \), the fit of the model to the data is improved. For example, in this case, there is a somewhat larger change in relative employment levels and also a larger decline in the relative output of the capital-intensive sector. In contrast, when \( m_2 \) is smaller than the benchmark, the changes in \( Y_2/Y_1 \) and \( L_2/L_1 \) are somewhat less pronounced.

<table>
<thead>
<tr>
<th>US Data</th>
<th>( \varepsilon = 0.76, m_2 = 0.0098 )</th>
<th>( \varepsilon = 0.76, m_2 = 0.0118 )</th>
<th>( \varepsilon = 0.76, m_2 = 0.0128 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1948</td>
<td>0.85</td>
<td>1.01</td>
<td>0.85</td>
</tr>
<tr>
<td>2005</td>
<td>1.01</td>
<td>0.85</td>
<td>0.96</td>
</tr>
<tr>
<td>1948</td>
<td>1.03</td>
<td>0.80</td>
<td>0.91</td>
</tr>
<tr>
<td>2004</td>
<td>0.80</td>
<td>0.91</td>
<td>0.88</td>
</tr>
<tr>
<td>( \sigma_k )</td>
<td>0.40</td>
<td>0.40</td>
<td>0.39</td>
</tr>
</tbody>
</table>

Note: US data from NIPA. Classifications and calibration described in the text.
Figures 3 and 4 illustrate the calibration results further by showing the implied numbers from two of the calibration exercises reported in Tables 2 and 3. Figure 3 is for $\varepsilon = 0.66$ and $m = 0.0108$, while Figure 4 is for $\varepsilon = 0.76$ and $m = 0.0118$.

Overall, our calibration exercises indicate that the mechanism proposed in this paper can generate changes in the sectoral composition of output that are broadly comparable with the changes we observe in the US data and changes in relative employment levels that are in the same direction as in the data, though quantitatively smaller. Notably, during this process of structural change the capital share in national income remains approximately constant.

4 Conclusion

We proposed a model in which the combination of factor proportion differences across sectors and capital deepening leads to a non-balanced pattern of economic growth. We illustrated the main economic forces using a tractable two-sector growth model, where there is a constant elasticity of substitution between the two sectors and Cobb-Douglas production technologies in each sector. We characterized the constant growth path and equilibrium (Pareto optimal) dynamics in the neighborhood of this growth path, and showed that even though sectoral growth is non-balanced, the behavior of the interest rate and the capital share in national income are consistent with the Kaldor facts. In particular, asymptotically the two sectors still grow at different rates, while the interest rate and the capital share are constant.

The main contribution of the paper is theoretical, demonstrating that the interaction between capital deepening and factor proportion differences across sectors will lead to non-balanced growth, while still remaining broadly consistent with the aggregate Kaldor facts. We also presented a simple calibration of our baseline model, which showed that the equilibrium path may indeed exhibit sectoral employment and output shares changing significantly, while the aggregate capital share and the interest rate remain approximately constant. Moreover, the magnitudes implied by this simple calibration are comparable to, though somewhat smaller than, the sectoral changes observed in the the postwar US data. A full investigation of whether the mechanism suggested in this paper is first-order in practice is an empirical question left for future research. It would be particularly useful to combine the mechanism proposed in this paper with non-homothetic preferences and estimate a structural version of the model with multiple sectors using US or OECD data.
Appendix A: Results with the Converse of Assumption (A2)

In the text, we stated and proved Proposition 3, Theorems 1 and 2 under Assumption (A2). This assumption was imposed only to reduce notation. When it is relaxed, sector 1 is no longer the asymptotically dominant sector and a different type of normalization than that in (26) is necessary. In particular, the converse of Assumption (A2) is

either (i) \( m_1/\alpha_1 > m_2/\alpha_2 \) and \( \varepsilon < 1 \); or (ii) \( m_1/\alpha_1 < m_2/\alpha_2 \) and \( \varepsilon > 1 \). \((A2')\)

It is straightforward to see that in this case sector 2 will be the asymptotically dominant sector. We therefore adopt a parallel normalization in whereby

\[
c(t) \equiv \frac{\tilde{c}(t)}{M_2(t)^{1/\alpha_2}} \quad \text{and} \quad \chi(t) \equiv \frac{K(t)}{L(t) M_2(t)^{1/\alpha_2}}.
\]

Given this normalization, it is straightforward to generalize Proposition 3, Theorems 1 and 2.

**Proposition 4** Suppose (A1) and (A2') hold. Then the solution to (SP) satisfies the following three differential equations

\[
\begin{align*}
\frac{\dot{c}(t)}{c(t)} &= \frac{1}{\theta} \left[ (1 - \alpha_2) \gamma \eta(t)^{1/\varepsilon} \lambda(t)^{\alpha_2} \kappa(t)^{-\alpha_2} \chi(t)^{-\alpha_2} - \delta - \rho \right] - \frac{m_2}{\alpha_2}, \\
\frac{\dot{\chi}(t)}{\chi(t)} &= \lambda(t)^{\alpha_2} \kappa(t)^{1-\alpha_2} \chi(t)^{-\alpha_2} \eta(t) - \chi(t)^{-1} c(t) - \delta - n - \frac{m_2}{\alpha_2}, \\
\frac{\dot{\kappa}(t)}{\kappa(t)} &= \frac{(1 - \kappa(t)) \left[ (\alpha_2 - \alpha_1) \frac{\tilde{c}(t)}{\chi(t)} + m_1 - \frac{\alpha_1}{\alpha_2} m_2 \right]}{(1 - \varepsilon)^{-1} + (\alpha_2 - \alpha_1) (\kappa(t) - \lambda(t))}, \quad \text{where} \\
\eta(t) &\equiv \gamma^{\frac{\varepsilon - 1}{\varepsilon - 1}} \left[ 1 + \left( \frac{1 - \alpha_2}{1 - \alpha_1} \left( \frac{1 - \kappa(t)}{\kappa(t)} \right) \right)^{\frac{\varepsilon - 1}{\varepsilon - 1}} \right],
\end{align*}
\]

with initial conditions \( \chi(0) \) and \( \kappa(0) \), and also satisfies the transversality condition

\[
\lim_{t \to \infty} \exp \left( - \left( \rho - \frac{(1 - \theta) m_2}{\alpha_2} - n \right) t \right) \chi(t) = 0.
\]

