Big Data BUS 41201

Week 7: Clustering

Veronika Ročková
University of Chicago Booth School of Business

http://faculty.chicagobooth.edu/veronika.rockova/
Clustering

✓ Supervised versus unsupervised data analysis

✓ Model-based clustering: mixture models

✓ K-means algorithm

✓ Hierarchical clustering

✓ Topic models for text analysis
Supervision

You’ve seen lots of models for \([y \mid x]\) (and \([y \mid d, x], etc)\).

Today is about models for \(x\).

The goal in everything we do has been \textit{Dimension Reduction}.

\textbf{DR: move from high dimensional} \(x\) \textit{to low-D summaries.}

Dimension reduction can be \textbf{supervised} or \textbf{unsupervised}.

\textbf{Supervised:} Regression and classification

\(HD\) \(x\) is projected through \(\beta\) into 1D \(\hat{y}\)

Outside info (\(y\)) supervises how you simplify \(x\).

\textbf{Unsupervised:} Mixture and Factor Models

\(x\) is modeled as built from a small number of components.
You’re finding the simplest representation of \(x\) alone.

We always want the same things: low deviance, without overfit.
What is clustering? And why?

Clustering: dividing up data into groups (clusters), so that points inside each group are more “similar” to each other than to points outside the group.

Why cluster? Two main uses

~~> **Summary**: (DR) deriving a reduced representation of data
~~> **Discovery**: looking for new insights into the data structure

Clustering can also help with predictions. However,

clustering should not be confused with classification!

~~> **In classification**, we have data for which the groups are known and we try to learn what differentiates them to assign future labels.

~~> **In clustering**, we have data for which the group labels are unknown and try to learn the groups themselves as well as what differentiates them.
Clustering: unsupervised dimension reduction

Group observations into similar ‘clusters’, and understand the rules behind this clustering.

⇝ Demographic Clusters: Soccer moms, NASCAR dads.

⇝ Consumption Clusters: Jazz listeners, classic rock fans.

Collaborative Filtering

Group individuals into clusters, and model average behavior for each.

Market Segmentation

⇝ Industry Clusters: Competitor groups, supply chains.

Clustering is largely an exploratory technique:

(1) model-based methods (mixture models)

(2) “heuristic” methods (hierarchical clustering)

Sometimes, it is useful to have clusters organized in a hierarchy.
The **K-means** Mixture Model

The fundamental model of clustering is a mixture:
observations are random draws from *K* populations,
each with different average characteristics.

Suppose you have *K* possible means for each observed \(x_i \):

\[
E[x_i \mid k_i] = \mu_{k_i}, \text{ where } k_i \in \{1 \ldots K\}
\]

e.g., if \(k_i = 1 \), \(x_i \) is from cluster 1: \(E[x_{i1}] = \mu_{11} \ldots E[x_{ip}] = \mu_{1p} \).

Each mean \(\mu_j \) has an associated probability or “weight” in the mixture.

For new \(x \) with unknown \(k \),

\[
E[x] = P(k = 1)\mu_1 + \ldots + P(k = K)\mu_K
\]

DR: Given \(\mu_k \)’s, you discuss data in terms of *K* different types, rather than trying to imagine all possible values for each \(x \).
Mixture Model: without knowing membership ‘k’

The *marginal* density has multiple modes; one for each μ_k.
Mixture Model: breaking into K components

probability density function

Here, we have $K = 4$ different cluster centers. Should it be 5?
K-means: Chicken-egg problem

For given K, the goal is to find clusters so that the within-cluster variability is small.

- We do not know cluster memberships k_i and we do not know centroids (K-means) μ_k.

Chicken-and-Egg problem

But!

1. *If we knew k_i: we can easily estimate μ_k*
2. *If we knew μ_k: we can easily estimate k_i*

Solution: iterate between (1) and (2)

This strategy relates to the EM algorithm, one of the workhorses of statistical computing.
\textbf{K-means}

\textit{K}-means algorithm clusters data by fitting a mixture model. Suppose data $x_1 \ldots x_n$ comes from K clusters.

\textbf{Chicken:} \textit{If you know membership} k_i \textit{for each} x_i, then estimate

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:k_i=k} x_i$$

where $\{i : k_i = k\}$ are the n_k observations in group k.

\textbf{Egg:} \textit{If you know means} μ_k, find $k = k_1 \ldots k_n$ to minimize the sum-of-squares

$$\sum_{k=1} \sum_{i:k_i=k} (x_i - \hat{\mu}_k)^2$$

Mixture deviance: sums of squares \textbf{within} each cluster.
Give K-means the x_i’s, and it gives you back the k_i’s

In words: K-means

1. Label each point based on the closest centroid (mean)
2. Replace each centroid by the average of the points in the cluster

The algorithm starts at random μ_k’s, and changes k_i’s until the sum of squares stops improving.

Solution depends on start location.
Try multiple, take the best answer.

Choosing K: For most applications, everything is descriptive.
So try a few and use clusters that make sense to you.
K-means example

Here $X_i = (X_{i1}, X_{i2})$, $n = 300$, and $K = 3$
K-means example, multiple runs

Here $\mathbf{X}_i = (X_{i1}, X_{i2})'$, $n = 250$, and $K = 4$, the points are not as well-separated

These are results of result of running the K-means algorithm with different initial centers (chosen randomly over the range of the X_i's). We choose the second collection of centers because it yields the smallest within-cluster variation (mixture deviance)
kmeans(x, centers, nstart)

Clusters x (numeric!) into centers groups using nstart starts.

> grp = kmeans(x=mydata, centers=3, nstart=10)

K-means clustering with 3 clusters of sizes 28, 31, 31
Cluster means:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0691704</td>
<td>-0.99099545</td>
</tr>
<tr>
<td>2</td>
<td>-0.2309448</td>
<td>-0.04499839</td>
</tr>
<tr>
<td>3</td>
<td>0.4987361</td>
<td>1.01209098</td>
</tr>
</tbody>
</table>

Clustering vector:

1 [1] 2 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[2] 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 2
[39] 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 2
[40] 1

Within cluster sum of squares by cluster:

 (between_SS / total_SS = 80.5 %)

grp$cluster holds cluster assignments for each observation.
Scaling for K-means

The algorithm minimizes total [squared] distance from center, *summed across all dimensions of x.*

Scale matters: if you replace x_j with $2x_j$, that dimension counts twice as much in determining distance from center (and will have more influence on cluster membership).

Standard solution is to standardize:

$$\tilde{x}_{ij} = \frac{x_{ij} - \bar{x}_j}{\text{sd}(x_j)}$$

Then the centers μ_{jk} are interpreted as *standard deviations from marginal average.*
Clustering Europe by Food

Protein consumption by country, in grams per person per day for

Red and White Meat
Eggs, Milk, Fish
Cereals, Starch, Nuts
Fruit and Vegetables

See protein.R.
3-means clustering on Red vs White meat consumption

Consumption is in units of standard deviation from the mean.
7-means clustering on all nine protein types

Plotting the red vs white plane, but clustering on all variables.
Wine Clustering

Today is all about food!

As a bigger data example, wine.csv contains data on 11 chemical properties of *vino verde* wine from northern Portugal.

We have chemistry for 6500 bottles (1600 red, 4900 white), along with average quality rating (out of 10) by ‘expert’ tasters.

If you fit a 2-mean mixture, you get what you might expect

```r
> tapply(wine$color, km$cluster, table)

$'1'$  $'2'$

       red white       red white
24 4830 1575   68

The two clusters are red vs white wine.
In 2D slices of $x$, we see clear red v white discrimination.

Point border is true color, body is cluster membership.
Choosing $K$

1st order advice: most often clustering is an exploration exercise, so choose the $K$ that makes the most sense to you.

But, we can apply data-based model building here:

1. Enumerate models for $K_1 < K_2 \ldots < K_M$.
2. Use a selection tool to choose the best model for new $x$.

Step one is easy. Step two is tougher.

For example, for CV you’d want to have high OOS $P_{k_i}(x_i)$. But you don’t know $k_i$! This is a latent variable. There’s no ground truth like $y$ to compare against.
AIC and BIC for K-means

We can use IC to select $K$.

- Deviance is the within sum of squares (slide 10) (analog of SSE in regression).
- $df$ is the number of $\mu_{kj}$: $K \times p$. (where $p$ is dimension of $x$)

Then our usual AICc and BIC formulas apply.

I've added these in kIC.R for your convenience.

**Beware:** the assumptions behind both AICc and BIC calculation are only roughly true for $K$-means.

These tools are lower quality here than in regression.

You’re often better off just using descriptive intuition.
BIC and AICc for wine $K$-means

BIC likes $K \approx 50$, AICc likes 130.
Both are way more complicated than useful.
Cluster Regression

Once use of *unsupervised* clustering is to throw the results into a *supervised* regression model.

For example, we can use the wine cluster memberships as a factor variable to predict wine quality (this is equivalent to just predicting quality with the average for each cluster).

*If* the dominant sources of variation in $x$ are related to $y$, this can be a good way to work. Otherwise its not.

The clusters all have around the same average quality