Moreover, any allocation that satisfies these conditions is a solution to (SP).

**Proof.** The proof is identical to that of Proposition 3 and is omitted. ■

**Theorem 3** Suppose (A1), (A2') and (A3) hold. Then, there exists a unique CGP where consumption per capita gross at the rate \( g^*_c = m_2/\alpha_2 \), and \( \kappa^* = 0 \),

\[
\chi^* = \left( \frac{(\theta m_2/\alpha_2 + \rho + \delta)}{(1 - \gamma) \frac{\alpha_1}{\alpha_2} (1 - \alpha_2)} \right)^{-\frac{1}{\alpha_2}},
\]

27
and \( c^* = (1 - \gamma) \frac{\epsilon}{\gamma} (\chi^*)^{1-\alpha_2} - \chi^* \left( \delta + n + \frac{m_2}{\alpha_2} \right) \). Moreover, the growth rates of output, capital and employment in the different sectors are given by

\[
g^* = \frac{g^*_2}{g^*_1} = z^*_2 = n + \frac{m_2}{\alpha_2}, \quad z^*_1 = n - (1 - \epsilon) m_1 + \left[ 1 + (1 - \epsilon) \alpha_1 \right] \frac{m_2}{\alpha_2} < g^*
\]

\[
g^*_1 = n + \epsilon m_1 + (1 - \epsilon \alpha_1) \frac{m_2}{\alpha_2}, \quad n^*_2 = n, \quad n^*_1 = n - (1 - \epsilon) \left[ m_1 - \alpha_1 \frac{m_2}{\alpha_2} \right] < n^*_2.
\]

**Proof.** The proof is identical to that of Theorem 1 and is omitted. ■

It can also be easily verified that in this case \( \sigma^*_{\alpha_2} = 1 - \alpha_2 \) and \( r^* = (1 - \alpha_2) \frac{\gamma}{\gamma} (\chi^*)^{1-\alpha_2} - \delta \).

**Theorem 4** Suppose (A1), (A2') and (A3) hold. Then the non-linear system (27) is locally (saddle-path) stable, in the sense that in the neighborhood of \( c^* \), \( \chi^* \) and \( \kappa^* \), there is a unique two-dimensional manifold of solutions that converge to \( c^* \), \( \chi^* \) and \( \kappa^* \).

**Proof.** The proof follows that of Theorem 2. Once again linearizing the dynamics around the CGP, we obtain \( \dot{z} = J(x^*) z \), with \( z \equiv x - x^* \) and \( x^* \) such that \( f(x^*) = 0 \), where \( J(x^*) \) is the Jacobian of \( f(x) \) evaluated at \( x^* \). The entries of the Jacobian matrix are now given by

\[
a_{cc} = a_{\kappa c} = a_{\kappa \chi} = 0, \quad a_{c \chi} = -(1 - \gamma) \frac{\epsilon}{\gamma} (\chi^*)^{-\alpha_2} \frac{\alpha_2(1 - \alpha_2)}{\theta},
\]

\[
a_{c \kappa} = (1 - \gamma) \frac{\epsilon}{\gamma} (\chi^*)^{-\alpha_1} \frac{(1 - \alpha_2) [\alpha_1 - \alpha_2] (1 - \epsilon) + (1 - \alpha_2)}{\theta (1 - \epsilon) (1 - \alpha_1)},
\]

\[
a_{\chi \chi} = (1 - \gamma) \frac{\epsilon}{\gamma} (\chi^*)^{-\alpha_2} (1 - \alpha_2) - \left( \delta + n + \frac{m_2}{\alpha_2} \right),
\]

\[
a_{\chi \kappa} = (1 - \gamma) \frac{\epsilon}{\gamma} \frac{(1 - \alpha_2)}{(1 - \epsilon) (1 - \alpha_1)}, \quad \text{and} \quad a_{\kappa \kappa} = -(1 - \epsilon) \left[ m_1 - \frac{\alpha_1}{\alpha_2} m_1 \right].
\]

Once again \( a_{c \chi} \) and \( a_{\chi c} \) are negative and moreover under Assumption (A2') \( a_{\kappa \kappa} \) is also negative since \( \epsilon \geq 1 \iff m_2 / \alpha_2 \geq m_1 / \alpha_1 \). Therefore, as in the proof of Theorem 2, \( \det J(x^*) > 0 \) and the steady state is hyperbolic. The same argument as in that proof shows that there must be two negative eigenvalues and establishes the result. ■

**References**


Homer, Sydney and Richard Sylla, A History of Interest Rates, Rutgers University Press,


Zuleta, Hernando and Andrew Young, “Labor’s Shares—Aggregate and Industry: Accounting for Both in a Model with Induced Innovation,” University of Mississippi, mimeo, 2006.