```r
> tapply(wine$quality,kfit[[k]]$cluster,mean)
 5.4 6.0 5.0 5.4 5.4 6.6 5.7 5.4 6.3 5.5
 6.1 5.8 5.7 6.3 6.3 6.1 5.2 6.5 5.9 5.5
 5.3 6.1 6.2 5.4 5.1 5.9 5.5 5.9 5.5 5.3
```

so the strategy wouldn’t work here.
Comparison with Regression

This isn’t the same as there being no predictive power in \( x \).

Regression onto chemical properties gets us an OOS \( R^2 \) of around 29\% when predicting quality.

![CV-LASSO plot: regression of quality on X](image)

It’s just that wine ‘quality’ has a weak signal, and most of the variation in \( x \) is driven by other factors (e.g., grape color).
In minimizing sums-of-squares, $K$-means targets the model

$$P_k(x) = \prod_j \mathcal{N}(x_j | \mu_{kj}, \sigma^2)$$

$\Rightarrow$ independence across dimensions (no multicollinearity) and uniform variance (same $\sigma$ for all $j$, which is why scale matters).

😊 Despite being a silly model, this tends to do a decent job of clustering when $x$ consists of continuous variables.

そうで、It does a worse job for $x$ made up of dummies or counts.
From $K$-means to hierarchical clustering

Recall two properties of $K$-means clustering:

1. It fits exactly $K$ clusters (as specified)
2. Final clustering assignment depends on the chosen initial cluster centers

Hierarchical clustering is an alternative that does not rely on any underlying model

⇝ Hierarchical clustering produces a sequence of nested cluster memberships.

⇝ No need to choose initial starting positions and the number of clusters.

⇝ Data points that are similar will end up in the same cluster.

There are different ways to measure similarity.

At one end, all points are in their own cluster, at the other end, all points are in one cluster.
Agglomerative vs divisive

Two types of hierarchical clustering algorithms

**Agglomerative** (i.e., bottom-up):

~~> Start with all points in their own group

~~> Until there is only one cluster, repeatedly: merge the two groups that have the smallest dissimilarity

**Divisive** (i.e., top-down):

~~> Start with all points in one cluster

~~> Until all points are in their own cluster, repeatedly: split the group into two resulting in the biggest dissimilarity

Agglomerative strategies are simpler, we’ll focus on them.
Given these data points, an agglomerative algorithm might decide on a clustering sequence as follows:

Step 1: \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\};
Step 2: \{1\}, \{2, 3\}, \{4\}, \{5\}, \{6\}, \{7\};
Step 3: \{1, 7\}, \{2, 3\}, \{4\}, \{5\}, \{6\};
Step 4: \{1, 7\}, \{2, 3\}, \{4, 5\}, \{6\};
Step 5: \{1, 7\}, \{2, 3, 6\}, \{4, 5\};
Step 6: \{1, 7\}, \{2, 3, 4, 5, 6\};
Step 7: \{1, 2, 3, 4, 5, 6, 7\}.
We can also represent the sequence of clustering assignments as a dendrogram:

Note that cutting the dendrogram horizontally partitions the data points into clusters.
What’s a dendrogram?

**Dendrogram**: convenient graphic to display a hierarchical sequence of clustering assignments. This is simply a tree where:

- Each node represents a group
- Each leaf node is a singleton (i.e., a group containing a single data point)
- Root node is the group containing the whole data set
- Each internal node has two children nodes, representing the groups that were merged to form it

Remember: the choice of *similarity measure* determines how we merge groups of points
Hierarchical Clustering of Europe by Food

Cluster Dendrogram

Height

Hungary  USSR  Poland  Czechoslovakia  E Germany  Finland  Norway  Denmark  Sweden  France  UK  Ireland  Belgium  W Germany  Switzerland  Austria  Netherlands  Portugal  Spain  Greece  Italy  Albania  Bulgaria  Romania  Yugoslavia
Great Service: Waffle House #1258, Bossier City LA

I normally would not review a Waffle House but this one deserves it. The workers, Amanda, Amy, Cherry, James and J.D. were the most pleasant crew I have seen. While it was only lunch, B.L.T. and chili, it was great. The best thing was the 50’s rock and roll music, not too loud not too soft. This is a rare exception to what we all think a Waffle House is. Keep up the good work.

Terrible Service: Sartin’s Seafood, Nassau Bay TX

Had a very rude waitress and the manager wasn’t nice either.
Clustering Text

Often, low-D structure underlies text

- happy/sad, document purpose, topic subject.

The $\mathbf{x}$ for text are counts of text tokens.
A token can be a word, bigram (pair of words), etc.

We can try to transform $\mathbf{x}$ to look like something $K$-means would work with (i.e., something that looks built out of normals).

`we8there.R` fits $K$-means to standardized token proportions $x_{ij}/m_i$, where $m_i = \sum_i x_{ij}$ are the document totals.

Looking at the big $\hat{\mu}_{jk}$ (i.e., phrases $j$ with big proportions in cluster $k$), it comes up with some decent interpretable factors.
Topic Models

Although it ‘kinda works’, $K$-means for text is far from ideal. Instead, use a mixture of $\mathbb{P}_k$ that are appropriate for count data.

A multinomial mixture:

- For each word, you pick a ‘topic’ $K$.
- This topic has probability $\theta_{kj}$ on each word $j$.
- You draw a random word according to $\theta_k$

After doing this over and over for each word in your document, you’ve got proportion $\omega_{i1}$ from topic 1, $\omega_{i2}$ from topic 2, etc.

The full vector of words for document $\mathbf{x}_i$ then has distribution

$$
\mathbb{E} \left[ \frac{\mathbf{x}_i}{m_i} \right] = \omega_{i1} \theta_1 + \ldots + \omega_{iK} \theta_K
$$

*a multinomial with probabilities $\sum_k \omega_{ik} \theta_k$ and total $m_i = \sum_j x_{ij}$.*
**Topic Models: clustering for text**

Each document \((x_i)\) is drawn from a multinomial with probabilities that are a mixture of topics.

\[
x_i \sim MN(\omega_i \theta_1 + \ldots + \omega_i \theta_K, m_i)
\]

\(\theta\)'s: **word weights**: probabilities of words inside each of the K topics

\[
\sum_{j=1}^{p} \theta_{kj} = 1
\]

E.g., a *hotdog* topic has high probability on mustard, relish, ....

\(\omega_i\)'s: **doc weights**: probabilities of topics inside each document

\[
\sum_{k=1}^{K} \omega_{ik} = 1
\]

E.g., a hotdog stand review has big \(\omega_{ki}\) on the hotdog topic.

This is subtly different from \(K\)-means: instead of each document \(i\) being from a cluster, now each word is from a different topic and the document is a mixture of topics.
Fitting topic models in R

maptpx package has a topics function; see ?topics.

\[
\text{tpc} \leftarrow \text{topics}(x, K=10, \text{tol}=10) \quad \# \quad \text{10 topic model}
\]

Fitting a topic model is computationally very difficult. Just like in \( K \)-means, we need only roughly estimate \( \hat{\theta}_k \) (analogous to \( \mu_k \)) to get a decent clustering.

So Big Data implementations use approximate (stochastic) deviance minimization.

Plenty of other packages out there; note that topic modeling is also called LDA (latent Dirichlet allocation) if you’re exploring.
Selecting the number of topics

Choosing $K$ here is same as in $K$-means: this is exploratory analysis, so just choose what you want for story-telling.

But, you can use BIC: if you give topics a vector for $K$, it incrementally grows and stops when the BIC keeps increasing. It reports log Bayes Factor, which is like $-\text{BIC}$.

The model returned is that for $K$ with lowest BIC (highest BF).

Log Bayes factor and estimated dispersion:

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>logBF</td>
<td>76020.73</td>
<td>90041.99</td>
<td>7651.02</td>
<td>-62745.37</td>
</tr>
<tr>
<td>Disp</td>
<td>7.19</td>
<td>5.06</td>
<td>4.02</td>
<td>3.43</td>
</tr>
</tbody>
</table>

Here, max BF selects $K = 10$ (don’t worry about ‘dispersion’).
Interpreting topics

We build interpretation by looking at ‘top’ words for each topic.

You can order by lift

```r
summary(tpcs)
```
Top 5 phrases by topic-over-null term lift (and usage %):
[1] food great, great food, veri good, food veri, veri nice (13.7)
[2] over minut, ask manag, flag down, speak manag, arriv after (11.6)

Sometimes straight word probabilities are more intuitive

```r
rownames(tpcs$theta)[order(tpcs$theta[,1], decreasing=TRUE)[1:10]]
 veri good great food food great great place veri nice
 wait staff good food food excel great servic place eat
rownames(tpcs$theta)[order(tpcs$theta[,2], decreasing=TRUE)[1:10]]
 go back came out tast like never go brought out
 wait minut take order minut later come out drink order
```

Here, topic 1 looks ‘good’ and 2 looks ‘bad’.
Wordles!

You can use the `wordcloud` library to efficiently visualize.

```r
wordcloud(row.names(theta), freq=theta[,2], min.freq=0.004)
```

In the language of wordles, `freq` controls word size.
I've made word size proportional to the in-topic probability.
Topic Regression

Just like with $K$-means, we can relate topics to other variables in a second-stage low-D regression.

Here, the topics looked motivated by quality. Perhaps they’ll be useful in predicting review rating?

```
stars <- we8thereRatings[, "Overall"]
tpcreg <- gamlr(tpcs$omega, stars)
Effect stars from 10% increase in topic use
drop(coef(tpcreg)) * 0.1
```

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>0.414</td>
<td>0.075</td>
<td>-0.386</td>
<td>0.068</td>
<td>0.042</td>
<td>0.000</td>
<td>0.076</td>
<td>0.121</td>
<td>0.000</td>
<td>-0.134</td>
</tr>
</tbody>
</table>

So, e.g., you drop an expected -.4 star for if an extra 10% of the review comes from topic 2 here (our negative topic from above).
Comparison regressing stars on bigram proportions $x_{ij}/m_i$.

The topic model does better than regression onto words!
Round up on unsupervised clustering

It is largely an exploratory analysis technique.
Don’t be too fancy in your rules to choose $K$, because all that matters is that the model tells an intuitive story.

You can use clustering results as inputs for low-D regressions.

This is great if the dominant sources of variation in $x$ are related to $y$ (especially if you have more $x_i$’s than $y_i$’s).

But it’s useless if $y$ is not connected main drivers behind $x$, as is common in big data!

The counts are in congress109Counts.

We also have congress109Ideology, a data.frame containing some information about each speaker.

The includes some partisan metrics:

- party (Republican, Democrat, or Independent)
- Common Scores [cs1,cs2]: basically, the first two principal components of roll-call votes (next week!).
Homework due next week: congressional speech

[1] Fit $K$-means to speech text for $K$ in 5,10,15,20,25. Use BIC to choose the $K$ and interpret the selected model.

[2] Fit a topic model for the speech counts. Use Bayes factors to choose the number of topics, and interpret your chosen model.

[3] Connect the unsupervised clusters to partisanship.
   - tabulate party membership by $K$-means cluster. Are there any non-partisan topics?
   - fit topic regressions for each of party and repshare. Compare to regression onto phrase percentages:

\[
x<-100*\text{congress109Counts}/\text{rowSums(congress109Counts)}
\]

No starter script; look at we8there.R and wine.R.